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Homomesy for Foatic Actions on the
Symmetric Group

Elizabeth Sheridan Rossi, Ph.D.

University of Connecticut, 2020

ABSTRACT

In this thesis, we consider two different families of maps on the symmetric group

Sn, each created by intertwining a bijection of Foata with dihedral involutions on

permutation matrices. Iterating each map creates a cyclic action on Sn, partitioning

it into orbits. This allows us to look at statistics that have the same average value

over each orbit, called homomesic. The homomesy phenomenon was first proposed

by Propp and Roby in 2011, and many instances have been found across a wide range

of combinatorial objects and maps.

The first family of maps involves the so-called “fundamental bijection” of Rényi

and Foata, which “drops parentheses” from a permutation in canonical disjoint cycle

decomposition. The second, due to Foata and Schützenberger, was originally used

to provide a bijective proof showing the equidistribution across Sn of the inversion

number and the major index. Computations in SageMath led to a number of con-

jectural homomesies on well-known permutation statistics. We prove many of them

here, and state the remainder as open problems.
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Chapter 1

Homomesy Introduction and

Background

1.1 Introduction

The field of Dynamical Algebraic Combinatorics is the study of actions on sets of

discrete combinatorial objects. One can see several recurring themes within the field,

namely looking at whether an action is periodic, what its order is, and subsequent

study of the orbit structure. From here a search for homomesic statistics (those with

the same average value over all orbits) is a natural next step. The use of equivarient

bijections is often a useful tool in this exploration.

The cyclic sieving phenomenon provides many instances where homomesy may

also exist. Other fruitful areas of study so far have included actions that can be

built up using smaller local changes. Examples of this include toggling, as seen on
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independent sets of path graphs [JR18], in the rowmotion action on antichains of a

poset [PR15], and in promotion on semistandard Young tableaux (which we will see

in Section 1.4.3). Tom Roby’s exposition on “Dynamical Algebraic Combinatorics

and the Homomesy Phenomenon” [Rob16] provides many more examples.

The explorations in this dissertation were largely influenced by Jim Propp’s idea

to look for instances of homomesy among the fundamental combinatorial objects

counted by the “Twelvefold Way” of Rota [Stan11, Section 1.9]. One such object,

permutations, will be the focus of study in this thesis.

In this chapter we will discuss the homomesy phenomenon and a few introductory

examples. As much of the work in this thesis relates to permutations and their prop-

erties and behavior under certain actions, we begin in Section 1.2 giving an overview

of these. The examples in Section 1.4 give a taste of the range of instances of homo-

mesy in the existing literature. In Chapter 2 we look at maps created by intertwin-

ing the Rényi–Foata map and five dihedral involutions, and the resulting homomesic

permutation statistics. In Chapter 3, we look at similar intertwinings involving the

same involutions and a second map, constructed by Foata and Schützenberger. We

again consider and prove many homomesic statistics for these actions. We note that

Chapters 2 and 3 could be read independently. A list of all homomesy results and

conjectures can be seen in Appendices A and B.
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1.2 Permutations

Permutations are one of the most fundamental objects in all of combinatorics and

appear in many branches of mathematics.

Definition 1.2.1. A permutation w of [n] ∶= {1,2, . . . , n} is a linear ordering

w1,w2, . . . ,wn of the elements of [n]. If we think of w as a word w1w2⋯wn in the

alphabet [n], then such a word corresponds to the bijection w ∶ [n] → [n] given by

w(i) = wi.

Definition 1.2.2. The notation w1w2⋯wn is called one-line notation. We can

also write a permutation in two-line notation as ( 1 2 ⋯ n
w1 w2 ⋯ wn ). Alternatively we

can write a permutation in cycle notation. A cycle of a permutation w is a

sequence (x,w(x),w2(x), . . .wl−1(x)) where wl(x) = x. This is essentially the orbit

of x under the action of w.

It is elementary to see that every permutation can be written as a product of

disjoint cycles. To write a permutation in cycle notation, we represent it as a disjoint

union of its distinct cycles.

Example 1.2.3. Consider the permutation w = 326541 in one-line notation. Here

w(1) = 3, w(2) = 2, w(3) = 6, w(4) = 5, w(5) = 4 and w(6) = 1. In cycle notation this

could be written (136)(45)(2). The representation of w in disjoint cycles notation

is not unique, though we will later see a way to define a canonical representation.

Definition 1.2.4. A pair (wi,wj) is called an inversion of the permutation w =

w1w2⋯wn if i < j and wi > wj. We denote Inv(w) to be the set of inversion pairs in

w and inv(w) to be the number of inversions.
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For example, the permutation 25431 has the inversions (2,1), (5,4), (5,3), (5,1),

(4,3), (4,1), (3,1), with inv(w) = 7.

We write Sn for S[n], the symmetric group of permutations on [n].

Definition 1.2.5. The permutation matrix W associated to w = w1⋯wn is the

n × n matrix given by W = [aij] where

aij =
⎧⎪⎪⎨⎪⎪⎩

1 if wi = j
0 else

For example, the permutation w = 425316 is represented by the following matrix.

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The inversion pairs of this permutation are (4,2), (4,3), (4,1), (2,1), (5,3), (5,1)

and (3,1). In a permutation matrix, two numbers wi and wj make up an inversion

pair (wi,wj) if the 1 for wi appears above and to the right of wj.

For example, in the matrix below, we can see that circled 1 in the first row

represents the 4 in our permutation and the circled 1 in the second row represents

the 2 in our permutation. The “4” appears above and to the right of the “2”,

illustrating the inversion pair (4,2).
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0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The total number of inversions of a permutation matrix W is

inv W = ∑
1≤i<i′<n
1≤j′<j≤n

aijai′j′

The eight elements of the dihedral group act naturally on these matrices and give

corresponding actions on permutations. As an example, if we consider the permuta-

tion matrix when flipped across the vertical axis we can see that this corresponds to

the map C ∶ Sn → Sn, which takes a permutation w = w1⋯wn to its complement,

whose value in position i is n + 1 −wi.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

425316↦ 352461

Similarly, a horizontal flip corresponds to the reversal map, R ∶ Sn → Sn, which
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takes a permutation w = w1⋯wn to its reversal, whose value in position i is wn+1−i.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

425316↦ 613524

A flip over the main diagonal corresponds to the inverse map, I ∶Sn →Sn, which

takes a permutation w to its inverse w−1.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

425316↦ 524136

The inverse can also be computed by taking a permutation written in cycle

notation, freezing the first number in each cycle, and reversing the order of the

remaining numbers. So for example the permutation (7)(4512)(396) has inverse

(7)(4215)(369).

In Chapter 2 and 3 we will discuss compositions of maps involving some of the

dihedral actions which are also involutions, meaning that they are their own inverse.

There we will also give more examples of these maps.
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The last permutation representation that we will discuss is the visualization of

the maps as trees. There are many ways to define bijections between permutations

and trees, a few of which we will see in future sections. More on this topic can be

seen in [Stan11, Section 1.5].

Definition 1.2.6. A binary tree is a tree structure in which each node has at

most two children, which are referred to as the left child and the right child. An

increasing binary trees has vertices labeled 1,2, . . . , n, such that the labels along

any path from the root are increasing.

Here we will give an example of a map between permutations and increasing

binary trees. Define the map, T as follows. First, consider the permutation w =

w1w2⋯wn and identify wi to be the least element of w (so for w ∈ Sn, wi = 1). Now

consider w to be factored as w = uwiv. Let wi be the label of the root of the binary

tree, and think of T (u) and T (v) as left and right (respectively) subtrees. Applying

these procedure recursively to T (u) and T (v) yields an increasing binary tree. Below

we see the tree T (3241576).

1

2 5

3 64

7

To reverse the map, we take a labeled increasing binary tree, and read the labels in

“symmetric order”, meaning we read them recursively in the order of the left subtree,
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the root of the tree, and the right subtree. This particular representation can shed

light on certain properties of permutations, as well as properties of increasing binary

trees. One can deduce from this bijection that the number of increasing binary trees

with n vertices is n!, the number of permutations in Sn. [Stan11, Proposition 1.5.3].

In Chapter 3 we will see a similar tree representation for permutations and discuss

related permutation statistics.

1.3 Introduction to Homomesy

Homomesy is a phenomenon that was identified by Tom Roby and James Propp in

2011 [PR15]. A group action on a set of combinatorial objects partitions the set into

orbits. We call statistics homomesic if they have the same average value over each

orbit. Examples of homomesy span the field of dynamical algebraic combinatorics

and frequently also occur in examples of Reiner, Stanton and White’s cyclic sieving

phenomenon [RSW04]. We begin with a formal definition and an illustrative example.

Definition 1.3.1. Given a set S, an invertible map τ ∶ S → S such that each τ -orbit

is finite, and a function (or “statistic”) f ∶ S → K taking values in some field K

of characteristic zero, we say that the triple (S, τ, f) exhibits homomesy if there

exists a constant c ∈ K such that for every τ -orbit O ⊂ S 1
#O ∑x∈O f(x) = c. In this

situation we say that the function f ∶ S → K is homomesic under the action of τ

on S or more specifically c-mesic [PR15, Definition 1].

We begin with a basic example of homomesy. Let Snk be the set of binary strings

of length n with exactly k 1s. Note that this set has (n
k
) elements. Previously we

8



defined the term inversion for permutations. We can extend this definition to any

word (an expression of the form s1 . . . sn where the si’s are elements of some set S)

in [l]n.

Definition 1.3.2. A pair (wi,wj) is called an inversion of the word w = w1w2⋯wn ∈

[l]n if i < j and wi > wj. We denote the number of inversions in the word w by inv(w).

In the case of a binary string, an inversion is an instance of a 1 appearing before

a 0. For example in the string 10110 the first 1 appears before two 0s, the second 1

appears before one 0 and the third 1 appears before one 0; thus, there are a total of

four inversions. For our example we consider elements of the set Snk under the action,

τ , of rightward cyclic shifting. In the following examples the symbol ↰ indicates a

return to the start of the orbit.

Example 1.3.3. If n = 6 and k = 4, the string 101011 under τ generates the following

orbit:

101011→ 110101→ 111010→ 011101→ 101110→ 010111 ↰

After at most n steps we will return to our original string. The number of

inversions for the elements of this orbit are (3,5,7,3,5,1).

There are a total of three orbits when n = 6, k = 4. The other two are as follows:

111100→ 011110→ 001111→ 100111→ 111011→ 11101 ↰

011011→ 101101→ 110110 ↰

9



We could think of the later orbit as a super orbit of length 6 where each element

is repeated. The table below illustrates the number of inversions for the elements of

each cycle along with their orbit size and average number of inversions.

Orbit Inversions Orbit Size Average Number of Inversions
1 (8,4,0,2,4,6) 6 (8 + 4 + 0 + 2 + 4 + 6)/6 = 4
2 (3,5,7,3,5,1) 6 (3 + 5 + 7 + 3 + 5 + 1)/6 = 4
3 (2,4,6) 3 (2 + 4 + 6)/3 = 4

Theorem 1.3.4. The average number of inversions in an orbit under cyclic rotation

for Snk is always equal to k(n−k)
2 , which is the global average. So if τ is the cyclic

rotation map and f is the number of inversions, we say that f is k(n−k)
2 -mesic.

Proof. To see why this claim is true, note first that any binary string of length n with

k 1’s can be converted into any other string by a sequence of transpositions switching

adjacent numbers. For example we can convert the string 111100 to 101011 by the

following moves where the bits being swapped are underlined in each step

111100

111010

111001

110101

101101

101011

This is similar to how any permutation can be generated by adjacent transposi-

tions. We can think of 111100 and 101011 as being generators of two of the orbits

10



shown above. We claim that replacing 10 with 01 does not change the total number

of inversions in an orbit, thus showing that the average number of inversions in the

orbits generated by these two strings are the same.

When the swap occurs in positions i, i + 1 such that 1 < i < k − 1 we lose one

inversion. There are n − 1 such paired strings in an orbit of length n, essentially

every string except the one where the 10 bit “rounds the corner”. When the swap

occurs in positions 1, k we gain a total of (n − k) + (k − 1) = n − 1 inversions. So the

total inversion change is (−1) ⋅ (n− 1)+ (n− 1) ⋅ 1 = 0. See the example in Figure 1.1.

Figure 1.1: Inversion changes in orbits under cyclic rotation

Orbit 1 Orbit 2 ∆ inv(w)

111100 111010 −1

011110 011101 −1

001111 101110 +5

100111 010111 −1

110011 101011 −1

111001 110101 −1

It follows that the total number of inversions is the same for any super orbit, so

the average number of inversions is the same for every orbit. Note that this average is

equal to the global average, k(n−k)2 . The easiest way to see this is to consider the cycle

which contains the binary string where all k 1s occur consecutively at the beginning,

which clearly has k(n−k) inversions. On the other hand, this cycle also contains the

11



string with all k 1s appearing consecutively at the end, which has 0 inversions. So

the average number of inversions for this particular string is k(n−k)
2 , and thus this is

the average number of inversions for all binary strings of length n with k 1s.

1.3.1 Cyclic Sieving Phenomenon

The cyclic sieving phenomenon was identified by Victor Reiner, Dennis Stanton,

and Dennis White in 2004 [RSW04]. It exists in several of the known examples of

homomesy. Like homomesy, CSP involves orbit structure and group actions on sets.

We begin with the following definition, which we will illustrate with an example.

Definition 1.3.5. Let X be a finite set and C = ⟨c⟩ be a cyclic group of order n

acting on a finite set X. Given a polynomial X(q) with integer coefficients in a

variable q, we say the triple (X,C,X(q)) exhibits the cyclic sieving phenomenon

if for all integers d, the number of elements fixed by cd equals the evaluation X(ξd)

where ξ = e 2πi
n . In particular X(1) is the cardinality of X, so X(q) can be regarded

as a generating function for X [RSW04].

The cyclic sieving phenomenon generalizes the q = −1 phenomenon of John

Stembridge which identified the case where C has order 2 and included examples

involving plane partitions and Young tableaux. In Stembridge’s work X(1) gives the

cardinality of X while X(−1) gives an enumeration for symmetry classes within X

[Stem94]. For our example we return to the scenario in the previous section where

we let X be the set Snk of binary strings of length n with exactly k 1s.

Example 1.3.6. Let n = 6 and k = 4 as in Example 1.3.3 and consider the group

12



C = ⟨cR⟩. We saw that the 15 elements of S6
4 partition into three orbits. All 15

strings, are fixed under the action of C6
R, and 3 are fixed under C3

R, namely 110110,

101101 and 011011. No other strings are fixed by any other power of CR.

Our polynomial is the well-known Gaussian binomial coefficient, defined as fol-

lows.

Definition 1.3.7. The following polynomials in N[q] are q-analogues of common

combinatorial numbers. Notice when q = 1 we get n, n! and (n
k
).

• [n]q ∶= 1−qn
1−q = 1 + q +⋯ + qn−1

• [n]q! ∶= [1]q[2]q⋯[n]q

• (n
k
)
q
= [n]q !

[k]q ![n−k]q !

Define the polynomial X(q) = (n
k
)
q
, so in our example we have

X(q) = (6
4
)
q
= [6]q !

[4]q ![2]q ! =
(1+q+q2+q3+q4+q5)(1+q+q2+q3+q4)

(1+q) =

1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8

Now let ξ = e2πi/6. Plugging in the sixth roots of unity into our polynomial gives

the following:

X(ξ) = 0

X(ξ2) = 0

X(ξ3) = 3

X(ξ4) = 0
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X(ξ5) = 0

X(ξ6) = 15

So, for all m ∈ Z, the number of elements fixed by Cm
R is given by X(im). In

other words, the triple (([6]
4
),X(q), ⟨CR⟩) exhibits the cyclic sieving phenomenon.

1.4 Homomesy Examples

In this section we review examples of homomesy that highlight interesting subtleties

about the phenomenon and show the breadth of its occurrences.

1.4.1 Dihedral Group Actions on Permutation Matrices

Our first example has to do with dihedral group actions on permutation matrices. As

we saw in Section 1.2, dihedral group actions act naturally on permutation matrices.

Applying the 90 degree clockwise rotation map R90 to a permutation matrix will

form a homomesy triple. The permutations in S3 break up into the following two

orbits under R90.

