2009

Triatomic Molecular Orbitals

Carl W. David
University of Connecticut, Carl.David@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/chem_educ

Part of the Physical Chemistry Commons

Recommended Citation
https://opencommons.uconn.edu/chem_educ/75
Triatomic Molecular Orbitals

C. W. David
Department of Chemistry
University of Connecticut
Storrs, Connecticut 06269-3060
(Dated: March 26, 2009)

I. SYNOPSIS

If elementary Quantum Chemistry stops at diatomic molecules, some students may be left with false impressions concerning how one builds polyatomic molecule’s LCAO-MOs. This reading discusses building such molecular orbitals from atomic orbitals centered at different spatial coordinates.

II. INTRODUCTION

When we talk about diatomic molecules, there is no question in our minds where the contributing orbitals lie. One set of orbital lies centered on one nucleus and the other set lies on the other.

Now consider water. We wish to build up our understanding of the electronic structure of water from its constituents. For the protons, this is easy, we will build the protons with 1s orbitals attached. For the oxygen, this is also simple, since oxygen is \(1s^22s^22p^4\).

The problem occurs when we start to put flesh on these words and symbols. To start with, let’s locate the spatial coordinates of the atoms, the nuclei. Although it might be convenient for some problems (concerning rotation) to locate our coordinate system on the center of mass, we choose instead to locate the origin of our coordinate system on the oxygen. The bond length of water’s O-H bond is 0.9584 Å, and the H-O-H bond angle is 104.5°, which means that we can locate proton number one at

\[
x_{H_1} = 0.9584 \cos \left( \frac{104.5}{2} \right) \tag{2.1}
\]

\[
y_{H_1} = 0.9584 \sin (52.25) \tag{2.2}
\]

and the other proton, number 2, can be at

\[
x_{H_2} = 0.9584 \cos (-52.25) \tag{2.3}
\]

\[
y_{H_2} = 0.9584 \sin (-52.25)
\]

where we have guaranteed that the bond angle and bond lengths are \(a\ priori\) built in.

Now the 1s orbital on \(H_1\) is

\[\psi_{H_1} = e^{-\alpha r_1}\]

in common parlance, which means

\[\psi_{H_1} = e^{-\alpha \sqrt{(x-0.9584 \cos(52.25))^2 + (y-0.9584 \sin(52.25))^2 + z^2}}\]

which guarantees that the proton’s electron starts its existence in a proper orbital centered on the nucleus. Clearly, for the other proton’s electron, we have

\[\psi_{H_2} = e^{-\alpha \sqrt{(x+0.9584 \cos(52.25))^2 + (y-0.9584 \sin(52.25))^2 + z^2}}\]

Of course, the orbitals of the oxygen are

\[
\psi_{1s} = e^{-\beta r} \tag{2.4}
\]

\[
\psi_{2s} = (2 - r)e^{-\beta r/2}
\]

\[
\psi_{2p_x} = r \sin \vartheta \cos \varphi e^{-\beta r/2}
\]

\[
\psi_{2p_y} = r \sin \vartheta \sin \varphi e^{-\beta r/2}
\]

\[
\psi_{2p_z} = r \cos \vartheta e^{-\beta r/2}
\]

where \(\beta\) is a constant which, for the naked H atom, is related to the Bohr radius, but here might be a potential variational parameter and \(r = \sqrt{x^2 + y^2 + z^2}\). Figure 1 shows some of the various orbitals diagrammatically.

Now, how do we build MO’s? What linear combination of these orbitals are we going to use? “Aye, there’s the rub! [1]”.

Since the bond H-O-H bond angle is 104.5°, and the tetrahedral angle is 109.471° (\(\cos^{-1}(-\frac{1}{3})\)), one can see how tempting it is to hybridize the oxygen orbitals to tetrahedral before attempting an MO computation. On the other hand, the same bond angle is relatively close to 120°, which would imply that a choice of \(sp^3\) hybridization would be only slightly less appropriate than the \(sp^3\) hybridization associated with tetrahedrality.

How about

\[\psi_5 = c_1s_{H_1} + c_2s_{H_2} + c_32s_O + c_42p_{xO} + c_52p_{yO} \tag{2.4}
\]

(based on no prior hybridization) versus

\[\psi_4^{sp^3\ based} = c_1s_{H_1} + c_2s_{H_2} + c_32p_1^3 + c_42sp_2^3 + c_52sp_2^3 \tag{2.4}
\]

(based on prior \(sp^3\) hybridization) versus

\[\psi_3^{sp^2\ based} = c_1s_{H_1} + c_2s_{H_2} + c_32p_1^2 + c_42sp_2^2 \tag{2.4}
\]

(based on prior \(sp^2\) hybridization)? And what about the spin?
for water. Expanding the determinant would give as an appropriate synopsis of the complete Slater determinant for an electronic state (with suppressed core electrons)

realized that there would turn out to be 3 related "eigen-

Ah Hah!
In the case of cyclopropene (or propene, linear for that matter), we had no trouble using an MO which looked like:

\[
\psi_{LCAO-MO} = c_1\psi_1 + c_2\psi_2 + c_3\psi_3
\]

where the subscripts referred to the nucleus upon which each of the contributing p orbitals were centered. We realized that there would turn out to be 3 related “eigen-

