2-1-2019

3D Genome Organization and Transcriptional Regulation in Mammalian Cells

Emaly Piecuch

University of Connecticut - Storrs, ejpiecuch@gmail.com

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation

Piecuch, Emaly, "3D Genome Organization and Transcriptional Regulation in Mammalian Cells" (2019). Doctoral Dissertations. 2054.
https://opencommons.uconn.edu/dissertations/2054
3D Genome Organization and Transcriptional Regulation in Mammalian Cells

Emaly Josephine Piecuch, PhD

University of Connecticut, 2019

Abstract

Remarkably, cell types sharing the same linear genome sequence express different genes and have distinct functions. 3D genomic arrangement has been demonstrated to play a critical role in this process. Fine scale organization of genes and regulatory elements within active and inactive domains underlie gene expression and disruption of this process has been shown to influence development and disease. Yet, the precise dynamics of cell type specific 3D genomic interactions mediating mammalian gene expression, such as those between enhancers and promoters, remain lacking on a genome wide level. Neurons represent a specialized cell type known to respond to a myriad of physiological stimuli by changes in transcription of activity dependent (AD) genes. Neuron specific enhancer activation has been identified genome wide in mouse neurons during AD gene transcription, yet we lack genome wide 3D connectivity information allowing assignment of AD enhancer gene targets. Many questions about chromatin structure and how 3D structural changes influence cell type specificity and function through changes in gene expression remain unanswered due to technological limitations and the nature of biological samples required. This thesis specifically addresses such limitations focusing on application to mammalian genomes.
3D Genome Organization and Transcriptional Regulation in Mammalian Cells

Emaly Josephine Piecuch

B.S., Purdue University, 2012
M.S., University of Connecticut, 2015

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
at the
University of Connecticut

2019
i
Doctor of Philosophy Dissertation

3D Genome Organization and Transcriptional Regulation in Mammalian Cells

Presented by
Emaly Josephine Piecuch, B.S, M.S.

Major Advisor __
Yijun Ruan

Associate Advisor __
Stormy Chamberlain

Associate Advisor __
Blanka Rogina

Associate Advisor __
Zhengqing Ouyang

University of Connecticut
2019
I would like to acknowledge my family and friends, especially my parents who have always encouraged me to learn.

I would like to acknowledge the continued support and encouragement to think creatively from Yijun. I would like to thank all current and previous members of the lab for their dedication, patience, and camaraderie.

I would like to acknowledge the UCONN Health Center Biomedical Science Ph.D. Program and the Department of Genetics and Genomics for support, and especially the members of my committee for their time and thoughtful input.
TABLE OF CONTENTS

Abstract
Title Page
Copyright Page
Approval Page
Acknowledgements
Introduction

Chapter I: Transcriptional Regulation and 3D Connectivity in Mouse Cortical Neurons

Results

Modeling Activity Dependent Gene Transcription in Mammalian Neurons 6

ChIA-PET Library Generation and Quality Assessment 8

RNAPII ChIA-PET Anchor Classification 10

Determination of Enhancer Connectivity and Gene Target Refinement 12

Novel Loci Display Activity Associated Genomic Connectivity 16

Methods and Techniques
Discussion
Chapter II: 3D Genome Technology Development

Results

Development of Long-Read ChIA-PET 25
Overview of Long Read ChIA-PET Protocol 25
Quality Control Profiles in the LR ChIA-PET Protocol 28
Development of ChIA-SMS 30
Single Molecule Sequencing of Chromatin Complexes 35

Methods and Techniques 39
Discussion 69
Appendices 72
References 88
Introduction

3D Genomic Organization Underlies Regulated Mammalian Gene Expression

Remarkably, cell types sharing the same linear genome sequence express different genes and have distinct functions. The 3D arrangement of genomic DNA has been demonstrated to play a critical role in this cell type specificity (Bonev & Cavalli, *Nat.Rev.Genet.* 2016; Ji et al., *Cell Stem Cell* 2016; Bonev et al., *Cell* 2017).