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
↦

⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦
↰

⎡⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
↦

⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
↦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
↦

⎡⎢⎢⎢⎢⎢⎣

0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
↰
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The total number of inversions for each matrix are (0,3) for the first orbit and

(1,2,1,2) for the second, so an average of 3
2 for each.

Theorem 1.4.1. Let S be the set of n×n permutation matrices., let R90 be the 90 de-

gree rotation map. The statistic invW , the total number of inversions, is homomesic

with average value n(n−1)
4 .

Proof. Let A be a permutation matrix where A(i, j) is the entry in position (i, j),

and consider an inversion pair (wm,wk). So A(m,wm) = 1 lies in position (m,wm)

which is located above and to the right of A(k,wk) = 1 in position (k,wk). In other

words, m < k and wm > wk. But then after rotating by 90 degrees to positions

(m′,w′
m) and (k′,w′

k) we will have m′ > k′ and w′
m < w′

k, so there is no inversion.

In other words, each inversion pair in W corresponds to a non-inversion pair after

applying R90. Thus, the average number of inversions in an orbit is equal to half of

the maximum total inversions possible for any n, which is 1
2 ⋅

n(n−1)
2 = n(n−1)

4 .

We can prove that inv W is also homomesic for the other dihedral group actions

in similar fashion. To prove homomesy of inv W for the entire dihedral action, what

we have shown, along with the following Lemma suffices.

Lemma 1.4.2 ([Rob16]). Let G be a group acting on the set S, and let H be a

subgroup of G. If the triple (S,H, f) exhibits homomesy, then so does the triple

(S,G, f).

The result discussed in this section has also been generalized by Behrend and

Roby [BR] to alternating sign matrices. The most interesting homomesies for a
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dihedral action are those that are not implied by a cyclic subgroup. See [STWW15]

for one example.

1.4.2 Bulgarian Solitaire

In this section we will see an example of homomesy suitably generalized on a non-

invertible map. In the game Bulgarian Solitaire, a pack of n identical cards is divided

arbitrarily into several piles. A move consists of removing one card from each pile

and collecting the removed cards to form a new pile. The original version of this

puzzle proposed a pack of n = 15 cards and the task of determining why the final

position was the same regardless of the initial setup.

Bulgarian Solitaire gained popularity in the early 1980s. As the story goes,

Konstantin Oskolkov of the Steklov Mathematical Institute of Moscow was shown

the problem on a train on his way to give a talk in Leningrad. After bringing the

problem back to his colleagues, it circled around mathematical communities until it

ultimately caught the attention of Martin Gardner [Hop12]. Gardner included the

problem in his Scientific American article Mathematical Games: Tasks you cannot

help finishing no matter how hard you try to block finishing them [Gar83]. The name

was given to it by Henrik Ericsson of the KTH Royal Institute of Technology although

he remarked it was “silly because it is neither Bulgarian nor a solitaire.”

More formally, Bulgarian Solitaire is a map on integer partitions.

Definition 1.4.3. A partition of n ∈ N is a sequence λ = (λ1, . . . , λ`) of integers λi

satisfying ∑λi = n and λ1 ≥ λ2 ≥ ⋯ ≥ λ` > 0. The number of parts of λ is called the

length of λ and is denoted `(λ).
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We can think of our starting position for Bulgarian Solitaire as a partition λ of

n of length ` = `(λ) which is separated into unordered piles containing λ1, λ2, . . . , λ`

cards. After one move of Bulgarian Solitaire our result is the partition containing

the numbers `, λ1 − 1, λ2 − 1, . . . , λ` − 1. Figure 1.2 has an example where n = 10.

Figure 1.2: An example of Bulgarian Solitaire for n = 10

4,3,3 3,3,2,2 4,2,2,1,1 5,3,1,1 4,4,2

3,3,3,14,2,2,24,3,1,1,15,3,24,3,2,1

Notice that once the map yields (4,3,2,1) we enter a loop where the Bulgarian

Solitaire map is the identity. In fact all partitions of the form (j, j − 1, j − 2, . . . ,1),

called staircase partitions, are stable under the Bulgarian Solitaire map. If n =

1 + 2 + 3 +⋯ + j is any triangular number, then the staircase partition exists, and it

turns out that any sequence of moves eventually leads to the staircase partition.

For non-triangular numbers we do not have one single fixed point, as can be seen

in Figure 1.3 where n = 8.
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Figure 1.3: The action of Bulgarian Solitaire on all partitions of n = 8

1,1,1,1,1,1,1,1 8 7,1

2,1,1,1,1,1,1

6,2

3,1,1,1,1,1

5,2,1

4,3,1

3,2,1,1,1

4,2,1,1

3,3,2 3,2,2,14,45,1,1,12,2,2,1,1

2,2,1,1,1,1 6,1,1 5,3 4,2,2

4,1,1,1,1

3,3,1,1

2,2,2,2

Our original definition for homomesy stipulated that τ be an invertible map.

Below we have a slightly modified version which extends to non-invertible maps like

this one.

Definition 1.4.4. Let S be a finite set with a (not necessarily invertible) map

τ ∶ S → S (called a self-map). Given the self-map τ and starting from some possible

a ∈ S, one constructs the sequence of iterates τ(a), τ 2(a), . . . . Since S is finite, there

exists some i, j such that τ i(a) = τ j(a). The sequence τ i(a), . . . , τ j−1(a) is called a
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recurrent cycle and a recurrent set is the union of these cycles. We call a statistic

f ∶ S → K homomesic if the average of f is the same over every recurrent cycle.

Of course if τ is an invertible action on a finite set S, then this definition of

homomesy specializes to Definition 1.3.1.

Theorem 1.4.5 ([Rob16, Proposition 3]). Let n = j(j − 1)/2 + k with 0 ≤ k < j, and

consider the action of Bulgarian Solitaire on the set of partitions of n. Then the

length statistic `, which computes the number of parts of a partition λ, is homomesic

with average (j − 1) + k/j.

In our example above where n = 8, so j = 4 and k = 2, we expect the average

length statistic to equal 3+ 2
4 =

7
2 . We saw that the two recurrent cycles for n = 8 are

(4211,431,332,3221) and (422,3311)

These have average length statistic

4 + 3 + 3 + 4

4
= 7

2
and

3 + 4

2
= 7

2

Proof. We represent our Bulgarian Solitaire piles as columns of dots viewed as a

shape made up of two parts. Black dots form the largest possible triangular number

less than n, of size j(j − 1)/2 and the k red dots are distributed down the diagonal.

As long as there is at most one “distributed dot” in every column, in each step the

dots will march down the diagonal of the triangle and the cycle will repeat. Any

shape of this form is a recurrent shape. This is true because at each step we are

identifying the bottom row, with its j −1 black dots and 0 or 1 red dot, and rotating
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it to become the first column in the next step. The action of removing the bottom

row reduces each column by 1 dot, and rotates the position of the red dot in the

lowest position (if there is one). Thus the dots will effectively “march down” the

diagonal in a recurrent cycle of Bulgarian Solitaire.

Figure 1.4: Example of a recurrent cycle where n = 9 is represented as the triangular
number 6 = (4 ⋅ 3)/2 plus 3 distributed dots

To see that all recurrent cycles contain shapes of this form, assume this is not

the case. In any partition of n, we can write the partition in order of decreasing

size of the parts, and highlight the largest possible triangular number (in black)

within that shape. If we did not have a recurrent shape, then we must have at least

two dots in one of the columns. By applying the Bulgarian Solitaire map, this will

eventually lead to a scenario where the first (largest) column has two red dots above

the triangle. The next step of the action will then distribute the two dots between

the largest and second largest columns giving us the distribution of one dot in each

column, or a recurrent shape. See Figure 1.5 for an example.

It follows that we can think of a recurrent shape of n = j(j −1)/2+k to be the jth

triangular number with k distributed dots. There is an equivarient bijection between

shapes with k distributed dots along the jth triangular number and binary strings

of length j with k 1s, where the Bulgarian Solitaire map is equivalent to right cyclic
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Figure 1.5: Example of the distribution of dots.

shifting of the binary strings. In Figure 1.6 we can see this for all cycles when j = 4

with k = 2.

Figure 1.6: Dot representations corresponding to bit strings where j = 4, k = 2

(1,0,1,0) (0,1,0,1)

(1,1,0,0) (0,1,1,0) (0,0,1,1) (1,0,0,1)

In each orbit (or superorbit) of length j, the number of shapes with j parts is

equal to the number of strings that end in 1, which is equal to k. Similarly, the

number of shapes with j − 1 parts is equal to the number of strings that end in 0,
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which is equal to j − k. So the total number of parts in a super orbit is

jk + (j − 1)(j − k) = jk + j2 − j − jk + k

= j2 − j + k = j(j − 1) + k

Since all super orbits are length j, it follows that the average number of parts in

a super orbit (and thus in an orbit) is

j(j − 1) + k
j

= (j − 1) + k
j

1.4.3 Promotion on Semistandard Young Tableaux

In this section we will see an example of the promotion map on semistandard Young

tableaux. To begin, recall Definition 1.4.3 of a partition from the previous section.

Definition 1.4.6. A Young diagram is a visual representation of a partition λ

where λ = (λ1, . . . , λk) ⊢ n. It is obtained by drawing a left-justified series of boxes

with λi boxes in the ith row. Figure 1.7 shows the Young diagram for the partition

(3,3,2,1) ⊢ 9.

Figure 1.7: Young diagram for the partition (3,3,2,1) ⊢ 9

.
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Definition 1.4.7. A skew shape, denoted λ/µ is a pair of partitions λ = (λ1, λ2, . . . )

and µ = (µ1, µ2, . . . ) where µi ≤ λi for each i. The skew diagram is the difference of

the Young diagrams of λ and µ, namely the set of boxes that belong to λ but not to

µ. We call a box in µ an inner corner of λ/µ if the boxes immediately below and

to the right of it are not in µ.

Example 1.4.8. Letting λ = the shape in Figure 1.7 and µ = , we have the

skew shape λ/µ given in Figure 1.8 with ● indicating the place of the inner corner.

Figure 1.8: Skew shape λ/µ
●

Definition 1.4.9. A semistandard Young tableau SSYTk(λ) of a partition λ ⊢ n

is a filling of the boxes of the Young diagram of λ with elements of the set {1,2, . . . , k}

for some k, such that rows are weakly increasing and columns are strictly increasing.

Similarly, a skew semistandard tableau SSYTk(λ/µ) is obtained by filling the

boxes of the skew diagram λ/µ such that entries increase weakly along each row, and

increase strictly down each column. We have an example T ∈ SSYT4((3,3,2,1)/(2))

in Figure 1.9.

In this section we look at an example of homomesy involving sums of centrally

symmetric entries under promotion on semistandard Young tableaux. The action

that we are looking at is called promotion and has two useful definitions. The first
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Figure 1.9: Example of T ∈ SSYT4((3,3,2,1)/(2))

3

1 1 4

2 2

3

involves jeu-de-taquin slides, and the second involves composition of toggles using

Bender–Knuth involutions. We begin with the first definition.

Definition 1.4.10. Let T ∈ SSYTk(λ). The promotion P(T ) of T is given by the

following construction.

• If T has no 1’s, then let P(T ) be the result of decrementing all the values of T

by 1. Otherwise, do the following.

• First, delete all the entries in the boxes of T that contain a 1.

• We then apply jeu-de-taquin slides as follows.

Letting µ be the empty boxes, we begin with any inner corner of λ/µ, denote

it b0, and we identify the sequence of boxes b0, b1, b2, . . . , bm where each bi+1 is

whichever of the boxes immediately below or to the right of bi contains the

smaller value. If the boxes have equal values, we choose the box below. If

either of the boxes lies outside of λ, we choose the one in λ. The sequence

ends when bm is an inner corner of λ. Now, we use this sequence to to create

a new tableau by sliding the value in bi+1 into bi. If we perform this process

iteratively until our shape is no longer skew, we have completed jeu-de-taquin

slides and we call this shape the rectification of T .
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• Once the shape has been rectified, we decrement all the values by 1 and then

place k in all empty boxes resulting from sliding.

Example 1.4.11. We let k = 6, and at each step we highlight the cells participating

in the jeu-de-taquin slide in red.

Figure 1.10: One iteration of promotion using jeu-de-taquin slides

1 1 2 3
3 3 4 5
4 4 5

del 1sÐÐ→
2 3

3 3 4 5
4 4 5

JdTÐ→
2 3 5

3 3 4
4 4 5

JdTÐ→
2 3 3 5
3 4 4
4 5

dec/fillÐÐÐ→
1 2 2 4
2 3 3 6
3 4 6

Our second definition for promotion is based on Bender–Knuth operations, which

we call toggles. While the equivalence of these definitions is not obvious, a proof

can be found in both [Gans80] and [BPS13]. There are several other instances of

homomesy that come from actions involving toggles.

Definition 1.4.12. Given T ∈ SSYTk(λ) and i ∈ [k], consider each i that is paired

with an i+1 (directly below) in the same column (and vice-versa) to be “frozen” and

the remainder free. Then in each row with r free i’s and s free (i + 1)’s, τi replaces

these with s free i’s and r free (i + 1)’s. We define the promotion operator to a

composition of these toggles, P (T ) = τk−1 ○ τk−2 ○ ⋯ ○ τ1(T ).

Example 1.4.13. Let k = 6 and consider the semistandard Young tableau T from

Example 1.4.11 . The relevant cells are highlighted with i in red and i+1 in blue for

each iteration τi. Note “frozen” pairs remain in black.
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Figure 1.11: One iteration of promotion using toggles

1 1 2 3
3 3 4 5
4 4 5

τ1Ð→
1 2 2 3
3 3 4 5
4 4 5

τ2Ð→
1 2 2 3
2 3 4 5
4 4 5

τ3Ð→
1 2 2 4
2 3 3 5
3 4 5

τ4Ð→
1 2 2 4
2 3 3 5
3 4 5

τ5Ð→
1 2 2 4
2 3 3 6
3 4 6

Note that the end result of the quite different processes in Example 1.4.11 and

Example 1.4.13 agree. In order to discuss homomesy occurrences, we will restrict

ourselves to the specific shape where λ = (nm) = (n,n, . . . , n). In this particular situ-

ation it is a nontrivial theorem that P k(T ) is equal to the identity [Rho10, Corollary

5.6]. (For most generic shapes the order of promotion is quite large relative to k).

If we consider certain “opposite” cells in our rectangular shape, the sum of these

cells has the same average value over the orbit, which is equal to the number of cells

multiplied by (k + 1)/2. We formalize this below.

Theorem 1.4.14 ([BPS13, Theorem 1.1]). Let T ∈ SSY Tk(nm) and fix a subset of

cells R ⊆ (nm) where R is symmetric with respect to 180○ rotation around the center

of (nm). Then the statistic σR(T ) ∶= sum of entries of T whose cells are in R, is

c-mesic where c = ∣R∣(k+12 ).

Example 1.4.15. Consider the following orbit of promotion on T ∈ SSYT5(32).

Figure 1.12: An orbit of promotion

1 1 2
3 3 5

→ 1 2 4
2 5 5

→ 1 1 3
4 4 5

→ 2 3 4
3 5 5

→ 1 2 3
2 4 4

↰
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To begin, we consider all options where ∣R∣ = 2. Our pairs are indicated in red,

black and blue. The entries in the upper left and lower right corners (shown in

red) have sums (6,6,6,7,5) across the orbit, with an average value of 6. The upper

middle and lower middle (in black) have sums (4,7,5,8,6), again with an average

of 6. Lastly, the upper right and lower left (in blue) have sums (5,6,7,7,5), also

average 6. So we see homomesy where c = ∣2∣(5+1
2 ) = 6.

We can also consider subsets R = 4 where we expect c = ∣4∣(5+1
2 ) = 12. First we

look at the entries of the lower left, lower middle, upper middle, and upper right

(blue and black) and compute the sums to be (9,13,12,15,11) with average 12.

Alternatively if we look at the subset consisting of the upper left, upper middle,

lower middle, and lower right (red and black), we get sums (10,13,11,15,11), with

average also 12 as expected. Of course these also follow from adding the homomesies

mentioned above. Below we show 2 additional orbits in SSYT5(32) which both have

average value c = 3∣R∣ for σR(T ).