\[
\Psi = \begin{vmatrix}
\psi_1^{(1)}(1)\alpha(1), & \psi_1^{(1)}(2)\beta(2), & \psi_1^{(2)}(3)\alpha(3), & \psi_1^{(2)}(4)\beta(4), & \psi_1^{(3)}(5)\alpha(5), & \psi_1^{(3)}(6)\beta(6), & \psi_1^{(4)}(7)\alpha(7), & \psi_1^{(4)}(8)\beta(8) \\
\psi_2^{(1)}(1)\alpha(1), & \psi_2^{(1)}(2)\beta(2), & \psi_2^{(2)}(3)\alpha(3), & \psi_2^{(2)}(4)\beta(4), & \psi_2^{(3)}(5)\alpha(5), & \psi_2^{(3)}(6)\beta(6), & \psi_2^{(4)}(7)\alpha(7), & \psi_2^{(4)}(8)\beta(8) \\
\psi_3^{(1)}(1)\alpha(1), & \psi_3^{(1)}(2)\beta(2), & \psi_3^{(2)}(3)\alpha(3), & \psi_3^{(2)}(4)\beta(4), & \psi_3^{(3)}(5)\alpha(5), & \psi_3^{(3)}(6)\beta(6), & \psi_3^{(4)}(7)\alpha(7), & \psi_3^{(4)}(8)\beta(8) \\
\end{vmatrix}
\]
as an appropriate synopsis of the complete Slater determinant for an electronic state (with suppressed core electrons) for water. Expanding the determinant would give

\[
\Psi = \begin{vmatrix}
\psi_1^{(1)}(1)\alpha(1), & \psi_1^{(1)}(2)\beta(2), & \psi_1^{(1)}(3)\alpha(3), & \psi_1^{(1)}(4)\beta(4), & \psi_1^{(2)}(5)\alpha(5), & \psi_1^{(2)}(6)\beta(6), & \psi_1^{(3)}(7)\alpha(7), & \psi_1^{(3)}(8)\beta(8) \\
\psi_2^{(1)}(1)\alpha(1), & \psi_2^{(1)}(2)\beta(2), & \psi_2^{(1)}(3)\alpha(3), & \psi_2^{(1)}(4)\beta(4), & \psi_2^{(2)}(5)\alpha(5), & \psi_2^{(2)}(6)\beta(6), & \psi_2^{(3)}(7)\alpha(7), & \psi_2^{(3)}(8)\beta(8) \\
\psi_3^{(1)}(1)\alpha(1), & \psi_3^{(1)}(2)\beta(2), & \psi_3^{(1)}(3)\alpha(3), & \psi_3^{(1)}(4)\beta(4), & \psi_3^{(2)}(5)\alpha(5), & \psi_3^{(2)}(6)\beta(6), & \psi_3^{(3)}(7)\alpha(7), & \psi_3^{(3)}(8)\beta(8) \\
\end{vmatrix}
\]
We are assuming 8 electrons (6 orbitals), 2 from H-atoms, and the $2s$ and $2p$ electrons, keeping the $2p_z$ electrons in their AO’s (isolated, remote, aloof, safe). Equation 2.4 is being used as the Molecular Orbital basis. The Slater determinant is 8x8. Each contributor in the Slater determinant is itself an MO, a molecular orbital, containing contributions from both H-orbitals and the relevant O-orbitals.

Remember that the individual $\psi^{(i)}_5$ each have five constants in them.

IV. HYDROGEN PEROXIDE

![Image: H2O2 molecule with orbitals]

FIG. 3: H$_2$O$_2$; the relationship between the radius (from the origin) and the $r$ values which are used for orbitals (normally, not here). For the point $P(x, y, z)$ there are four $r$ corresponding to radii from $O_1$, $O_2$, $H_1$, and $H_2$. The radius from $O_1$ is shown in red, while that of $O_2$ is shown in blue.

To make sure that we understand what we are doing, let’s consider hydrogen peroxide. This molecule H$_2$O$_2$ is not so simple. Placing one oxygen at 0,0,R/2 (where R is the O-O bond length) and the other at 0,0,-R/2 (just like the H$_2^+$ molecule), with each proton floating about near its oxygen, the contributing orbitals on the oxygens are no longer textbooky. They are not centered on the origin, so their functional form has to be adjusted to make them centered on where the nuclei actually are.

For orbitals for the oxygen at 0,0,R/2, call it $O_1$, we have that $r$ is writable as

$$r = \sqrt{x^2 + y^2 + (z - R/2)^2}$$

so a $2s$-contributing orbital might be

$$(2 - \sqrt{x^2 + y^2 + (z - R/2)^2})e^{-\sqrt{x^2 + y^2 + (z - R/2)^2}/2}$$

Notice that the and values normally associated with orbitals in spherical polar coordinates need to be modified once we move nuclei off the origin. In this case, $\varphi$ retains its meaning, but there is now a value associated with oxygen (call it i) and another $\theta$ associated with the other oxygen. Both of these angles refer to polar angles, but for the blue and red $r$ vectors shown in Figure 3. A $p_z$ orbital on $O_1$ might be

$$(z - R/2)e^{-\sqrt{x^2 + y^2 + (z - R/2)^2}}$$

while a $p_x$ orbital on $O_2$ might be

$$xe^{-\sqrt{x^2 + y^2 + (z - R/2)^2}}$$

Lastly, a $1s$ orbital on $H_1$ might appear as

$$e^{\sqrt{(x-x_H)^2 + (y-y_H)^2 + (z-z_H)^2}}$$

i.e., centered on the $H_1$ nucleus, wherever it happens to be in space.

[1] W. Shakespeare, Hamlet, Act 3 Scene 4