Evidence currently suggests that within the cell nucleus, the mammalian genome is partitioned into relatively large structured compartments referred to as topologically associated domains (TADs), CTCF Contact Domains (*Appendix A*), or genomic neighborhoods (Dixon et al., *Nature* 2012; Li et al., *Cell* 2012; Sexton et al., *Cell* 2012; Rao et al., *Cell* 2014; Fortin & Hansen, *Genome Biol.* 2015; Pombo & Dillon, *Nat.Rev.Mol.Cell.Biol.* 2015; Tang et al., *Cell* 2015). It appears that fine scale organization of genes and regulatory elements within active and inactive domains of the 3D genome underlie regulated gene expression and disruption of this process has been shown to influence development and disease (Peric-Hupkes et al., *Mol.Cell.* 2010; Nora et al., *Bioessays* 2013; Dixon et al., *Nature* 2015; Fraser et al., *Mol.Sys.Biol.* 2015; Lupaniez et al., *Cell* 2015; Hu & Tee, *Biosci.Rep.* 2017; Norton & Phillips-Cremins, *JCB* 2017). Yet, the precise dynamics of cell type specific 3D genomic interactions mediating mammalian gene expression, such as those between enhancers and promoters, remain lacking on a genome wide level.
Activity Dependent Transcription as a Model of Regulated 3D Genomic Organization

Mammalian neurons represent a specialized cell type known to respond to a wide variety of physiological stimuli with rapid changes in transcription of a known set of activity dependent (AD) genes (Greer & Greenburg, Neuron 2008; Flavell & Greenburg, Annu.Rev.Neurosci. 2008). Experimentally, a variety of stimuli that mimic neuronal activity (such as membrane depolarization with potassium chloride) have been demonstrated to induce transcription of AD genes (Greenburg et al., Science 1986). AD gene transcription is driven by a rise in intracellular calcium levels leading to phosphorylation and activation of key calcium responsive transcription factors.

These calcium responsive transcription factors (such as Creb and Jun) bind to the DNA of proximal promoter regions, as well as distal regulatory elements to drive expression of AD genes. The roles of these AD transcription factors have been the subject of intense study and current evidence supports their essential role in the neuronal functions (Björkblom et al., MCB 2012). Gene expression mediated by Creb has been shown to broadly be essential for in neuronal development and functions in mouse (Aguado et al., JNeuroSci 2009). Another AD transcription factor, Npas4, had been studied for its significant role in “activity and memory” (Sun & Lin, Trends 2016).

Neuronal Plasticity and Regulated Gene Transcription
A variety of known changes at the cellular level occur in response to AD gene expression in neurons including dendritic outgrowth and synaptic maintenance (Lin, *Nature* 2008). While many AD genes bind DNA to regulate transcription (Parra-Damas, *Science Reports* 2017), others encode proteins that make up cell type specific components of neurons and synaptic components. Brain Derived Neuronal Growth Factor (Bdnf) transcription is preferentially activated in response to neuronal activity and thus is induced primarily in neurons (West et al., *PNAS* 2001) and is known to be regulated by calcium and MecP2 (Chen et al., *Science* 2003), which is known to be important for “contextual fear and learning” *in vivo* (Johnson et al., *Nature Medicine* 2017). During the process of AD gene transcription, cell type specific enhancer activation has been identified genome wide in mouse neurons using ChIP-seq targeting histone marking and transcription factors (Kim et al., *Nature* 2010; Malik et al., *Nat. Neurosci.* 2014; Su et al., *Nat. Neurosci.* 2017). Further, additional changes in chromatin structure have been shown to be associated with transcription of AD genes in neurons (Martinowich et al., *Science* 2003; Walczak et al., *J.Neurosci.* 2013; Su et al., *Nat.Neurosci.* 2017; Watson & Tsai, *Curr.Opin.Neurobiol.* 2017). Generally, it is known that dysregulation of chromatin structure is linked to a variety of neurological abnormalities *in vivo* (Greer & Greenberg, *Neuron* 2008; Ito et al., *Nat.Commun.* 2014; Sams et al., *Cell.Rep.* 2016; Yang et al., *Science* 2016; Kim et al., *J.Neurosci.* 2018; Spiegel et al., *Cell* 2014; Benito & Barco, *Mol.Neurobiol.* 2015; Scandagila 2017 Cell Reports). Although various lines of evidence have consistently indicated the dynamics of cell type specific enhancer usage during AD gene expression in neurons, they lack genome wide 3D connectivity information allowing assignment of AD enhancer targets.
Currently, 3D genomic connectivity data is publicly available for a wide variety of cell lines representing range of cell types from the mouse ENCODE project. However this data has been mostly collected from immortalized cell cultures and tissues. Very few 3D genome connectivity studies in mammals have focused on the neuronal lineage itself, and none of these have focused on the dynamics of cell type specific changes occurring during AD gene transcription. There is currently no 3D genome wide connectivity data focused on the dynamics of mammalian neurons during depolarization.