Figure 1.13: Two additional orbits of promotion for SSYT5(32)

1 1 4
2 2 5

→ 1 1 3
4 5 5

→ 2 4 4
3 5 5

→ 1 3 3
2 4 4

→ 1 2 2
3 3 5

↰

1 1 1
3 3 3

→ 2 2 2
5 5 5

→ 1 1 1
4 4 4

→ 3 3 3
5 5 5

→ 2 2 2
4 4 4

↰

This homomesy result was presented as a conjecture by Propp and Roby, and

proved by Bloom, Pechenik and Saracino [BPS13]. Promotion on rectangular tableaux
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was shown to exhibit cyclic sieving by Brendan Rhoades using Kazhdan–Lusztig the-

ory [Rho10].

1.4.4 Rowmotion on Order Ideals of Posets

Our next example is another map which can be described as a composition of involu-

tions. In later chapters we will be discussing a number of other maps which are also

of this form. We begin with some relevant definitions from poset theory, but a much

more comprehensive exposition of the topic can be found in Stanley’s graduate text

[Stan11, Chapter 3]. The following definitions all come from this text.

Definition 1.4.16. A partially ordered set P , or poset, is a set, together with

a binary relation denoted ≤, satisfying the following three axioms:

• For all t ∈ P, t ≤ t (reflexivity)

• If s ≤ t and t ≤ s, then s = t (antisymmetry)

• if s ≤ t and t ≤ u, then s ≤ u (transitivity)

Definition 1.4.17. If s, t ∈ P , then we say that t covers s, denoted s <⋅ t if s < t

and no element u ∈ P satisfies s < u < t.

Definition 1.4.18. We say that two elements s and t of P are comparable if s ≤ t

or t ≤ s; otherwise s and t are incomparable, denoted s ∥ t.

Definition 1.4.19. The Hasse diagram of a finite poset P is the graph whose

vertices are the elements of P , whose edges are the cover relations, and such that if

s < t then t is drawn above s.
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Figure 1.14: The Hasse diagram for the poset B3 of subsets of {1,2,3} ordered by

inclusion.
{1,2,3}

{1,3}{1,2} {2,3}

{2}{1} {3}

{}

Definition 1.4.20. An order ideal of P is a subset I of P such that if t ∈ I and

s ≤ t, then s ∈ I. Let J(P ) denote the set of order ideals of the poset P , which is

also a poset, ordered by inclusion.

Definition 1.4.21. An order filter of P is a subset F of P such that if t ∈ F and

s ≥ t, then s ∈ F . Denote F(P ) the set of order filters of the poset P .

Definition 1.4.22. An antichain of P is a subset A of P such that any two distinct

elements of A are incomparable. Denote A(P ) the set of antichains of P .

For finite posets, there is a one-to-one correspondence between antichains and

order ideals. Namely, the set of maximal elements of I is an antichain A of P,

conversely, I = {s ∈ P ∶ s ≤ t for some t ∈ A}. In this case we write I = I(A) is

the order ideal generated by A. Viewing our poset upside down gives us the same

bijection between antichains and filters, we will call the map from filters to antichains

F−1. It should also be clear that the complement map comp is a bijection between

order ideal and filters.
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Definition 1.4.23. Let P be a finite poset, and I ∈ J(P ). rowmotion is the map

acting either on antichains (denoted ρA) or on order ideals (denoted ρJ) as follows.

ρJ ∶ J(P ) compÐÐ→ F (P ) F−1

ÐÐ→ A(P ) IÐ→ J(P )

ρA ∶ A(P ) IÐ→ J(P ) compÐÐ→ F (P ) F−1

ÐÐ→ A(P )

We illustrate this definition with the example below, first for ρJ .

Figure 1.15: Action of ρJ on J(P )

comp F−1 I

Figure 1.16: Action of ρA on A(P )

I comp F−1

The following theorem illustrating homomesy began as a conjecture of Dmitri

Panyushev [Pan09] and was later proven by Drew Armstrong, Christian Stump, and

Hugh Thomas [AST13].

Theorem 1.4.24 ([AST13, Theorem 1.2]). Let W be a finite Weyl group of rank

r, with corresponding positive root poset Φ+(W ). Then for any orbit O under the

action of ρA on A(Φ+(W )), we have
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1

∣O∣ ∑A∈O
∣A∣ = r/2

In other words, the cardinality statistic is homomesic with respect to rowmotion

acting on antichains of the positive root poset, with average half the rank.

In practice this theorem applies to a few families of posets and some special cases.

For more information on Weyl groups and root posets, we refer the reader to Björner

and Brenti’s text on Coxeter groups [BB05] . The poset shown above is a root poset

of type A3 and leads to the following orbits under ρA.

Figure 1.17: One orbit for ρA acting on the type A3 root posets

The cardinality of the antichains in this orbit are (2,1,1,2,2,1,1,2) with average

value (2 + 1 + 1 + 2 + 2 + 1 + 1 + 2)/8 = 12/8 = 3/2.

The other two orbits for A3 are of size 4 and 2 and can be seen Figures 1.18 and

.1.19.
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Figure 1.18: Size 4 orbit for type A3 root posets under ρA

Figure 1.19: Size 2 orbit for type A3 root posets under ρA

Again the average values of the antichains are (0 + 3 + 2 + 1)/4 = 3/2 for the size

4 orbit and (2 + 1)/2 = 3/2 for the size 2 orbits as predicted by the theorem.

In the following two chapters we will discuss homomesies found in maps formed

by composing dihedral involutions with two different permutation maps, the Rényi–

Foata map and the Foata–Schützenberger map.
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Chapter 2

The Rényi–Foata Map

2.1 Introduction to the Rényi–Foata Map

In this chapter we look at homomesies for actions of the symmetric group, particularly

so called Foatic maps. These are created by intertwining the “fundamental bijection”

of Rényi and Foata, denoted F ∶Sn →Sn with standard dihedral symmetries on Sn

(see Section 1.2). Similar maps involving intertwinings can be seen in the literature

[BW91]. To define F , we need first to specify a type of disjoint cycle decomposition.

Definition 2.1.1. Let w ∈ Sn. The canonical (disjoint) cycle decomposition

(CCD) of w is the decomposition of the permutation w into disjoint cycles, where

(a) each cycle is written with its largest element first and (b) the cycles are written

in increasing order of first (largest) elements.

The permutation 417682953 ∈S9 (in one-line notation) can be converted to CCD

by first rewriting it in terms of cycles, and then reordering each cycle to begin with
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the largest number. In the second step below, we underline the largest element of

each cycle.

417682953→ (1462)(379)(58)→ (6214)(85)(937)

Definition 2.1.2. The Rényi–Foata Map (F) takes a permutation in CCD, drops

the parentheses, and reinterprets the result as a permutation in one-line notation.

The following example shows how F acts on the permutation w = 417682953 =

(6214)(85)(937). We have also written F(w) in CCD.

(6214)(85)(937) FÐ→ 621485937 = (2)(4)(83165)(97)

To compute the inverse F−1 of the Rényi-Foata map, take a permutation in one-

line notation, place an open parenthesis in front of every record (a left-to-right

maximum of a permutation written in one-line notation), then fill in the correspond-

ing closed parentheses. The following example shows the action of the inverse map:

621485937
F−1

ÐÐ→ (6214)(85)(937)

This map converts certain natural permutation statistics to others. In particular,

it shows that the number of permutations in Sn with exactly k left-to-right maxima

(or records) is the same as the number with exactly k cycles. This follows directly

from the definition since under the inverse map F−1, records determine the beginning

of cycles. This number is the signless Stirling numbers of the first kind and is defined
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by the recurrence c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1), n, k ≥ 1 with initial

conditions c(n, k) = 0 if n < k or k = 0, except c(0,0) = 1 [Stan11, Lemma 1.3.6].

An additional result that follows directly from the definition has to do with

ascents and weak exceedances.

Definition 2.1.3. Let w ∈ Sn. An index j for which wj < wj+1 is called an ascent

of w. For w = 621485937 the ascent set is {3,4,6,8}.

In later work we will look at the permutation statistic Rasc, which counts the

number of records of a permutation which are also ascents.

Definition 2.1.4. Let w ∈ Sn. An index i for which wi ≥ i is called a weak

exceedance of w. In CCD, a weak exceedance will appear as a number in its own

cycle (since i = wi) or as two adjacent numbers within a cycle in the order i,wi

where i < wi. The weak exceedances for w = 417682953 are the elements of the set

{1,3,4,5,7}.

By looking at F−1 we can see that that the number of permutations with k

ascents is the same as the number with k + 1 weak exceedances. We consider again

the example w = 621485937 with ascent set {3,4,6,8} and look specifically at i = 3

and j = 4 where we have w3 = 1 < 4 = w4. Now under the map F−1, we observe

621485937
F−1

ÐÐ→ (6214)(85)(937)

This becomes a weak exceedance in cycle notation since this is now implying

wi = 4 is greater than i = 1. Note that there is also an ascent between every record
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and the number before it in one-line notation. We can see this for index i = 5 and

i − 1 = 4 where w5 = 8 is a record.

621485937
F−1

ÐÐ→ (6214)(85)(937)

These map to weak exceedances in CCD since the last number in a cycle is smaller

than the first (so since 5 < 8). We also get one additional weak exceedance from the

last number in the last cycle that was not originally an ascent. In our example that

is the 7↦ 9.

This results in k + 1 weak exceedances as desired. This number is counted by the

Eulerian number A(d, k+1). These have an explicit formula as a summation but are

more conveniently defined here by the recurrence A(d, k) = (d − k)A(d − 1, k − 1) +

(k + 1)A(d − 1, k) with n ≥ 1, k ≥ 2 and A(n,1) = 1 for n ≥ 0 and A(0, k) = 0 if k ≥ 2

[Stan11, Proposition 1.4.3].

As mentioned in Section 1.2, we will be looking at compositions of the Rényi–

Foata map and its inverse, (sometimes called intertwinings) with five of the dihedral

group actions on permutation matrices which are involutions. We eliminate the

identity map for lack of interesting properties.

Definition 2.1.5. The following are the five dihedral involutions of Sn that we

will consider:

(a) C ∶ Sn → Sn, which takes a permutation w = w1⋯wn to its complement

whose value in position i is n + 1 −wi;
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(b) R ∶ Sn → Sn, which takes a permutation w = w1⋯wn to its reversal whose

value in position i is wn+1−i;

(c) Q2 ∶Sn →Sn, which takes a permutation w = w1⋯wn to its rotation of the

permutation matrix by 180-degrees;

(d) I ∶Sn →Sn, which takes a permutation w to its inverse w−1;

(e) D ∶Sn →Sn, which takes a permutation w to its rotated inverse Q2(I(w)).

Observe that Q2 = R ○ C = C ○R. This gives a quick way to compute Q2(w) by

reading off (n + 1 − j) for j = wn,wn−1, . . . ,w1 (right to left).

Example 2.1.6. For our running example w = 417682953 = (6214)(85)(937).

(a) C(417682953) = 693428157

(b) R(417682953) = 359286714

(c) Q2(417682953) = 751824396

(d) I((6214)(85)(937)) = (6412)(85)(973)

(e) D((6214)(85)(937)) = Q2(I((6214)(85)(937))) = (137)(25)(4698)

The maps discussed in this chapter take on the following form, where A and B

represent dihedral involution maps:

Sn
FÐ→Sn

AÐ→Sn
F−1

ÐÐ→Sn
BÐ→Sn

This exploration follows from the work of Michael La Croix and Tom Roby [LR20].

They call these compositions of the Rényi–Foata map and dihedral symmetries

Foatic maps. As a shorthand Foatic maps are labeled by the dihedral actions

(A and B) in the order applied. So for example the map R ○ F−1 ○ C ○ F would
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be called the complement-reversal map. This gives a total of 25 possible maps to

explore.

La Croix and Roby noticed homomesies for three particular Foatic maps: reversal-

inversion, complement-inversion, and complement-rotation. They represented per-

mutations using a type of decreasing binary tree, called a heap, to describe the

structure of one particular map, reversal-inversion. This allowed them to prove that

the fixed point statistic on Sn (see Definition 2.2.1) is homomesic for the reveral-

inversion map (denoted ϕ in Theorem 2.1.9).

Definition 2.1.7. Let S be a finite totally ordered set, and w ∈SS be a permutation

of S written in one-line notation. If S ⊆ [n] ∶= {1,2, . . . , n}, we call w a partial

permutation of n. We recursively define the heap of w, H(w) as follows. Set

H(∅) = ∅ (the empty word). If w ≠ ∅, let m be the largest element of w, so w can be

written uniquely as umv, where u and v are partial permutations (possibly empty).

Set m to be the root of H(w), with H(u) its left subtree and H(v) its right subtree.

Example 2.1.8. Consider the permutation w = 3241576 ∈ S7. Note this is the

same permutation we saw as an example in Section 1.2 after Definition 1.2.6, also

visualized as a tree, albeit a different one from the one seen here. As m = 7 is the

largest element of w, we have u = 32415 and v = 6. Similarly, as we apply this idea

recursively to u, we get the sub factorization as u′m′v′ where m′ = 5, u′ = 3241 and

v′ = ∅. The subtree for H(3241576) can be seen below.
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Theorem 2.1.9 ([LR20, Theorem 14]). 1. Let ϕ be the map F ○I ○F−1 ○R. The

size of each ϕ-orbit (equivalently ϕ-orbit) is a power of 2. Specifically if w lies

in the orbit, define the height of the heap H(w) to be the number of edges h

in a maximal path from the root (to a leaf); then the size of the orbit is 2h.

2. Let Fix(w) denote the number of fixed points, i.e., 1-cycles of w. Then the

statistic Fix is 1-mesic with respect to the action of ϕ. Equivalently, Rasc is

1-mesic with respect to the action of ϕ.

3. For fixed values i ≠ j in [n], let 1i<j(u) denote the indicator statistic of whether

i occurs to the left of j in the one-line notation of u. Then 1i<j(u) is 1
2-mesic

with respect to the action of ϕ.

4. Similarly for fixed i ∈ [n], let 1(i,n) denote the indicator statistic of whether i

and n lie in the same cycle of w. Then 1(i,n) is 1
2-mesic with respect to the

action of ϕ.

The proof of Theorem 2.1.9 relies heavily on the following lemma.

Lemma 2.1.10. Let w ∈ Sn have the form AnB (in one-line notation), where A

and B are (possibly empty) partial permutations of n. Then the action of ϕ satis-
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fies ϕ(AnB) = ϕ(B)nA. Thus H(ϕ(AnB)) is the heap interchanging the left and

right subtrees at n, leaving the former unchanged and applying ϕ recursively to the

latter. In particular, the action of ϕ preserves the underlying unlabeled graph of the

corresponding heaps.

The homomesies conjectured and proved in this chapter were discovered using

Sage code adeptly written by Mike Joseph, as well as via numerical experiments

with data from Michael La Croix. We found homomesies by checking linear combi-

nations involving numbers and locations of the following statistics: fixed points,

inversions, weak exceedances, exceedances, ascents, descents, left-to-right

max/min and right-to-left max/min. Some of these we saw in Chapter 1, the

rest we will define as we describe the homomesies. A list of all conjectured and

proved homomesies can be seen in Appendix A.

2.2 Elementary Homomesies

There are several examples of homomesy among the 25 Foatic maps we consider. In

this section we will explore some of the more elementary ones and see their proofs.

In particular we will look at homomesies involving fixed points, exceedances, weak

exceedances, and combinations of left-to-right and right-to-left maxima and minima.

2.2.1 Extreme Fixed Points (Fix1 −Fixn)

Definition 2.2.1. Let w = w1w2⋯wn ∈ Sn. A fixed point is j ∈ [n] such that

wj = j. Equivalently, j is alone in its cycle when written in cycle notation. Let
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Fixi(w) = 1 if i is a fixed point of w and zero otherwise; denote the total number of

fixed points as Fix(w) = ∑ni=1 Fixi(w).

Example 2.2.2. For the permutation w = 416352 = (14362)(5), the number 5 is a

fixed point, so Fix5(w) = 1, Fixj(w) = 0 for j ≠ 5 and Fix(w) = 1.

Theorem 2.2.3. The statistic Fix1 − Fixn is 0-mesic with respect to the follow-

ing nine Foatic maps: reversal-reversal, rotation-reversal, complement-complement,

rotation-complement, reversal-rotation, complement-rotation, inversion-rotation, ro-

tated inversion-inversion, and inversion-rotated inversion.

