This paper provides sufficient conditions for existence of Markovian equilibrium in models with non-paternalistic altruism extending to one generation ahead. When utility is non-separable, we show that each equilibrium savings policy correspondence is increasing everywhere and single-valued, except perhaps on a countable number of points. It is also upper hemi-continuous where it is single valued. When utility is separable, we show that the equilibrium is unique, increasing, and continuous, and we provide an algorithm converging uniformly to the equilibrium.