Technology Development in the Field of 3D Genomics

The vast majority of 3D genome wide connectivity assays developed have relied on the analysis of millions of cells in a bulk lysate (Lieberman-Aiden et al., *Science* 2009; Fullwood et al., *Nature* 2009). Although this approach has yielded genome wide connectivity patterns of many cell types, studies of many important sample types and of fine scale mechanistic questions have remained understudied.

Recent incremental improvement of methods including long read ChIA-PET (Li et al., *Nat. Protoc*. 2017) that aim to increase the mapping efficiency of sequenced PETs generated from a library. Other approaches have focused on decreasing the experimental noise associated with the random nature of proximity ligation based techniques (Rao et al., *Cell* 2014; Stevens et al., *Nature* 2017). Yet, there are still no genome wide approaches to ask questions concerning fine scale chromatin interaction dynamics within individual chromatin complexes (such as at the transcriptionally relevant promoter/gene level, depicted in Appendix B). With this in mind,
development of novel single cell and/or single molecule techniques to determine the underlying individual structures contributing to bulk cell experimental and data analysis are needed. Despite significant recent advances in the field of 3D genomics, questions remain concerning the details of chromatin structure and how dynamic 3D structural changes influence cell type specificity and behaviors through changes in gene expression. Such questions remain open due to technological limitations and the nature of biological samples required. This thesis specifically addresses such limitations, focusing on application to mammalian genomes.

Chapter I: Transcriptional Regulation and 3D Connectivity in Mouse Cortical Neurons

Previous genome-wide chromatin immunoprecipitation (ChIP-seq) experiments in models of depolarization using mouse cortical neuron cell culture have revealed changes in the occupancy of transcription factors, histone marks, and DNA methylation at promoters of activity dependent genes and consistently identified AD non-coding regulatory loci (Kim et al., Nature 2010, Malik et al., Nat.Neurosci. 2014, Rhee et al., Neuron 2016). Additionally, genome-wide ChIP-seq (Shen et al., Nature 2012; Nord et al., Cell 2013; Yue et al., Nature 2014), ATAC-seq (Su et al., Nat.Neurosci. 2017) and DNase HSS (Wilken et al., Epigenetics Chromatin 2015) studies have been performed in mouse brain and tissues. These and other in vivo studies have importantly validated the biological accuracy of the in vitro mouse cortical neuron cell culture model.

While published studies have focused on the 3D genome changes that take place during differentiation of the neuronal lineage in vitro (Ji et al., Cell Stem Cell 2016; Bonev el al. Cell 2017), there are currently no 3D genome wide connectivity studies focused on the dynamics of
the mammalian neuron cell during the physiologically relevant event of depolarization. Here, we have comprehensively captured RNAPII-mediated chromatin structural changes that occur during this essential process, and analyze the genome-wide connectivity of AD enhancers and their gene targets.