Homomesy for Fix1 − Fixn is somewhat common among Foatic maps and the

proofs are relatively straightforward. As an example we will show the proof for

rotation-reversal. The others are similar.

Proof. We claim that if n is a fixed point in a permutation, then 1 is a fixed point

exactly two iterations later within an orbit of rotation-reversal.

Consider the following example:

(312)(4)(5)
F
Ð→ 31245

Q2

Ð→ 12453
F−1

ÐÐ→ (1)(2)(4)(53) = 12543
R
Ð→ 34521

34521 = (42)(513)
F
Ð→ 42513

Q2

Ð→ 35142
F−1

ÐÐ→ (3)(5142) = 45321
R
Ð→ 12354 = (1)(2)(3)(54)

If n is a fixed point, then it appears last in its own cycle in CCD; thus, F(w)n = n.

Since the rotation map Q2 complements and reverses, we get Q2(F(w))1 = 1. It

follows that F−1(Q(F(w))) has the cycle (1). In other words, F−1(Q(F(w)))1 = 1.

Lastly, applying the reverse map gives R(F−1(Q(F(w))))n = 1.
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Beginning the next iteration of rotation-reversal, let v = R(F−1(Q(F(w)))).

Since vn = 1, then the last cycle begins (n1⋯). So after applying F(v) we have n fol-

lowed immediately by 1 in one-line notation. This also holds for Q2(F(v)). It follows

that F−1(Q2(F(v))) has a final cycle of the form (n1⋯), meaning F−1(Q2(F(v)))n = 1.

To finish off the map, we get R(F−1(Q2(F(v))))1 = 1 so 1 is a fixed point.

Thus the total number of times 1 is a fixed point will equal the total number of

times n is a fixed point, and so Fix1 − Fixn is 0-mesic.

The proofs of the other eight maps listed are very similar. We begin with a fixed

point for either 1 or n, and track its behavior to arrive at a fixed point for either n

or 1 (respectively) in either one or two iterations. Below we give a table illustrating

the behavior of these two fixed points in each of the maps exhibiting this homomesy.

Map Behavior of the one-cycles (1) and (n)
Reversal-Reversal (n) appears one iteration after (1)
Complement-Complement (1) appears one iteration after (n)
Rotation-Complement (n) appears two iterations after (1)
Reversal-Rotation (1) appears two iterations after (n)
Complement-Rotation (n) appears two iterations after (1)
Inversion-Rotation (n) appears one iteration after (1)
Rotated inversion-Inversion (1) appears one iteration after (n)
Inversion-rotated inversion (n) appears one iteration after (1)

2.2.2 Exceedances (wexc+exc)

We saw definitions for ascents and weak exceedances in Definitions 2.1.3 and

2.1.4. We include those again here, along with a few other necessary definitions.
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Definition 2.2.4. Let w ∈ Sn. An index i for which wi ≥ i is called a weak

exceedance of w, while an index i for which wi > i is called an exceedance of w.

Let exc(w) denote the number of exceedances of w and wexc(w) denote the number

of weak exceedances of w. Note that exc(w) = wexc(w) − Fix(w).

Example 2.2.5. In the example where w = 271436958, the exceedances (in red) are

at positions 1,2, and 7 and the weak exceedances (underlined) are the exceedances

along with those at positions 4 and 6.

Definition 2.2.6. Let w ∈ Sn. An index j for which wj ≤ wj+1 is called an ascent

of w. Let asc(w) denote the number of ascents in w. An index i for which wi ≥ wi+1

is called a descent of w. We let

Di =
⎧⎪⎪⎨⎪⎪⎩

1 if i is a descent

0 otherwise

Then we can define the major index, maj(w) = ∑n−1i=1 iDi(w).

Example 2.2.7. In the example where w = 381975246, the ascents are underlined.

Theorem 2.2.8. The rotation-rotation map, Q2 ○F−1 ○Q2 ○F , exhibits homomesy

for the statistic wexc+ exc. More specifically, wexc+ exc is n-mesic.

Example 2.2.9. Below we have an orbit of rotation-rotation.

(1)(4)(6235) = 135462
F
Ð→ 146235

Q2

Ð→ 245136
F−1
ÐÐ→ (2)(4)(513)(6) = 325416

Q2

Ð→ 163254

(1)(3)(5)(642) = 163254
F
Ð→ 135642

Q2

Ð→ 531246
F−1
ÐÐ→ (53124)(6) = 241536

Q2

Ð→ 142635

(1)(65324) = 142635
F
Ð→ 165324

Q2

Ð→ 354216
F−1
ÐÐ→ (3)(5421)(6) = 513246

Q2

Ð→ 135462

⋮
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Proof. By tracing the map carefully, we can see that certain statistics are equated at

each iteration. Below we indicate these equalities, color-coded to match the example

above. A description follows each assertion.

• wexc(w) =asc(F(w)) − 1

A fixed point in CCD will be a weak exceedance since wi = i. By the definition

of CCD, the lead element of each cycle is the largest in that cycle. So under the

Foatic map, this weak exceedance became an ascent. A weak exceedance within

a cycle must be some i where i < wi, but within the cycle they appear in the

order i,w(i). Again, when the parenthesis are dropped during the application

of F this will look like an ascent. The only exception is the last number in

the last cycle. This will be a weak exceedance after applying F since the first

number in the cycle is larger than it, but it is not an ascent.

• asc(F(w)) =asc(Q2(F(w))).

Since the rotation map Q2 is the same as reversal and complementation, each

of which swap ascents and descents, the resulting permutation will have the

same number of ascents in the same positions.

• asc(Q2(F(w))) + 1 =wexc(F−1(Q2(F(w))).

This assertion follows by a reversal of the logic from the first bullet.

• wexc(F−1(Q2(F(w))) = n−exc(Q2(F−1(Q2(F(w)))

As mentioned, the action of rotation complements and reverses a permutation.

If we have, for example, a number k such that wk = j, under complementation

44



we get wk = n − j and under reversal we get wn−k = n − j. Thus, if k ≤ j, then

n − k ≥ n − j. So exceedances map to non-exceedances and vise versa.

It follows that wexc(w) = n−exc(Q2(F−1(Q2(F(w))). So if we sum wexc+exc for

each element of an orbit O, we will get n ⋅#O, and therefore the average of wexc+exc

is n.

Theorem 2.2.10. The statistic wexc+ exc is n-mesic for the rotation-inversion map,

I ○F−1 ○Q2 ○F .

Proof. We can see this as a variation of the previous theorem. The assertions for the

maps F ,Q2 and F−1 certainly remain the same. The only additional fact we need is

that

wexc(F−1(Q2(F(w))) = n − exc(I(F−1(Q2(F(w)))

For a fixed point wi = i it is also true that I(w)i = i. Originally this number

was a weak exceedance, but since it maps to itself, it is not an exceedance. Cycles

of longer length freeze the first number and reverse the remaining numbers under

the inversion map. Thus, if a number was a weak exceedance, meaning it was in the

order i,wi, it would then be in the order wi, i, making it no longer a weak exceedance

and vice-versa.

From here we can similarly conclude that wexc(w) = n − exc(I(F−1(Q2(F(w)))

and that the average of wexc+exc is n for every orbit.
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The following theorem can also be proved in a similar way, tracing the activity

of each statistic through the map.

Theorem 2.2.11. The statistic wexc+ exc is n-mesic for the inversion-inversion

map.

Also by similar reasoning, we can see that if we have k weak exceedances for a

permutation w, under the two maps in the following theorem, we have n+1−k weak

exceedances in the next iteration of the orbit. Thus we get the following:

Theorem 2.2.12. The statistic wexc is n+1
2 -mesic for orbits of reversal-rotated in-

version and complement-rotated inversion

2.2.3 Maxima and Minima

Definition 2.2.13. Let w = w1w2⋯wn ∈ Sn. When reading the wi from left to

right, a left-to-right maximum, or record, is the largest number that has been

read thus far. The terms right-to-left maximum, left-to-right minimum and

right-to-left minimum are defined similarly.

If wi is a left-to-right maximum, we write wi ∈ MaxÐÐ→(w). Denote maxÐÐ→(w) as the

number of left-to-right maxima. Similarly, if wj ∈ Min←ÐÐ(w), then wj is a right-to-

left minimum and min←ÐÐ(w) ∶= #Min←ÐÐ(w). We define Max←ÐÐ(w),max←ÐÐ(w),MinÐÐ→(w), and

minÐÐ→(w) in the same fashion.

Example 2.2.14. In the permutation 251863947, the left-to-right maxima are 2,5,8,9.

Several Foatic maps yield homomesy for linear combinations of left-to-right and

right-to-left maxima and minima.The following table indicates which statistics are
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homomesic for which Foatic maps. In each case the map is 0-mesic. The homomesy

which is still a conjecture is so marked.

Map Homomesic Statistic(s)
inversion-reversal maxÐÐ→−max←ÐÐ

minÐÐ→−min←ÐÐ
rotation-complement max←ÐÐ−min←ÐÐ [conj]

inversion-complement maxÐÐ→−minÐÐ→
max←ÐÐ−min←ÐÐ

rotation-rotation maxÐÐ→−min←ÐÐ
rotation-inversion maxÐÐ→−min←ÐÐ

We will prove the homomesy for the rotation-rotation map, the others (excluding

the conjecture) are similar.

Theorem 2.2.15. The statistic maxÐÐ→−min←ÐÐ is 0-mesic with respect to orbits of rotation-

rotation.

Lemma 2.2.16. Define Ψ ∶= Q2 ○F−1 ○Q2 ○F , the rotation-rotation map. Ψ takes

elements of Min←ÐÐ(w) to their inverses under w and Ψ−1 takes elements of MaxÐÐ→(w) to

their inverses under w. More formally, if wi ∈ Min←ÐÐ(w), then Ψ(w)wi = i. Similarly,

if wj ∈ MaxÐÐ→(w), then Ψ−1(w)wj = j.

Example 2.2.17. We illustrate this with an example. We will view our permutations

in 2-line notation to more clearly see this result. Consider the permutation

Ψ(( 1 2 3 4 5 6
1 5 6 4 2 3 )) = ( 1 2 3 4 5 6

1 5 6 2 4 3 )

Here the elements of Min←ÐÐ(w) are in red. The lemma asserts that Min←ÐÐ(w) are
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mapped to their inverses under Ψ. So w1 = 1,w5 = 2,w6 = 3 ∈ Min←ÐÐ(w), and Ψ(w)1 =

1,Ψ(w)2 = 5 and Ψ(w)3 = 6, shown in blue.

Proof. (1) (Min←ÐÐ)

Let wi ∈ Min←ÐÐ(w); this forces wi ≤ i. For if wi > i, then there would be n − i spots

to the right of wi that would need to be filled with numbers greater than wi. But

there are fewer than n− i numbers greater than wi since n−wi < n− i. For example,

consider the following permutation from S6 where we have w3 = 4.

− − 4 − −−

Since 4 appears in the third position, there are three spaces to the right of it.

But if 4 ∈ Min←ÐÐ(w), then it is in the set of smallest elements when reading from right

to left. So all the numbers to the right of it need to be greater than 4, which is not

possible in S6. Hence we can conclude that w3 ≤ 3 in this example and wi ≤ i in

general.

As a first case, suppose that wi < i. We begin with an example.

Example 2.2.18. Consider the permutation (2)(413)(65) = 324165 under rotation-

rotation. Note that w6 = 5 and w4 = 1 ∈ Min←ÐÐ(w). We will focus on w4 = 1 and note

1 < 4.

(2)(413)(65) FÐ→ 241365
Q2

Ð→ 214635
F−1

ÐÐ→ (21)(4)(635) Q
2

Ð→ (56)(3)(142)
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We generalize our example to the following sequence of maps, where c(j) repre-

sents the complement of j, namely c(j) = n + 1 − j.

∼ (∗iwi∗) ∼
FÐ→ ∗iwi∗

Q2

Ð→ ∗c(wi)c(i)∗
F−1

ÐÐ→∼ (∗c(wi)c(i)∗) ∼
Q2

Ð→∼ (∗wii∗) ∼

When we write w in CCD, wi cannot be the largest element in the cycle (since

i and wi are in the same cycle), and so we have a permutation where i appears

immediately to the left of wi and has the form ∼ (∗iwi∗) ∼ where ∗ represents any

(possibly empty) string and, ∼ represents any allowable cycles (or possibly nothing).

Applying F to w drops the parentheses, leaving us with i and wi in adjacent

positions in one-line notation (shown in blue). The map Q2 reverse and complements

the permutation, leaving us with c(wi) and c(i) in adjacent positions in one-line

notation (shown in purple). Now wi < i Ô⇒ c(wi) > c(i); thus, when we apply F−1

there cannot be parenthesis between c(wi) and c(i) and they will be in the same

cycle (shown in orange). Lastly, Q2 complements within cycles, so we arrive at wi

and i in adjacent positions in the same cycle (shown in green), implying that wi ↦ i

as desired.

As a second case, suppose i = wi for wi ∈ Min←ÐÐ(w), so we have wi in its own cycle.

So w has the form ∼ (wi) ∼ and Ψ acts as follows:

∼ (wi) ∼
FÐ→ ∗wi∗

Q2

Ð→ ∗c(wi)∗
F−1

ÐÐ→∼ (c(wi)) ∼ ∗
Q2

Ð→∼ (wi) ∼
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The important observation here is that based on the definition of CCD, the last

element of the cycle before (wi) must be smaller than wi, and the first element of

the cycle after (wi) must be greater than wi. This means that after applying F , the

one line notation of F(w) has wi preceded by a smaller number and followed by a

larger number (shown in blue).

After applying Q2 we will have c(wi) again preceded by a smaller number and

followed by a larger number (shown in violet). It follows that in the next iteration,

when applying F−1, c(wi) will be a fixed point, alone in its cycle (shown in orange).

Lastly, Q2 complements c(wi), leaving us with the fixed point wi, so wi ↦ i as desired

(shown in green). Thus for all wi ∈ MinÐÐ→(w), Ψ(w)wi = i.

(2) (MaxÐÐ→)

Next we show the reverse claim: if wj ∈ MaxÐÐ→(w) then Ψ−1(w)wj = j. Let wj ∈

MaxÐÐ→(w) for w ∈Sn. As above, we have wj ≥ j. We will trace our permutation w via

Ψ−1 = F−1 ○Q2 ○ F ○Q2. Consider first the case where wj > j. So in CCD w takes

one of two forms, detailed below.

• ∼ (∗jwj∗) ∼

This case follows from a reversing of the logic of part (1).

• ∼ (wj ∗ j) ∼

∼ (wj ∗ j) ∼
Q2

Ð→∼ (c(wj) ∗ c(j)) ∼
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The application of the first Q2, we would need to translate our permutation

into CCD. Since c(wj) < c(j), this means c(wj) would no longer be the first

element of the cycle, instead it would be of the form ∼ (∗c(j)c(wj)∗) ∼ and the

rest of the map would look like the first case. In both scenarios it is clear that

c(j) now maps to c(wj).

• Lastly, if wj = j and the application of Ψ−1 takes on a form identical to the

second part of (1).

Finally, we can conclude that Ψ−1(w)wj = j, which completes the proof of the

lemma.

Proof (of Theorem 2.2.15). We first claim that if wi ∈ Min←ÐÐ(w) for w ∈ Sn, then i ∈

MaxÐÐ→(w) for Ψ−1(w). From the lemma we infer that since Min←ÐÐ(w) are increasing when

viewed from left-to-right, the same is true of Ψ(Min←ÐÐ(w)). Similarly, since MaxÐÐ→(w)

are increasing when views from left-to-right, the same is true of Ψ−1(MaxÐÐ→(w)).

Using an example we will illustrate this fact, and show why we can take it an

iteration further to show that Ψ(Min←ÐÐ(w)) = MaxÐÐ→(w) and Ψ−1(MaxÐÐ→(w)) = Min←ÐÐ(w).

In the first permutation, the Min←ÐÐ(w) are in red. In the second line the MaxÐÐ→(w) are

in blue.

