Date of Completion


Embargo Period



Biosupercapacitors, graphene-protein nanocomposites, implantable pacemakers, cancer biosensors, DNA damage screening, 3-D printing, Triboelectric nanogenerators

Major Advisor

James F. Rusling

Associate Advisor

Steven L. Suib

Associate Advisor

Alfredo Angeles-boza

Field of Study



Doctor of Philosophy

Open Access

Open Access


Cardiovascular diseases and cancer are the top two leading causes of death in the United States according to the U.S. department of health and human services. Fast growing technologies are being developed to early diagnose and/or treat both heart diseases and cancers. One of the most successful cardiovascular devices is the cardiac pacemaker. Although cardiac pacemakers have been used by millions of patients worldwide, these pacemakers still suffer from several limitations because of the power source. Like other electronic devices that rely on batteries for their power, cardiac pacemakers must be replaced when the battery is drained. In addition, batteries electrode materials and electrolytes are toxic which raise serious safety concerns if leakage happen inside the patient’s body. In addition to their toxicity, these batteries represent more than 50-70 % of the size of implantable pacemakers which limits further miniaturization. In addition, portable electrochemical biosensors require durable portable power source to drive their electrochemical reaction and obtain the detection signal.

In this thesis, biosupercapacitors were first developed as thin, safe, light-weight, low-cost, and durable power sources for the next generation of miniaturized implantable biomedical devices and portable disease biosensors. Moreover, additive manufacturing techniques such as 3-D printing, and screen printing were used to fabricate the different components of the portable electrochemical biosensors designed for cancer biomarker detection as well as DNA damage screening assays. Finally, novel triboelectric nanogenerator devices were developed and used as a sensor/energy harvester systems for biomedical, mechanical, and soft robotics applications.

Available for download on Wednesday, January 01, 2020