Results

Modeling Activity Dependent Gene Transcription in Mammalian Neurons

In order to fully understand the activity dependent gene regulatory connectome, we first generated RNA-seq libraries before and after depolarization of *in vitro* cortical mouse neuron cell cultures. We conducted differential gene expression analysis and were able to detect significantly differentially (p<0.05) expressed genes, including known activity dependent marker genes *fos* and *bdnf*.
Figure 1: Differential Gene Expression Analysis of Mouse Cortical Neurons.
Figure 1 shows the scatter plot for showing RNAseq data and the differential expression analysis of genes before and after depolarization in mouse cortical neuron cell cultures. On the x-axis, gene expression values for the no treatment control condition are shown. With the y-axis representing the gene expression values for the 2 hr KCl treated condition. Each dot represents the expression of a gene under both conditions. Differentially expressed genes of interest are highlighted in red and labeled. Satisfied that our *in vitro* conditions could faithfully recapitulate depolarization-mediated AD gene expression, we wanted to determine the genome wide connectivity changes occurring during depolarization in cortical neuron cultures.

ChIA-PET Library Generation and Quality Assessment

To map functionally interacting genomic loci associated with activity dependent transcription, we conducted Chromatin Interaction Analysis by Paired End Tag Sequencing (ChIA-PET) targeting RNA Polymerase II (RNAPII) in cortical mouse neuron cultures before and after depolarization. In total, we identified 47,259,556 and 34,035,380 Paired End Tag Reads (PETs) in the 0 hour and 2 hour KCl depolarized neuronal cultures, respectively (**Appendix C**).
Figure 2: Mouse Cortical Neuron RNAPII ChIA-PET Quality Control Summary.
Figure 2 shows the pipeline processing steps of total PETs using ChIA-PET tool led to the generation of 22,992 and 48,404 PET clusters, of which, 20,914 and 44,697 were intra-chromosomal, respectively. Comparison of the total numbers of sequence reads generated from the neuronal ChIA-PET libraries before and after depolarization were indeed similar, indicating no major differences in experimental variation, for example in ChIP efficiency or proximity ligation.

RNAPII ChIA-PET Anchor Classification

Using filtered PET clusters, RNAPII ChIA-PET anchors were detected genome wide. In total 23,900 and 37,053 RNAPII ChIA-PET anchors were identified in the control and treatment conditions, respectively. Briefly, anchors were categorized as promoters based on genomic annotation, requiring anchors to fall within +/-1kb of annotated TSS. We detected a similar number of promoter anchors before and after KCl treatment, 9,633 and 10,401, respectively (**Figure 3A**). Next, we classified all other RNAPII ChIA-PET anchors as putative neuron specific enhancers, resulting in 14,267 and 26,652 before and after depolarization (**Figure 3B**).
Figure 3: RNAPII ChIA-PET Anchor Classification.
While most promoter anchors are common between conditions, we observed a substantial increase in the number of unique putative neuron specific enhancer anchors induced in the 2 hour KCl treatment, and we wanted to further investigated if these induced anchors could be underlying AD regulatory elements such as enhancers. To validate the specificity of our RNAPII ChIA-PET libraries, we compared our mouse cortical neuron RNAPII ChIA-PET data to published studies in mouse cortical cell culture and tissues (mouse ENCODE: [LINK]). Indeed, we found that RNAPII ChIA-PET defined anchors defined in our study overlapped with RNAPII ChIP-seq peaks from adult mouse cortical tissue. Importantly, putative enhancers defined by mouse cortical RNAPII ChIA-PET analysis significantly overlap with previously identified activity dependent enhancers found in AD mouse cortical neuron cell cultures.