572163948
Q2○F−1○Q2○FÐÐÐÐÐÐÐ→ 4 ∗ 68 ∗ 9∗

253798164
F○Q2○F−1○Q2

ÐÐÐÐÐÐÐ→ ∗1 ∗ 2 ∗ 4 ∗ 5
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Consider the first example, where the Min←ÐÐ(w) are translated to increasing left-

to right numbers. To see that these are in fact the MaxÐÐ→(w), suppose by way of

contradiction that we had some other MaxÐÐ→(w) in between these, for example, of the

form

4568 ∗ 9∗

Then, since 5 ∈ MaxÐÐ→(w), when we apply Ψ−1, we would have

4568 ∗ 9∗ F○Q
2○F−1○Q2

ÐÐÐÐÐÐÐ→ ∗1 ∗ 3248

But then 2 would have been a Min←ÐÐ(w) in our original permutation. It follows

that Min←ÐÐ(w) are translated to MaxÐÐ→(w) in the rotation-rotation map and the reverse

is also true by similar reasoning. We conclude that maxÐÐ→−min←ÐÐ is 0-mesic for rotation-

rotation.

2.3 Fixed Point Homomesy in the Complement-

Inversion Map

In [LR20], La Croix and Roby conjectured fixed point homomesy for the complement-

inversion map. In this section we seek to prove this homomesy for certain specific
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orbits.

Definition 2.3.1. A permutation is a k-inside-out permutation (k-IOP) if it

can be written in one-line notation via the following algorithm.

Let w be a permutation in Sn. Take the numbers 1 through k and arrange them

according to the following pattern.

k+2
2 ,

k
2 ,⋯, k − 2,3, k − 1,2, k,1 for k even

k+1
2 ,

k+3
2 ,

k−1
2 ,⋯, k − 2,3, k − 1,2, k,1 for k odd

The remaining numbers k+1, . . . , n can be arranged after this prefix in any order.

Example 2.3.2. An example of permutations in this form would be 435261897 where

the k-inside-out part is 435261 and k = 6, and the remaining part (in green) is 897.

Another example would be 231647859 where k = 3, the k-IO part is 231, k = 3 and

the remaining part (in green) is 647859.

We begin with an example orbit of complement-inversion.

Example 2.3.3. Consider the following complement-inversion orbit in S6:

(4)(532)(61)
F
Ð→ 453261

C
Ð→ 324516

F−1
ÐÐ→ (32)(4)(51)(6)

I
Ð→

(32)(4)(51)(6)
F
Ð→ 324516

C
Ð→ 453261

F−1
ÐÐ→ (4)(532)(61)

I
Ð→

(4)(523)(61)
F
Ð→ 452361

C
Ð→ 325416

F−1
ÐÐ→ (32)(541)(6)

I
Ð→

(32)(514)(6)
F
Ð→ 325146

C
Ð→ 452631

F−1
ÐÐ→ (4)(52)(631)

I
Ð→

(4)(52)(613)
F
Ð→ 452613

C
Ð→ 325164

F−1
ÐÐ→ (32)(51)(64)

I
Ð→

(32)(51)(64)
F
Ð→ 325164

C
Ð→ 452613

F−1
ÐÐ→ (4)(52)(613)

I
Ð→

(4)(52)(631)
F
Ð→ 452631

C
Ð→ 325146

F−1
ÐÐ→ (32)(514)(6)

I
Ð→

(32)(541)(6)
F
Ð→ 325416

C
Ð→ 452361

F−1
ÐÐ→ (4)(523)(61)

I
Ð→
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When viewing the elements of an orbit of complement-inversion in cycle notation,

we note that the first number of the first cycle will alternate between k and n+ 1−k

as we move through the orbit. In our example we observe an alternation of 4 and

3. If a permutation’s first cycle begins with k, under the Foatic map F , the first

number in one-line notation will be k. When we apply the complement map C, the

first number will be n + 1 − k. Since the first number begins the first cycle, applying

F−1 means out first cycle will begin with n + 1 − k. Since the inverse map I freezes

the first number in each cycle and reverses the other numbers, n + 1 − k will remain

the first number in the cycle.

In order to better understand these orbits, we will look at a type of suborbit of

them. In Figure 2.1, we will zoom in on the boxed elements of this orbit. Since we

are alternating between elements of the second column and the third column, which

are separated by the complement map, each of the boxed permutations will begin

with the same number, in this case 4. Next, we will look at the boxed elements

in isolation as their own special type of orbit. We can think of these elements as

forming their own ‘suborbit’ under the following actions.

When following the map in a southwest direction (↙) we do the following:

• Identify in red the ascending records, consider these as ‘posts’

• Add an imaginary red post in position n + 1

• Reverse the string of number in between two posts

When following the map in a southeast direction (↘) we do the following:

• Identify in blue the descending records, consider these as ‘posts’
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Figure 2.1: A ‘suborbit’ of a complement-inversion orbit

453261∣ ↘
↙ 453261∣

452361∣ ↘
↙ 452631∣

452613∣ ↘
↙ 453261∣

452631∣ ↘
↙ 452361∣

• Add an imaginary blue post in position n + 1

• Reverse the string of number in between two posts

Note that traveling in the southwest direction is the equivalent of applying the

map F ○ I ○ F−1. This is consistent with the directions since identifying ascending

records can be thought of as adding the parenthesis of F−1 by marking the first

element of each cycle. Reversing between posts is precisely the action of I where we

freeze the first element of a cycle and reverse the order of the remaining elements.

To apply F we would then drop the parentheses, leaving us with a permutation in

one line notation.

Similarly, traveling in the southeast direction is the equivalent of applying the

map C ○F ○ I ○F−1 ○ C. Here we note that the descending records of a permutation

are in the same positions as the ascending records of the complement. Thus we mark

descending records first, then apply the same map as above.

Viewing complement-inversion orbits in this way will allow us to leverage the
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former results from La Croix and Roby which prove fixed point homomesy for the

reversal-inversion map. First, we restate part 2 of Theorem 2.1.9 as a lemma to our

result.

Lemma 2.3.4. The statistic Fix is 1-mesic with respect to the action of ϕ = I ○F−1 ○

R ○F .

La Croix and Roby conjectured that the statistic Fix is also 1-mesic for complement-

inversion and complement-rotation, and we add here that this is also likely the case

for reversal-rotation. What follows is a proof that Fix takes on the same average

value for k-IOP orbits of complement-inversion.

Theorem 2.3.5. The statistic Fix has average value 1 for orbits of complement-

inversion that contain at least one k-IOP.

Proof. k-IOPs have the property that the k-IO part of the permutation is frozen as

you travel through a boxed suborbit. In the following proof we will refer to this as

the ‘frozen prefix’ and the remaining part of the permutation as the ‘free part’.

To understand this type of permutation more clearly, consider the following ex-

ample:

(43)(52)(61)(8)(97)
F
Ð→ 435261897

C
Ð→ 675849213

F−1
ÐÐ→ (6)(75)(84)(9213)

I
Ð→

(6)(75)(84)(9312)
F
Ð→ 675849312

C
Ð→ 435261798

F−1
ÐÐ→ (43)(52)(61)(7)(98)

I
Ð→

(43)(52)(61)(7)(98)
F
Ð→ 435261798

C
Ð→ 675849312

F−1
ÐÐ→ (6)(75)(84)(9312)

I
Ð→

(6)(75)(84)(9213)
F
Ð→ 675849213

C
Ð→ 435261897

F−1
ÐÐ→ (43)(52)(61)(8)(97)

I
Ð→

In this particular example, our frozen prefix, 435261, will be the same in every

boxed element, due to its alternating nature. The decreasing numbers will alternate

with the increasing numbers, freezing our entire prefix at each step.
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Because of this phenomenon, we can focus on the remaining three numbers of

the permutation. These three numbers are all greater than the frozen prefix by

definition, so they will never be in red in the left column. So when traveling in the

southeast direction, these numbers are acted on by reversal. As we know, traveling

in the southwest direction acts on these numbers by the map FIF−1. So then we

can think of this free part as a smaller orbit of reversal-inversion. More specifically,

if our entire orbit is size 2m, this is an orbit of reversal inversion of size m. In this

example, it corresponds to the orbit from S3, containing the elements (2)(31) and

(1)(32).

In general, any orbit containing a k-IOP in the second column will follow a similar

orbit structure. Since La Croix and Roby have already shown that reversal-inversion

orbits have fixed point homomesy, it follows that the number of fixed points in the

free part will equal the size of the free part orbit. In our example that number is 2.

Note that the size of the overall orbit containing this type of permutations will be

twice the size of the free part orbit. So the total number of fixed points contributed

by the free part is 1
2 ⋅#O.

The remaining fixed points in the orbit will come from the frozen prefix part.

For k odd, F−1(w) yields 1 fixed point (namely k+1
2 ). In the forward direction,

F−1(C(w)) will then yield 2-cycles followed by a larger cycle beginning with n, but

no fixed points. This structure will remain after applying I. It follows that the

number of fixed points contributed by the frozen prefix is 1
2 ⋅#O. For k even, we can

argue analogously. In this example that fixed point will be (6).

It follows that the total number of fixed points in orbits of this type is equal
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1
2 ⋅#O + 1

2 ⋅#O = #O so Fix has average value 1.

2.4 Near Homomesies

Both the inversion-reversal and inversion-complement maps have a slew of statistics

that are nearly homomesic, i.e. statistics that have the same average value for most

orbits, but fail for a few specific larger orbits, which happen to have odd length.

The statistics that come up for most orbits under inversion-reversal are maxÐÐ→ −max←ÐÐ,

minÐÐ→ − min←ÐÐ, inv, Dn, Di + Dn−i (for i ∈ [n − 1]), des = ∑n−1i=1 Di and cdes = ∑ni=1Di.

For inversion-complement the statistics of interest are inv, Di for any i ∈ [n] (and

thus des, cdes, and maj by linear combination), maxÐÐ→ − minÐÐ→ and max←ÐÐ − min←ÐÐ. The

phenomenon for these two maps actually comes from an interesting orbit structure

that explains not only why several orbits have the same average value for certain

statistics, but also the reason that we get exceptions.

2.4.1 The Inversion-Reversal Map

The inversion-reversal map has a nice map structure that lends itself to several near

homomesies. Unfortunately many of these break at n = 8 because of a few anomalous

orbits. In this section we seek to explain the structure of this map.

Example 2.4.1. Below is an orbit of inversion-reversal. Notice that when written in

one-line notation, we can pair up permutations that are reversals of each other. We

have done this by color coding the permutations. By arranging the orbit structure
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in a certain way, we can create an orbit where the middle two permutations are

reverses, and then the one above and below that pair are reverses, and then the pair

two above and two below are reverses and so on.

(32)(4)(51)(6) = 532416
(2)(4)(6351) = 625413

(1)(32)(5)(64) = 132654
(53)(6142) = 465231

(21)(5)(634) = 214653
(4)(62513) = 356412

(1)(32)(645) = 132564
(614253) = 456231

(52134)(6) = 314526
(653421) = 614235

To explain this structure, we will begin with the middle two permutations. For

these permutations to be reverses is equivalent to saying that the map R○F−1 ○I ○F

is equivalent to reversal. This will be true for any permutation w that has F−1 ○I ○F

equal to the identity map, in other words any permutation w where F(w) is an

involution. In Example 2.4.1 we have two permutations with this property, the first

of the middle two permutations, and the last permutation.

F((21)(5)(634)) = F(214653) = 215634 = (21)(53)(64)

F((653421)) = F(614235) = 653421 = (43)(52)(61)

In order to further understand this structure, we begin with one of the permuta-

tions that is paired with its reversal. In other words, a permutation w where F(w) is

an involution and F(w) = I(F(w))). Certainly if a permutation is its own inverse,

then I acts like the identity.
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215634 = (21)(53)(64) IÐ→ 215634 = (21)(53)(64)

As we build out from this part of the map in both directions to recreate the orbit,

we are applying F−1 in both cases, so we get the same permutations at those steps.

(21)(5)(634) FÐ→ 215634
IÐ→ 215634

F−1

ÐÐ→ (21)(5)(634)

Similarly, since R is an involution, we also get the same permutations in each

direction at this step.

(4)(62513) = 356412
RÐ→

(21)(5)(634) = 214653
FÐ→ 215634

IÐ→ 215634
F−1

ÐÐ→ (21)(5)(634) = 214653
RÐ→

(4)(62513) = 356412

This continues at every step, building out from the center. Again we have color

coded to show that we have the same permutation as we work our way outward.

(1)(32)(645) = 132564
RÐ→

(53)(6142) = 465231
FÐ→ 536142

IÐ→ 462513
F−1

ÐÐ→ (4)(62513) = 356412
RÐ→

(21)(5)(634) = 214653
FÐ→ 215634

IÐ→ 215634
F−1

ÐÐ→ (21)(5)(634) = 214653
RÐ→

(4)(62513) = 356412
FÐ→ 462513

IÐ→ 536142
F−1

ÐÐ→ (53)(6142) = 465231
RÐ→

(1)(32)(645) = 132564

The key is that as we build out, we come to a reversal pair in the left hand column

of each iteration.

If we do not have a permutation w within our orbit such that F(w) is an invo-

lution, then we will not get the same matching as we otherwise would. However,
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there exists some other permutation which is the reverse of w in another orbit. Since

we could apply the same reasoning to a pair of elements of the two orbits, if we

consider these statistics on these orbits together, we would still get the same average

values. This orbit structure leads to “near-homomesies”— statistics that have the

same average value when restricted to just orbits that contain involutions and lead

us to the following theorem.

Theorem 2.4.2. The orbits of inversion-reversal which contain an involution have

the property that the statistics maxÐÐ→ −max←ÐÐ and minÐÐ→ −min←ÐÐ have average value 0, inv

has average value n(n−1)
4 , Dn has average value 1

2 , Di +Dn−i has average value 1, des

has average value n
2 , and cdes has average value n+1

2 .

Proof. Maxima and Minima: If a number is a left-to-right maxima, when the

reverse is applied it becomes a right-to-left maxima. The same is true for left-to-right

minima becoming right-to-left minima. Consider the following two permutations

which are reverses of each other. In the first example the maxÐÐ→ and max←ÐÐ are in red

and in the second the minÐÐ→ and min←ÐÐ are in blue.

748231965
RÐ→ 569132847

748231965
RÐ→ 569132847

Thus, since every permutation and its reverse appear once within the cycle, both

maxÐÐ→ −max←ÐÐ and minÐÐ→ −min←ÐÐ have average value 0.

Inversions: (a, b) ∈ Inv(w) ⇐⇒ (a, b) ∉ Inv(R(w)). Consider the following

permutations which are reversals of each other.
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415236
RÐ→ 632514

The inversion pairs for the permutation on the left are (4,1), (4,2), (4,3), (5,2)

and (5,3). For the permutation on the right hand side we have inversion pairs

(6,3), (6,2), (6,5), (6,1), (6,4), (3,2), (3,1), (2,1), (5,1) and (5,4). So inv(w) = 5

and inv(R(w)) = 10. Note that the total possible inversions for Sn is n(n−1)
2 , in this

case 15. Therefore, if an orbit has the property that every elements reverse is also

in the orbit, then the total number of inversions in the orbit is #O
2 ⋅ n(n−1)2 meaning

that the average number of inversions is n(n−1)
4 .

Descents: If we can show that both Di +Dn−i and Dn show the same average

values over orbits, then des and cdes follow since these are just linear combinations

of the previous two statistics.

We begin with Dn. If n is a descent in a permutation w, then wn > w1. When

we reverse w, these numbers will switch positions and R(w)n < R(w)1. Thus, if

Dn is a descent in a permutation, then it will not be a descent in the reverse of a

permutation. So n will be a descent in half of the permutations in an orbit, and Dn

has average value 1
2 .

By a similar reasoning, if i is a descent of a permutation w, so wi < wi+1, then it

follows that R(w)n+1−i > R(w)n−i. For example, consider the following two permu-

tations which are reverses of each other.

748231954
RÐ→ 569132847
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Take for example, the index 3, where w3 = 8. Since w4 = 2, we have that 3 is a

descent since 2 < 8. When we reverse this permutation, the numbers 8 and 2 will

appear in the reverse order. So the location of 2, which is n − 3 = 9 − 3 = 6 is not a

descent.

We conclude that the total Di +Dn−i = #O for each i. So the statistic Di +Dn−i

has average value 1. It follows that des= ∑n−1j=1 Dj = #O ⋅ n2 , so des has average value

n
2 . Similarly, cdes= ∑nk=1Dk = #O ⋅ n2 +#O ⋅ 12 , so cdes has average value n+1

2 .

