Date of Completion

5-9-2016

Embargo Period

5-2-2016

Advisors

Juliana Barrett, Emily Wilson

Field of Study

Natural Resources

Degree

Master of Science

Open Access

Open Access

Abstract

Erosion is both a natural and anthropogenic phenomenon that threatens many properties along the coast. Installing hard structures has been the status quo method to protect waterfront property. However, structural barriers such as seawalls and groins have adverse environmental impacts on coastal processes and ecosystem services, such as food, recreation, and storm protection. Living shorelines are viable alternatives to shoreline armoring in low to moderate wave energy climates. Living shorelines are nature-based shoreline protection strategies which also enhance natural habitat and promote ecosystem services. In an attempt to improve coastal resilience in Connecticut, this study developed an automated geospatial model which determined the suitability of various living shoreline designs along Connecticut's Long Island Sound shoreline. The model uses coastal conditions and site characteristics to determine stretches of coastline suitable for living shorelines. Inputs such as fetch, bathymetry, erosion rates, marsh, and beach are taken into consideration in producing living shoreline site suitability. Outputs from the geospatial model include beach enhancement and marsh enhancement, as well as two hybrid design options –offshore breakwaters and marsh with structures. Results from this study reveal that overall 47% of the Connecticut shoreline is suitable for living shoreline design options. The model is a crucial first step for environmental planners, homeowners, environmental engineers, and consultants in considering shoreline protection alternatives to shoreline hardening.

Major Advisor

Daniel Civco

Share

COinS