Determination of Enhancer Connectivity and Gene Target Refinement

We next investigated the extensive RNAPII mediated interactions in genomic loci containing genes known to be crucial for neuronal cell identity and activity dependent gene expression, such as *FOS*, *BDNF* and *NPAS4* by comparing RNAPII mediated genomic connectivity before and after 2 hr KCl treatment. **Figure 4** shows the Fos genomic locus browser screenshot. In gold, the peaks and loops derived from RNAPII ChIA-PET 0 hr KCl treatment condition is shown. In black, the peaks and loops derived from the 2 hr treatment condition are shown. Along the bottom, RNA-seq profiles are show, and fos transcription is detected.
Figure 4: Fos Locus in Mouse Cortical Neurons.
Figure 5 shows the multiple interactions were detected between the BDNF promoters and classically described essential BDNF transcriptional enhancer sequences (n=7/14 enhancer interactions), which are known to contain AP-1 binding sites for AD transcription factors.
A. Mouse Cortical Neuron RNAPII ChIA-PET Interactions, Peaks, and RNA-seq. Gold and black peaks and loops showing RNAPII ChIA-PET data from 0 hr and 2 hr KCl treatment condition are shown, respectively. RNA-seq tracks along bottom from 0 hr and 2 hr are shown in cool and warm colors, respectively.

B and C. Juicebox Visualization of Mouse Cortical Neuron RNAPII ChIA-PET Data shown in 2D annotation (PET2+ Filtered Clusters) and ENCODE Hi-C Data (mES cortex HindIII). Along the sides mouse cortex ENCODE ChIP-seq PolIII and CTCF Data.

Figure 5: Bdnf Locus in Mouse Cortical Neurons.
Novel Loci Display Activity Associated Genomic Connectivity

Figure 6 depicts an AD loci of interest that contains miR132, a microRNA that has been previously shown to be involved in the regulation of BDNF protein in cultured rat neurons (Klein et al., *Nature Neuroscience* 2007) but has not been described in terms of its 3D genomic connectivity, and little is known about its transcriptional regulation. This miRNA has been implicated in phosphorylation of the Ca2+ responsive transcription factor CREB (Gou et al., *IntJClinExpMed* 2014), and shown to play an essential role in the regulation of synaptic structure and function. Interestingly, this region has been previously identified as a conserved enhancer region between human and mouse (*Appendix D*), which would support a functional role in mammalian neuronal gene regulation. Our ChIA-PET analysis found a significant increase in intensity and loci in which binding of RNAPII in this region was detected which was correlated with increased transcription of the miR132 miRNA.
Figure 6: mir132 Locus in Mouse Cortical Neurons.
Methods and Techniques

Cortical Mouse Neuron Cell Culture

Mouse cortical neurons were cultured and passaged as previously described (Kim et al. 2010; Malik et al. 2015). Briefly, E16.5 C57BL/6 embryonic mouse cortices were dissected and dissociated. After dissociation, neurons in were kept on ice in dissociation medium until plating. Cell culture plates were pre-coated overnight with a solution containing 20 μg/mL poly-D-lysine (Sigma) and 4 μg/mL mouse laminin (Invitrogen) in deionized water. Before plating neurons, pre-coated culture plates were washed three times with sterile distilled water and then washed once with Neurobasal medium (Life Technologies). Neurons were grown for up to 7 days in cortical neuronal medium consisting of Neurobasal medium containing B27 supplement (2%; Invitrogen), penicillin-streptomycin (50 g/mL penicillin, 50 U/mL streptomycin; Sigma) and glutamine (1 mM; Sigma). Cells were plated at a density of approximately 600,000 cells/cm². Plated neurons were incubated at 37 °C with a CO2 concentration of 5%. Two hours after plating cells, the medium was completely aspirated and replaced with fresh warm neuronal medium. Neurons were grown in vitro until DIV7, in 30 mL neuronal medium with half media changes every other day. All cell and tissues used in this study were collected and prepared previously for analysis in this project.