2.4.2 The Inversion-Complement Map

We have a very similar phenomenon with the inversion-complement map.

Example 2.4.3. The following is an example of an orbit in S6.

(3)(4)(6251) = 653412
(2)(63154) = 521643

(3)(5)(6214) = 413652
(653124) = 241635

(1)(65432) = 162345
(4)(53)(621) = 615432

(541)(623) = 536142
(413)(652) = 364125

(641253) = 256134
(1)(2)(43)(65) = 124365

As in Example 2.4.1 , we have a similar pairing system, only here our pairs are

complements of each other. The reason for this is similar to that for the inversion-

reversal example. Beginning in the middle, we can identify a permutation w where
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F(w) is an involution. From here we can build out in both directions, matching

permutations for each map. The only difference from our explanation in the previous

section is that we replace the reversal map with the complement map.

As long as we start with a permutation where F(w) is an involution, we will get

the pairing seen above. If no such permutation is in the orbit, we will not have this

property. However, if we take any w in one of these exception orbits, we can find

its complement in another orbit, and these two orbits together will have the same

average values for these statistics as in the nicer orbits.

Theorem 2.4.4. The orbits of inversion-complement which contain an involution

have the property that the statistics maxÐÐ→ −minÐÐ→ and max←ÐÐ −min←ÐÐ have average value 0,

inv has average value n(n−1)
4 , Di has average value 1

2 for all i ∈ [n], des has average

value n−1
2 , cdes has average value n

2 , and maj has average value n(n−1)
4 .

Proof. Maxima and Minima: As in the inversion-reversal example, these homo-

mesies are the most straightforward. If a number is a left-to-right maxima, under

the complement map this number will be a left-to-right minima, and likewise for

right-to-left maxima and minima. It follows that both maxÐÐ→ − minÐÐ→ and max←ÐÐ − min←ÐÐ
have average value 0.

Inversions: Again, this homomesy is similar to the inversion-reversal case. If a

pair (i, j) is an inversion pair, then under the complement map, (i, j) will not be in

an inversion. It follows that the statistic inv has average value n(n−1)
4 .

Descents: Note that if i is a descent, then wi > wi+1. Under the complement

map, C(w)i < C(w)i+1. So if i is a descent for a permutation, it is not a descent for

the complement of that permutation. It follows that the total number of descents
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for any pair of permutations is n − 1, and the total number of cyclic descents is n.

From this we can conclude that Di has average value 1
2 for all i ∈ [n]. Furthermore,

we have the following

des =
n−1
∑
i=1
Di =

n − 1

2
⋅#O

cdes =
n

∑
i=1
Di =

n

2
⋅#O

maj =
n−1
∑
i=1
iDi =

n(n − 1)
4

⋅#O

It follows that des has average value n−1
2 , cdes has average value n

2 , and maj has

average value n(n−1)
4 .

2.5 Future Directions

2.5.1 Remaining Conjectures

The largest remaining open question of this chapter is the fixed point homomesy

for general permutations in complement-inversion orbits as originally conjectured by

La Croix and Roby.

Conjecture 2.5.1 ([LR20]). The statistic Fix is 1-mesic for all orbits of complement-

inversion.

There seems to be a correlation between reversal-inversion orbit sizes and complement-

inversion orbit sizes, which led to an investigation of reversal-inversion orbits lurking

inside complement-inversion ones in a similar way to those seen in Section 2.3.
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Consider the example shown in Figure 2.2. As in Section 2.3 we focus on the

boxed elements of a complement-inversion orbit as a sort of ‘suborbit’. (This is not

really a suborbit, but we are using that term to describe the interior alternating

sequence detailed in previous sections.) Recall that in the southeast direction, the

action is CFIF −1C, and in the southwest direction it is FIF −1.

The example appears to reveal a reversal-inversion orbit (with repeated permu-

tations) lurking inside a complement-inversion orbit. While many orbits, especially

for Sn when n < 8 behave this way, not all do, prohibiting the use of an inductive

argument based on the size of the orbit. However if we could somehow realize all

orbits as a version of this embedded idea, fixed point homomesy could be extended.

In addition to this conjecture, the fixed point homomesy phenomenon observed in

the reversal-inversion and complement-inversion maps described in Section 2.3 also

appear to hold for both the complement-rotation and the reversal-rotation maps.

Conjecture 2.5.2. The statistic Fix is 1-mesic for orbits of reversal-rotation

Conjecture 2.5.3. The statistic Fix is 1-mesic for orbits of complement-rotation

The complement-rotation case was originally conjectured by La Croix and Roby

in [LR20]. It seems likely that one may be able to extend a proof of the reversal-

rotation case to the complement-rotation case, as was done in this thesis.

Of the other homomesic statistics we looked at in the Foatic maps, a few remain

open. Conjecture 2.5.6 has not received much attention and may not be difficult to

prove.

Conjecture 2.5.4. The statistic max←ÐÐ−min←ÐÐ is 0-mesic for the rotation-complement

map.
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Figure 2.2: ‘Suborbit’ within a complement-inversion orbit

395821 674 ↘ CFIF*C

FIF*↙ 385921 476

3859 674 12 ↘ CFIF*C

FIF*↙ 3 476 95812

3 476 92185 ↘ CFIF*C

FIF*↙ 39 674 2158

398512 476 ↘ CFIF*C

FIF*↙ 35891 674 2

35892 476 1 ↘ CFIF*C

FIF*↙ 39852 674 1

391 476 258 ↘ CFIF*C

FIF*↙ 391852 674

39 476 2581 ↘ CFIF*C

FIF*↙ 3 674 92851

3 476 91582 ↘ CFIF*C

39 476 1285
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Conjecture 2.5.5. The statistic D1−Dn−1 is 0-mesic for the rotation-reversal map.

Conjecture 2.5.6. The statistic Fix1 −Fixn is 0-mesic for the following four maps:

rotated inversion-complement, complement-rotated inversion, rotated inversion-reversal,

and reversal-rotated inversion.

It appears to be the case that in orbits of these maps the fixed points (n) and

(1) appear two iterations away from each other, and likely this could be shown in a

way similar to the proof given in Section 2.2.1.

2.5.2 Other Statistics

As mentioned previously, we investigated 25 maps created out of intertwinings of the

Foata map, its inverse and five dihedral involutions. The statistics we searched for in-

cluded the following: cyc (the number of cycles), inv,wexc, exc,maxÐÐ→,max←ÐÐ,minÐÐ→,min←ÐÐ,Di

for all i ∈ [n] and Fixi for all i ∈ [n]. Additionally we looked at all linear combinations

of these statistics, including Fix = ∑ni=1 Fixi, exc = wexc−Fix,des = ∑n−1i=1 Di, cdes =

∑n−1i=1 Di,maj = ∑n−1i=1 iDi,asc = n − 1 − des. There are certainly more statistics that

could be investigated in these maps, such as pinnacles, peaks and valleys, [DNPT]

and others.

In the following chapter we will investigate a second map, also attributed to

Foata, and a similar intertwining which yields homomesic permutation statistics.
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Chapter 3

The Foata–Schützenberger Map

3.1 Introduction to the Foata–Schützenberger Map

There is a second map, also attributed to Foata, which has an entirely different

definition then the one in the previous chapter. In this chapter we define this map,

explore its properties, and describe similar intertwinings with dihedral involutions.

This map comes from work of Dominique Foata and Marcel-Paul Schützenberger,

[FS78] and as such we will refer to it here as the Foata–Schützenberger (F–S) map.

The dynamics of the more straightforward action of simply iterating the F–S map

on Sn has been studied in unpublished work of Amdeberhan [A]. He is interested in

the orbit structure and corresponding partition that the map induces on Sn. (Each

orbit must lie entirely within an inverse descent set by Theorem 3.1.12.) He states

some conjectures concerning the generating functions that count the number of orbits

of different sizes.
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The Foata–Schützenberger map was initially defined as a way of providing a

bijective proof showing the equidistribution across Sn of the inversion number

(Section 1.3) and the major index (Section 2.1), whose definitions we now recall.

Definition 3.1.1. Let w = w1w2⋯wn ∈ Sn. The inversion number, denoted

inv(w), is given by inv(w) = ∑
i<j,wi>wj

1, in other words it counts the number of pairs

(wi,wj) which are “out of order”. The major index, denoted maj(w), is defined as

the sum of the descents of w, i.e., maj(w) = ∑
i,wi>wi+1

i. Note that n is never a descent.

The major index was introduced first by Major Percy MacMahon [Mac16] who

proved that it is equidistributed with the inversion number over Sn. It was named

“major index” by Foata, in honor of MacMahon’s military rank. In the language of

generating functions, this means:

∑
w∈Sn

qinv(w) = ∑
w∈Sn

qmaj(w) (3.1)

We defined q-analogues of combinatorial numbers in Definition 1.3.7 and saw an

example there. Here we note

Proposition 3.1.2. ∑w∈Sn qinv(w) = [n]q! = (1+ q)(1+ q + q2)⋯(1+ q + q2 +⋯+ qn−1).

Definition 3.1.3. Let ak but the number of inversions (wi,wj) in w with wj = k.

The inversion table of w is defined to be the n-tuple I(w) = (a1, . . . , an).

We can recover w from its inversion table by the following algorithm. Given

I(w) = (a1, . . . , an), we successively place the numbers n through 1, where each n− i

is inserted into w (expressed in one-line notation), so that it has an−i elements to its

left. This gives a bijection Sn↔ [0, n − 1] × [0, n − 2] ×⋯ × [0,0].
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Example 3.1.4. Let I(w) = (a1, a2, . . . , a6) = (3,0,1,2,1,0). So we begin with n = 6,

which has an = 0 elements to its left. Next we insert 5 with a5 = 1 element (the 6) to

its left. Then 4 with a4 = 2 elements to its left, placing it at the end. We continue

like this to reconstruct w as follows:

6

65

654

6354

26354

263154

Proof. [Stan11, Proposition 1.3.12, 1.3.13] Certainly a permutation gives a unique

inversion table, and the algorithm given in Definition 3.1.3 gives a map from an inver-

sion table to a unique permutation; thus, we have a bijection between permutations

and Tn ∈ [0, n − 1] × [0, n − 2] ×⋯ × [0,0], the set of all possible inversion tables.

To see why Equation 3.1.2 is the generating function for the number of inversions,

note that if I(w) = (a1, a2, . . . , an), then inv(w) = a1 +⋯ + an. It follows that

∑
w∈Sn

qinv(w) =
n−1
∑
a1=0

n−2
∑
a2=0

⋯
0

∑
an=0

qa1+a2+⋯+an

= (
n−1
∑
a1=0

qa1)(
n−2
∑
a2=0

qa2)⋯(
0

∑
an=0

qan)

= [n]q[n − 1]q⋯[1]q = [n]q!
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MacMahon’s proof via generating functions of the equidistribution of inv and

maj left open the question of finding a canonical bijection ϕ ∶ Sn → Sn where

maj(w) = inv(ϕ(w)). The solution, found by Foata and Schützenberger, is the map

we will discuss here.

Definition 3.1.5. [FS78] The Foata–Schützenberger map ϕ ∶ Sn → Sn is defined

inductively as follows. Let w = w1w2 . . .wn be a permutation in one-line notation.

i) Define γ1 = w1; assume that γk, a partial permutation on [n] of length k, has

been defined for some k ∈ [n], then

ii) if the last letter of γk is greater (respectively smaller) than wk+1, split γk into

“subwords” after each letter greater (respectively smaller) than wk+1; then

iii) in each compartment of γk determined by the splits move the last letter to the

beginning; obtain γk+1 by appending wk+1 to the end of the transformed word;

iv) while k < n repeat with step (ii) − (iii), if k = n, then ϕ(w) = γk.
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Example 3.1.6. Let w = 492675138 ∈S9. The algorithm gives us the following

γ1 = 4→ 4

γ2 = 4∣9→ 49

γ3 = 4∣9∣2→ 492

γ4 = 4∣92∣6→ 4296

γ5 = 4∣2∣96∣7→ 42697

γ6 = 426∣9∣7∣5→ 642975

γ7 = 6∣4∣2∣9∣7∣5∣1→ 6429751

γ8 = 642∣9751∣3→ 26419753

γ9 = 2∣6∣4∣1∣97∣5∣3∣8→ 264179538

ϕ(w) = 264179538

Note that the descents of w = 492675138 occur at indices 2, 5 and 6 so maj(w) =

2 + 5 + 6 = 13. Also the inversion pairs for ϕ(w) are (2,1), (6,4), (6,1), (6,5),

(6,3), (4,1), (4,3), (7,5), (7,3), (9,5), (9,3), (9,8), and (5,3) so inv(ϕ(w)) = 13

as desired.

To see that the Foata–Schützenberger map is in fact a bijection, we define an

inverse map.

Definition 3.1.7. [FS78] Let v = v1v2 . . . vn; to obtain w = w1w2 . . .wn = ϕ−1(v)

apply the following procedure to v;
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i) Put δn−1 = v1v2⋯vn−1 and wn = vn; assume that the word δk and the integers

wk+1,wk+2, . . .wn have been defined for some k with 1 ≤ k < n;

ii) if the first letter δk is greater (respectively smaller) than wk+1, split δk before

each letter greater (respectively smaller) than wk+1;

iii) in each compartment of δk determined by the splits move the first letter to the

end; to obtain δk−1 delete the last letter of the transformed word; furthermore,

put wk equal to that deleted letter;

iv) if k = 1, then ϕ−1(v) = w1w2 . . .wn; if not, replace k by k − 1 and return to

instructions (ii) − (iii).

Example 3.1.8. Let v = 385491726 ∈S9. The reverse algorithm proceeds as follows

74



δ9 =∣38∣5∣49∣17∣2 ⋅ 6→ 83594712

δ8 =∣8∣3∣5∣9∣4∣71 ⋅ 2→ 8359417

δ7 =∣835∣941 ⋅ 7→ 358419

δ6 =∣3∣5∣8∣4∣1 ⋅ 9→ 35841

δ5 =∣3∣5∣8∣4 ⋅ 1→ 3584

δ4 =∣358 ⋅ 4→ 583

δ3 =∣5∣8 ⋅ 3→ 58

δ2 =5 ⋅ 8→ 5

δ1 =5

w =ϕ−1(v) = 583419726

Theorem 3.1.9 ([Stan11, Proposition 1.4.6]). The bijection ϕ ∶Sn →Sn transforms

maj to inv, namely maj(w) = inv(ϕ(w)).

Proof. Given w = w1w2 . . .wn ∈ Sn, set ηk = w1 . . .wk. We will show by induction on

k that inv(γk) = maj(ηk), and the proof will follow for the case where k = n.

As a base case, note that if k = 1, certainly inv(γ1) = maj(η1) = 0. So assume

that for some k < n, inv(γk) = maj(ηk). Now, suppose that the last letter wk of γk is

greater than wk+1. Therefore k is a descent of w, and it will add k to maj(ηk). We

need to show that inv(γk+1) = k + inv(γk).
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Since we are dealing with the case where wk > wk+1, we split γk into compartments

after each letter greater than wk+1. So the last letter of each compartment C is the

largest letter in that compartment and each compartment contains exactly one letter

larger than wk+1. Now, when we cyclically shift the compartment, we are moving the

largest letter to the front, giving us #C − 1 new inversions. Also, appending wk+1

gives one new inversion for each compartment. So if there are m compartments, we

have that the added number of inversions will be ∑C(#C − 1) +m = k, as desired.

The case where wk < wk+1 is shown similarly.

We can make an even stronger statement about the inv and maj statistics on Sn,

which is that they have a symmetric joint distribution.

Definition 3.1.10. [Stan11, Equation 1.44] Two statistics f, g ∶ S → N on a set S

have a symmetric joint distribution if for all j, k ∈ N we have

#{x ∈ S ∶ f(x) = j, g(x) = k} = #{x ∈ S ∶ f(x) = k, g(x) = j}

In terms of generating functions, we can state this as

∑
x∈S

qf(x)tg(x) =∑
x∈S

qg(x)tf(x)

To see why inv and maj have symmetric joint distribution, we begin with a

definition.

Definition 3.1.11. For w ∈ Sn, the inverse descent set ID(w) is the descent set

of the inverse of w, ID(w) =D(w−1).
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Another way of thinking about the inverse descent set is via the “reading set”

of w: read the numbers 1,2, . . . , n from left to right in their standard order in w,

returning to the beginning of w if necessary. We then take the cumulative number

of elements in these reading sequences (excluding the last) to form the reading set.

Considering our permutation from Example 3.1.6 where w = 492675138. The

reading sequences would be read off as “1”, “2,3”, “4,5”, “6,7,8”, and “9”. So the

total numbers read at each stage (excluding the last) are 1,2,2,3 making ID(w) =

{1,3,5,8}. However, we also note that applying the F–S bijection to w gave ϕ(w) =

264179538 and we observe that ID(ϕ(w)) = {1,3,5,8} as well.

Theorem 3.1.12 ([Stan11, Theorem 1.4.8]). Let ϕ be the bijection given in Defini-

tion 3.1.5. Then for all w ∈Sn, ID(w) = ID(ϕ(w)). In other words, ϕ preserves the

inverse descent set.

Proof. As in Definition 3.1.5, we will define w = w1w1 . . .wn ∈ Sn, ηk = w1w2 . . .wk,

and γk to be the permutation of ηk at step k of the F–S bijection.

We can show by induction on k that ID(γk) = ID(ηk). As a base case it is clear

that γ1 = η1 so ID(γ1) = ID(η1).

For our inductive step, assume that ID(γk), the reading set of γk, is the same as

ID(ηk), the reading set of ηk. Now consider the addition of wk+1 where wk+1 < wk.

(The case where wk+1 > wk is analogous.)

Since wk+1 < wk we will insert a divider after each letter larger than wk+1, so the

last letter of each compartment will be greater than wk+1 and each of these is the

only letter in the compartment bigger than wk+1. Now, when reading ID(γk+1), we

will proceed along the same lines of the reading sequences for γk, until we come to
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the largest number less than wk+1. Then we will read wk+1, and then proceed back

to the beginning.

For example, consider the step from γ5 to γ6 in Example 3.1.6, where we have

γ5 = 426∣9∣7∣5. Here wk+1 = 5 < wk = 7. The compartments are split after all the

numbers greater than 5, namely 6,9 and 7. These numbers are the largest in each

compartment, and are the only numbers greater than 5. So the reading sequences

of γ5 will be “2”, “4,6,7” and “9” while the reading sequences of γ6 = 642975 will be

“2”, “4,5”, and then back to the beginning for “6, 7” and then “9”.

Now consider the reading sequences of ηk+1. Again, we follow the reading se-

quences of ηk until we come to the largest number less than wk+1; then we will read

wk+1, then return to the beginning of ηk+1. By the inductive hypothesis, the reading

sequences of both ηk+1 and γk+1 will be the same up to the reading of wk+1.

In our example η5 = 49267 and η6 = 492675. Note that the reading sequences of

η6 are “2”, “4,6,7” and “9” , which are the same as γ5. The addition of the 5 affects

the reading sequences in that we begin “2” but then we come to the largest number

less than wk+1 = 5, which is 4 and we read “4,5”, then back to the beginning for

“6,7” and “9”.

Now, we claim that the reading of the numbers larger then wk+1 will also proceed

in the same order. But note that the numbers larger than wk+1 are all in separate

compartments, so the cycling that happens when applying the F–S map does not

change the order in which these numbers appear; thus, they will be read in the same

order as they were for γk. In our example this is precisely noting that the 6,7 and

9 appear in different compartments, and therefore their order does not change after

78



the rotations. Of course they also appear in the same order in ηk+1 as ηk since ηk+1

just appends wk+1, so they will also be read in the same order.

We conclude that ID(γk+1) = ID(ηk+1) and thus that ID(ϕ(w)) = ID(γn) =

ID(ηn) = ID(w).

Corollary 3.1.13. Define imaj(w) = maj(w−1) = ∑i∈ID(w) i. The three pairs of statis-

tics (inv,maj), (inv, imaj) and (maj, imaj) all have symmetric joint distributions.

Proof. Let f be a statistic on Sn and define g(w) = f(w−1); then f and g have

symmetric joint distribution. So (maj, imaj) is just a special case of this. Also, we

know that ϕ converts maj to inv and preserves imaj, so it follows that (inv, imaj)

has symmetric joint distribution. Lastly, since inv(w) = inv(w−1) [Stan11], we can

conclude that (inv,maj) has symmetric joint distribution as well.

3.2 Permutation Statistics and Linear Extensions

of Posets

In their paper “Permutation Statistics and Linear Extensions of Posets” [BW91]

Björner and Wachs explore classes of permutations which have invariant statistics

under the F–S bijection. They specifically look at permutations which are linear

extensions of labeled posets. We refer the reader to Definition 1.4.16 for the definition

of a poset.
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Definition 3.2.1. A labeled poset (P,ω) is a finite, partially ordered set P to-

gether with a bijection ω ∶ P → [p] where p is the cardinality of P . A labeling ω

is called natural if ω is an order-preserving bijection from P to the natural total

order on [p]. In other words, our labeling is natural if ω(x) < ω(y) whenever x <p y

where <p denotes the order relation on P . Natural labelings are also known as linear

extensions.

Example 3.2.2. Consider the following poset

The following are labelings of P by [5] . The first is a natural labeling.

5

2 4

1

3

1

2 5

4

3

An order ideal (Definition 1.4.20) of a poset P is called principal if it is gener-

ated by a single element x ∈ P . There is another type of labeling that is useful in

understanding certain invariant poset statistics.

Definition 3.2.3. A labeling ω of a poset P is recursive if every principal order

ideal of P is labeled with a consecutive sequence of labels.

Example 3.2.4. In the examples below the poset on the left is a recursively labeled

poset since its three principal order ideals are labeled by {1,2},{2,3},{2},∅ and
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{1,2,3,4} which are all sets of consecutive numbers. Whereas the poset on the right

has a principal order ideal labeled {1,3}.

4

2

1 3

4

1

3 2

The following three definitions illustrate three different types of recursive label-

ings.

Definition 3.2.5. A postorder is a natural recursive labelling.

Definition 3.2.6. A labelling is strict if it is a natural labelling for the dual order.

In other words, if the label of each node is less than that of its children.

Definition 3.2.7. A preorder is a strict recursive labeling.

Example 3.2.8. In Definition 1.2.6 we defined binary trees. The following is an

example of a binary tree with a preordered labelling.

1

2 5

3 64

7

Note that the preorder is an example of a non natural recursive labeling.
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Definition 3.2.9. An inorder is defined only for binary trees. It is a recursive

labelling in which the label of a node is greater than that of its left child and smaller

than that of its right child. In the following theorem and definition we will see an

example of inordered binary trees.

Theorem 3.2.10 ([BW91, Proposition 5.1]). Let Bn be the set of inordered labeled

binary trees with n vertices. For every σ ∈ Sn, there is a unique T ∈ Bn such that σ

is a linear extension of T .

For the proof of this proposition, Björner and Wachs introduce the following map

τ , which helps reveal properties of the Foata–Schützenberger map.

Definition 3.2.11. Let θ denote both the empty word and the empty tree. Let

l ∈ [n] where σl is the last letter of the word σ and let σ− and σ+ be the subwords

of σ consisting of all letters less than σl and all letters greater than σl, respectively.

Then set τ ∶Sn → Bn to be the map defined recursively by τ(θ) = θ and

τ(σ) =
σn

τ(σ−) τ(σ+)

Example 3.2.12. Let σ = 526419837. So σn = 7, σ− = 526413 and σ+ = 98 and our

first iteration of the binary tree looks like

7

526413 98

Now for τ(σ−), we get that our new σl = 3, (σ−)− = 21 and (σ−)+ = 564. Contin-

uing like this we arrive at the following binary tree.
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τ(σ) =

7

3

1

2

4

6

5

8

9

Proof (of Theorem 3.2.10). As we saw in Definition 3.2.9, an inordered labeled bi-

nary tree is a recursively labeled binary tree that has the property that every label

of a node is greater than the label of its left child and smaller than that of its right

child. Let Bn be the set of inordered labeled binary trees with n nodes. We are

trying to show that there is a unique T ∈ Bn such that σ ∈ L(T ), the set of linear

extensions of T . So there is a unique inordered labeled binary tree that has σ as its

linear extension.

A linear extension is just an order-preserving bijection. So in order to show that

σ is a linear extension of τ(σ), we just need to show that if a node is covered by

another node, then that number appears earlier in σ. But this follows directly from

the definition of τ(σ). By definition, the elements of σ− are those that appear before

σl that are less than σl and σ+ are those that appear before σl that are greater.

So since this is the recursive definition for every parent node, each time the parent

appears to the right of its children. Thus, we have an order-preserving bijection.

To see that T = τ(σ) is the unique, inordered labeled binary tree with σ as a

linear extension, we will reason by example.

Example 3.2.13. Let σ = 389216547. We need the tree to be inordered. So the left
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child of any node needs to have a smaller label and the right child has a larger label.

So put σn = 7 on top, because if it is a binary tree, it can only have one “top node”

so that needs to be the last number in σ.

Now, put all the options for the left node (all the lower numbers) on the left, and

all the options for the right node (all the greater numbers) on the right.

7

321654 89

Since we need this to be a linear extension, make the node the last number, this

way it will be order-preserving since both of its children will appear before it in σ.

So for our example, 4 needs to be the parent node on the left and 9 needs to be the

parent node on the right.

Continuing inductively this gives precisely the tree T = τ(σ) that we defined

before. So, in fact this is the unique inordered labeled binary tree with σ as a linear

extension. We note here that this is not the only σ which is a linear extension of T .

The key usefulness of the linear extension given in Definition 3.2.11 is that it has

the property of being Foata-invariant, meaning that it remains unchanged under

the F–S bijection. The following theorem comes from Björner and Wach’s first paper

on the q-Hook length formula.

Theorem 3.2.14 ([BW89, Theorem 2.2]). Let (P,w) be a labeled poset with #P = n,

and let ϕ ∶ Sn → Sn be the F–S bijection. If ω is a recursive labeling, and L(P,ω)
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is the set of linear extensions of (P,ω), then ϕ(L(P,ω)) = L(P,ω). In other words,

L(P,ω) is a Foata-invariant.

Example 3.2.15. We will use the following example to illustrate the proof. Let

σ = 498315276 be a linear extension corresponding to the following inordered labeled

binary tree, obtained by applying the τ map given in Definition 3.2.11.

6

2

1 5

3

4

7

8

9

Proof. We will accompany the proof by tracing an example, denoted by ●. We will

show this by induction on the size of the poset P . For the base case, if #P = 1, then

#L(P,ω) = 1.

Now assume this assertion is true for all posets of size n−1, and consider a poset

P of size n. Let σ = σ1σ2 . . . σn be a linear extension of P corresponding to nodes

x1, x2, x3, . . . xn where ω(xi) = σi.

To begin, we will remove a (possibly the) maximal element xn, leaving us with

the subposet P ′ with labeling ω′. Since ω is a recursive labelling, it follows that ω′

is as well. Thus we can apply the inductive hypothesis to get that ϕ(L(P ′, ω′)) =

L(P ′, ω′). It remains to show that ϕ(σ) ∈ L(P,ω).

● In our example this step corresponds to removing the parent node labeled 6,

leaving us with the following subposet P ′.
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2

1 5

3

4

7

8

9

Note that if α ∈ L(P ′, ω′) and we concatenate σn, then the resulting α ⋅ σn ∈

L(P,ω). Furthermore, since σn is the last element, it continues to be the last element

after applying ϕ. Recall that the last step of the Foata map is denoted as γn. So

if we can show that γn(α) ∈ L(P ′, ω′) whenever α ∈ L(P ′, ω′), it will follow that

ϕ(σ) ∈ L(P,ω).

Assume for a contradiction that α ∈ L(P ′, ω′), but γn(α) ∉ L(P ′, ω′). Now, in the

last step of the Foata bijection, the letter σn will induce splits that factor the word

into compartments as α = α1α2⋯αk. Each αi corresponds to a labeled subposet of

(P ′, ω′), call it (Pi, ωi), where αi ∈ L(Pi, ωi).

● In our example, when applying ϕ to σ = 498315276, the step γ9 will take the

subword 43958127 and induce the factorization 439∣58∣127∣ since 7 > 6, so a1 = 439,

a2 = 58 and a3 = 127.

If γn(α) ∉ L(P ′, ω′), then it must be that one of the αi’s, after the rotation step

is not a linear extension of its subposet (Pi, ωi). Denote by α̃i the subword after the

rotation of the last letter to the beginning. So, if the last letter of αi is z, then the

first letter of α̃i is z. This is the only difference between αi and α̃i.

● In our running example, the rotation step yields 439∣58∣127∣→ 943∣85∣712∣.

So if α̃i ∉ L(P ′, ω′), then the issue must be the relationship between z and some
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x ∈ Pi. Since z appears after the other letters in αi, the issue must be that the

movement of z to the front of α̃i, causes a problem. Namely it must be that z >P x.

● So for example consider α3 = 127, the corresponding scenario would be if the

node labeled 7 was covering the node labeled 2.

The breaking up of α into α1α2⋯αk was induced by the concatenation of σn =

w(xn). So we have one of two cases (i) either σn = w(xn) is less than w(z) but

greater than the other letters in αi, namely w(xn) > w(x), giving us that w(x) <

w(xn) < w(z); or (ii) the reverse, giving us w(x) > w(xn) > w(z).

● In our running example, we have that xn = 6 < 7 = z and also 6 < 1 and 6 < 2

(the two other letters in the subword α3).

But if x <P z, since ω is a recursive labeling, every principle order ideal must

contain a consecutive sequence of numbers, so it must also be true that xn <P z. But

this contradicts the maximality of xn. Thus, γn(α) ∈ L(P ′, ω′) as desired.

● In our example, if the node labeled 7 covers the node labeled 2, and we know

that 7 > 6 > 2. Since ω is recursive, the node labeled 7 must also cover the node

labeled 6, otherwise the principal order ideal induced by the node labeled 7 wouldn’t

have all the consecutive numbers 7 through 2. Of course this contradicts the fact

that the node labeled 6 was supposed to be our maximal node.

Definition 3.2.16. A permutation statistic s ∶Sn →N is a tree-dependent statis-

tic if there is some tree statistic S ∶ Bn →N such that s(σ) = S(τ(σ)) for all σ ∈Sn

where τ is the map from Definition 3.2.11.

The visual representation of a permutation given in Definition 3.2.11 lends itself
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to a few tree-dependent statistics that we will look at in a moment. First, we extend

the notion of a descent (Definition 2.2.6) to k-descents.

Definition 3.2.17. A k-descent of a permutation is an index i where σi > σi+1,

σi+2, . . . σi+k. In other words i is an index where σi is greater than the k elements

to its right. The k-descent set of a permutation σ ∈Sn is defined as follows

Desk(σ) = {i = 1,2, . . . , n − k ∶ σi > σi+1, σi+2, . . . , σi+k}

So Des1(σ) is the ordinary descent set of σ, set desk(w) = # Desk(w).

Example 3.2.18. Let w = 528431976, so we have the following.

Des1(ω) = {1,3,4,5,7,8}

Des2(ω) = {3,4,7}

Des3(ω) = {3}

Clearly, Desi(w) ⊇ Desi+1(w) for i ≥ 1. The set of labeled nodes of τ(σ) whose

right subtrees have at least k nodes is Desk(σ−1). Note that ω = 528431976 is the

inverse of σ = 625491837 and thus we can see each Desk(σ−1) by looking at the tree

in Example 3.2.12. We have Des3(σ−1) in orange, Des2(σ−1) in blue and orange

Des1(σ−1) in blue , orange and green.
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8
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We also recall the definitions of left-to-right maxima and minima.

Definition 3.2.19. Let w = w1w2⋯wn ∈Sn. We call wi a left-to-right maximum

if wi > wj for all j ∈ [i− 1]. In other words, when reading from left to right, wi is the

largest number that has been read thus far. The terms right-to-left maximum,

left-to-right minimum and right-to-left minimum are defined similarly. We

recall that MaxÐÐ→(w) is the set of left-to-right maxima, maxÐÐ→(w) is the number of

left-to-right maxima, and Min←ÐÐ(w), min←ÐÐ, Max←ÐÐ(w),max←ÐÐ(w),MinÐÐ→(w), and minÐÐ→(w) are

defined in the same fashion.

Lemma 3.2.20. The quantities max←ÐÐ(w) and min←ÐÐ(w) are also tree-dependent statis-

tics for a permutation w ∈Sn.

Proof. This is because Max←ÐÐ(w) is the set of labels on the rightmost branch of τ(w)

and Min←ÐÐ(w) is the set of labels on the leftmost branch of τ(w). The root of the tree

is wn, which would of course be an element of both Max←ÐÐ(w) and Min←ÐÐ(w). The right

child of the root is a node labeled with a number larger than wn since it is in w− and

it is the farthest to the right by definition of τ . Continuing this reasoning we see

that Max←ÐÐ(w) is the set of labels on the rightmost branch; the reasoning for Min←ÐÐ(w)

is analogous.
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Example 3.2.21. For our running example w = 62549837, Max←ÐÐ(w) = {7,8,9} which

is the set of labels on the rightmost branch of τ(w), and Min←ÐÐ(w) = {7,3,1} is the set

of labels on the leftmost branch of τ(w).
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3.3 Homomesies and the Foata–Schützenberger Map

As in Chapter 2, we explore compositions of the Foata–Schützenberger map with

dihedral involutions. Because of the way ϕ is defined, it is straightforward to see

that ϕ−1○C○ϕ is equivalent to C. Thus, we will leave out compositions that involve the

complement map. There are sixteen remaining maps to check, many of which show

at least conjectural homomesies. A list of all conjectured and proved homomesies

can be seen in Appendix B. As in Chapter 2, we abbreviate the names of the maps

to just the dihedral involutions. So the map I ○ϕ−1 ○R ○ϕ would just be called the

reversal-inversion map.
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3.3.1 Maxima and Minima

Homomesies for minima and maxima rely on reasoning similar to that which proves

the following theorem of Björner and Wachs.

Theorem 3.3.1 ([BW91, Theorem 5.6]). The F–S involution Ψ = I ○ϕ ○I ○ϕ−1 ○I ∶

Sn → Sn preserves max←ÐÐ(w) for w ∈ Sn and exchanges inv and maj. Dually, there

exists an involution Ψ′ which preserves min←ÐÐ(w) and exchanges inv and maj.

Proof. To begin, we have that wj ∈ Max←ÐÐ(w) if and only if j ∈ Max←ÐÐ(w−1). This implies

that max←ÐÐ(w) = max←ÐÐ(w−1). Next, since max←ÐÐ(w) is tree-dependent by Lemma 3.2.20,

it is also preserved by ϕ. Thus, Ψ preserves max←ÐÐ(w). For the dual statement, let

Ψ′ = C ○Ψ ○ C.

Example 3.3.2. Consider the permutation, written here in 2-line notation for ease

of understanding the argument, w = ( 1 2 3 4 5 6 7 8 9
6 9 4 1 3 8 2 5 7 ). The elements of Max←ÐÐ(w),

namely wj = 7,8,9 are shown in red and their inverses, j = 2,6, and 9, are shown

in blue. We have w−1 = ( 1 2 3 4 5 6 7 8 9
4 7 5 3 8 1 9 6 2 ) where we can see that 9,6,2 ∈ Max←ÐÐ(w−1).

This correspondence implies that max←ÐÐ(w) = max←ÐÐ(w−1). We also have that ϕ(w) =

164329587 and we can see that 7,8,9 ∈ Max←ÐÐ(ϕ(w)) (shown in violet), illustrating

that maxÐÐ→(w) is preserved by ϕ.

This brings us to the main results of this chapter, homomesy for maxima and

minima related statistics.
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Theorem 3.3.3. The inversion-reversal map is 0-mesic for the statistic maxÐÐ→−max←ÐÐ.

Inversion-rotation is 0-mesic for minÐÐ→−max←ÐÐ and inversion-inversion is 0-mesic for

maxÐÐ→−min←ÐÐ.

Proof. In Theorem 3.3.1, we saw that the map Ψ = I ○ ϕ ○ I ○ ϕ−1 ○ I ∶ Sn → Sn

preserves max←ÐÐ(w) for w ∈ Sn. In the proof we also saw that max←ÐÐ(w) = max←ÐÐ(w−1).

Since ϕ is a bijection, we can conclude that ϕ−1 ○ I ○ ϕ preserves max←ÐÐ.

The reversal map has the property that Max←ÐÐ(w) turns into MaxÐÐ→(R(w)), since

R(w) is the same permutation in reverse order, as illustrated with the following

example.

Example 3.3.4. Here Max←ÐÐ(w) are in red and MaxÐÐ→(R(w)) are in blue.

694138257
RÐ→ 752831496

Given some w ∈Sn, max←ÐÐ(w) = maxÐÐ→(R ○φ−1 ○I ○φ(w)), so the map is 0-mesic for

the statistic maxÐÐ→−max←ÐÐ as previously claimed.

Similarly, we recall that Q2 = R ○ C. So rotation takes Max←ÐÐ(w) to MinÐÐ→(Q2(w))

as seen in the following example.

Example 3.3.5. In the process of applying Q2 = R ○ C, the reversal map con-

verts Max←ÐÐ(w) (shown in red) to MaxÐÐ→(R(w)) and the complement map converts

MaxÐÐ→(R(w)) to their complements which are MinÐÐ→(C(R(w))) (shown in blue).

694138257
Q2

Ð→ 358279614
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So given some w ∈Sn, minÐÐ→(w) = max←ÐÐ(Q2○φ−1○I ○φ(w)); thus the map is 0-mesic

for the statistic minÐÐ→−max←ÐÐ as previously claimed.

In the case of the inversion-inversion map, we note, and illustrate by example, that

inversion converts the indices of the elements of Min←ÐÐ(w) to elements of MaxÐÐ→(w−1).

So if wi ∈ Min←ÐÐ(w), then i ∈ MaxÐÐ→(w−1) and it follows that maxÐÐ→−min←ÐÐ is 0-mesic.

Example 3.3.6. Let w = 6413257 and note that the MinÐÐ→(w) = {7,5,2,1} (shown

in red) with indices {7,6,5,3} respectively. Observing that w−1 = 3542617 and

Max←ÐÐ(w−1) = {3,5,6,7} (shown in blue).

In conclusion we can see the 0-mesies for each of these three maps.

3.3.2 Descents

Lemma 3.3.7. For a permutation w ∈Sn, if n−1 is a descent, then ϕ(w)1 > ϕ(w)n.

Example 3.3.8. For example, if w = 529731864, then n − 1 = 8 is a descent since

wn−1 = 6 > 4 = wn. Note that ϕ(w) = 957862314 and ϕ(w)1 = 9 > 4 = ϕ(w)n.

Proof. To see why this is true, we consider the last step of ϕ, γn, on w. Since n − 1

is a descent, and in step γn−1 the number wn−1 was added in, it follows that the last

number in γn−1 is greater than wn, thus the splits in γn are placed after every number

which is greater than wn. So in our example we would have

9∣5∣7∣8∣2316∣4
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If, at this stage, the first number, (γn−1)1, is less than wn, then there would not

be a split after (γn−1)1, but in fact after the next (γn−1)k to the right of (γn−1)1 such

that (γn−1)k > wn. But then during the rotation of numbers in the cell, (γn−1)k would

become the first number, and so ϕ(w)1 = (γn−1)k and ϕ(w)1 > wn = ϕ(w)n.

Lemma 3.3.9. For a permutation w ∈Sn, if wn > w1, n− 1 is an ascent of ϕ−1(w).

Proof. We consider the first step of ϕ−1 on w. If wn > w1, then the split is placed

before every number that is smaller than wn, and then this number is rotated to

appear at the end of its cell. Thus, after the rotation, the number in position (δn)n−1

is smaller than wn. Since this number will become ϕ−1(w)n−1, we conclude that

ϕ−1(w)n−1 < ϕ−1(w)n.

Theorem 3.3.10. The reversal-rotation and rotation-reversal maps are 1-mesic for

the statistic D1 +Dn−1.

Facts 3.3.11. The following facts are straightforward and will be shown by example.

We illustrate with the permutation w = 492675138

1. If w1 < wn, then after applying the reversal map, R(w)1 > R(w)n (and vice

versa).

In our example w1 = 4 < wn = 8 and for R(w) = 831576294, R(w)1 = 8 > 4 =

R(w)n.

2. The reversal map exchanges ascents and descents in positions 1 and n − 1.
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In our example there is an ascent in position 1 where w1 = 4 and an ascent

in position n − 1 where wn−1 = 3. After applying the reversal map, there is a

descent in position 1 where R(w)1 = 8 and in position n−1 where R(w)n−1 = 9.

3. For the rotation map, if w1 < wn, then after applying the rotation map,

Q2(w)1 < Q2(w)n (and vice versa).

In our example w1 = 4 < wn = 8, and Q2(w) = 279434816 so Q2(w)1 = 2 < 6 =

Q2(w)n.

4. If 1 is an ascent (similarly a descent) for w, then n − 1 is an ascent (similarly

a descent) for Q2(w). Analogously, an ascent (or descent) in position n − 1

becomes an ascent (or descent) in position 1 after applying Q2.

In our example there are ascents in positions 1 and n − 1 where w1 = 4 and

wn−1 = 3. After applying the rotation map, there are ascents in positions 1 and

n − 1 where Q2(w)1 = 2 and Q2(w)n−1 = 1.

Proof (of Theorem 3.3.10). Employing the statements in Facts 3.3.11, we begin with

the reversal-rotation map.

From Lemma 3.3.7, we know that if n− 1 is a descent of w, then ϕ(w)1 > ϕ(w)n.

Now, from Fact 1, it follows that R(ϕ(w))n > R(ϕ(w))1. From Lemma 3.3.9,

n − 1 is an ascent for ϕ−1(R(ϕ(w))). Finally, from Fact 4, 1 is an ascent for

Q2(ϕ−1(R(ϕ(w)))).

Now, we have shown that the reversal-rotation map takes a descent for wn−1

and converts it to an ascent for Q2(ϕ−1(R(ϕ(w))))1. So the number of descents in

position n − 1 is equivalent to the number of ascents in position 1. For an orbit of

95



size m, if there are k descents in position n − 1, there are m − k descents in position

1, so that average number per orbit size is k+(m−k)
m = 1 and so D1 +Dn−1 is 1-mesic

for orbits of reversal-rotation.

For the rotation-reversal map, we can use similar reasoning. We begin with an

ascent in position n − 1, so wn−1 < wn and by Lemma 3.3.7 we have ϕ(w)1 < ϕ(w)n.

Fact 3 gives us that Q2(ϕ(w))1 < Q2(ϕ(w))n and Lemma 3.3.9 gives us that n− 1 is

an ascent for ϕ−1(Q2(ϕ(w))). Lastly Fact 2 gives us the result that 1 is a descent of

R(ϕ−1(Q2(ϕ(w)))) is a descent. Thus the average number for the statistic D1+Dn−1

will be 1 and we have a homomesy as stated.

By almost identical reasoning, we have the following difference homomesies.

Theorem 3.3.12. The following maps are homomesic for the statistic D1 −Dn−1:

reversal-reversal, rotation-rotation, rotation-inversion.

3.4 Future Directions

Recall that Di is an indicator function where Di = 1 if i is the index of a descent and

0 otherwise. The following conjectures on linear combinations of descents remain

open:

Conjecture 3.4.1. The statistic Dk −Dn−k for 1 < k < n is homomesic for the maps

reversal-reversal, rotation-rotation, and rotation-inversion.

Conjecture 3.4.2. The statistic Dk +Dn−k for 1 < k < n is homomesic for the maps

reversal-rotation and rotation-reversal
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We know that the descents are preserved under I ○ ϕ ○ I (see Example 3.2.18),

which may be a useful fact in determining some of these more general cases.

In addition there are open problems related to linear combinations of maxima

and minima in relation to the rotated inverse map. It is possible that these could be

proven using similar reasoning that that given in Section 3.3.1.

Conjecture 3.4.3. The following statistics are 0-mesic:

Map Homomesic Statistic(s)

Rotated Inverse-Inversion maxÐÐ→−min←ÐÐ
Rotated Inverse-Rotation maxÐÐ→−min←ÐÐ
Rotated Inverse-Reversal minÐÐ→−min←ÐÐ
Inversion-Rotated Inverse max←ÐÐ−min←ÐÐ

Rotated Inverse-Rotated Inverse maxÐÐ→−min←ÐÐ

Lastly, there appears to be a handful of homomesies involving fixed points, similar

to those explored in Section 2.2.1.

Conjecture 3.4.4. The following maps are 0-mesic for the statistic Fix1 −Fixn:

inversion-rotated inverse, rotated inverse-rotated inverse, inversion-rotation, and

inversion-inversion.

Unlike the work seen in Section 2.4, we did not come across any near-homomesic

statistics for these maps. For future research, we also saw that the k-descent set, as

seen in Definition 3.2.17, is a tree-dependent statistic. There may be homomesies
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related to this or other permutation statistics that we have not looked into here.

As mentioned in Section 2.5.2 considering peaks, valleys and pinnacles, [DNPT] for

example, may be a fruitful path. Additionally, another possible path for homomesy

hunting may be in looking at permutation statistics for the alternating subgroup, An

of the symmetric group.
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Appendix A

Homomesies for the Rényi–Foata

Map
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Map Homomesic Statistic(s) c-value(s)
Complement-Rotation Fix1 −Fixn, Fix* 0,1
Complement-Inversion Fix* 1

Complement-Rotated Inverse Fix1 −Fixn*, wexc 0, n+12
Complement-Complement Fix1 −Fixn 0

Reversal-Rotation Fix1 −Fixn, Fix* 0,1
Reversal-Inversion Fix 1

Reversal-Rotated Inverse Fix1 −Fixn* , wexc 0, n+12
Reversal-Reversal Fix1 −Fixn 0

Rotation-Complement Fix1 −Fixn, max←ÐÐ−min←ÐÐ* 0,0

Rotation-Reversal Fix1 −Fixn, D1 −Dn−1* 0,0
Rotation-Inversion wexc+ exc, maxÐÐ→−min←ÐÐ n,0

Rotation-Rotation wexc+ exc, maxÐÐ→−min←ÐÐ n,0

Inversion-Complement maxÐÐ→−minÐÐ→, max←ÐÐ−min←ÐÐ 0,0

Inversion-Reversal maxÐÐ→−max←ÐÐ, minÐÐ→−min←ÐÐ 0,0

Inversion-Rotation Fix1 −Fixn 0
Inversion-Rotated Inverse Fix1 −Fixn 0

Inversion-Inversion wexc+ exc n
Rotated Inverse-Complement Fix1 −Fixn* 0

Rotated Inverse-Reversal Fix1 −Fixn* 0
Rotated Inverse-Inversion Fix1 −Fixn 0
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Appendix B

Homomesies for the

Foata–Schützenberger Map
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Map Homomesic Statistic(s) c-value(s)
Reversal-Rotation D1 +Dn−1, Dk +Dn−k* for 1 < k < n 1,1
Reversal-Reversal D1 −Dn−1, Dk −Dn−k* for 1 < k < n 0,0
Rotation-Reversal D1 +Dn−1, Dk +Dn−k* for 1 < k < n 1,1
Rotation-Inversion D1 −Dn−1, Dk −Dn−k* for 1 < k < n 0,0
Rotation-Rotation D1 −Dn−1, Dk −Dn−k* for 1 < k < n 0,0
Inversion-Reversal maxÐÐ→−max←ÐÐ 0

Inversion-Rotation minÐÐ→−max←ÐÐ, Fix1 −Fixn* 0,0

Inversion-Rotated Inverse Fix1 −Fixn*, max←ÐÐ−min←ÐÐ* 0,0

Inversion-Inversion maxÐÐ→−min←ÐÐ, Fix1 −Fixn* 0,0

Rotated Inverse-Reversal minÐÐ→−min←ÐÐ* 0

Rotated Inverse-Rotation maxÐÐ→−min←ÐÐ* 0

Rotated Inverse-Inversion maxÐÐ→−min←ÐÐ* 0

Rotated Inverse-Rotated Inverse Fix1 −Fixn*, maxÐÐ→−min←ÐÐ* 0,0
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