Depolarization of Cortical Neuron Cell Culture

Prior to KCl depolarization, neuron cell cultures were silenced with 1 μM tetrodotoxin (TTX; Fisher) and 100 μM DL-2-amino-5-phosphopentanoic acid (DL-AP5; Fisher). Neurons were subsequently stimulated by adding warmed KCl depolarization buffer [170 mM KCl, 2 mM
CaCl₂, 1 mM MgCl₂ and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)]
directly to the neuronal culture to a final concentration of 31%.

RNA-seq Library Preparation

Total RNA was extracted and purified from mouse cortical neuron cell cultures using Trizol®
according to protocol (Invitrogen). polyA+RNA was purified with the Dynabeads mRNA
purification kit (Invitrogen). The mRNA libraries were prepared for strand-specific sequencing
as described previously.

RNA-seq Analysis

Trimmed reads were aligned to the mouse genome (mm9) using STAR version 2.53 (Dobin et
al., *Bioinformatics* 2013) with default parameters and expression levels of all genes were
determined using QoRTs version 1.2.42 (Hartley and Mullikin, *BMC Bioinformatics* 2015) with
default parameters and Gencode v19 transcript annotations. Reads were analyzed using the set of
open source software programs of the Tuxedo suite: TopHat and Cufflinks. TopHat was used to
align RNA-seq reads to the mm9 reference genome, and Cufflinks was used to assemble mapped
reads into possible transcripts and generates a final transcriptome assembly. Cufflinks includes
Cuffdiff, which accepts the reads assembled from two or more biological conditions and
analyzes their differential expression of genes and transcripts. The accessory tool CummeRbund
was used to process processes the output files of Cuffdiff and give outputs of plots and figures.
Red dots represent the statistically detectable genes with differential expression (p-value < 0.05)
between libraries. While the red dots above and below the blue lines means the up- and down-
regulated genes with log2 fold change more than 1, those genes were considered differentially expressed between two cell lines.

ChIA-PET Library Construction

For each ChIA-PET library, 100 million mouse cortical neurons were collected and processed. Cells were dual cross-linked with FA and EGS and subject to cellular and nuclear lysis. Chromatin was sonicated to achieve an average DNA fragment length of 8kb. Chromatin immunoprecipitation (ChIP) was carried out to select for chromatin complexes containing RNAPII. On-bead chromatin complexes were subjected to ChIA-PET library construction following the protocol as previously described (Fullwood et al., 2009; Fullwood et al., 2010) with some modifications. Briefly, on-bead chromatin complexes were divided into two aliquots for DNA linker ligation with Linker A and Linker B, respectively. A and B linkers consists of the same nucleotide sequences, except four nucleotides in the middle (Linker A: TAAG; Linker B: ATGT) to serve as distinguishable molecular barcodes after sequencing. Linkers were incubated with chromatin complexes in molar excess so as to saturate DNA fragment ends. After ligation and washing of excess linkers, the A and B aliquots were combined for proximity ligation. Ligation was conducted under diluted conditions allowing DNA fragments within individual chromatin complexes to ligate preferentially. After proximity ligation, Paired-End-Tag (PET) constructs were extracted from the ligation products, and the PET templates were subjected to Illumina GAIIx sequencing. Quality control was performed at key steps using Qubit and Bioanalyzer to determine DNA concentration and fragment size distribution, respectively.

ChIA-PET Data Processing
ChIA-PET reads were processed by ChIA-PET Tool (Li et al., *Genome Biology* 2010), a software package designed for ChIA-PET data analysis, with a few modifications. Briefly, non-redundant PETs were first analyzed for linker barcode composition and identified as sequences with hetero-dimer AB linker (barcode TAAG / ATGT) derived from nonspecific ligation products, or sequences with homo-dimer AA or BB linker (barcodes TAAG / TAAG or ATGT / ATGT) derived from specific ligation products. This linker composition information was used later for noise analysis. Then, the linker sequences were trimmed, and the PET tag sequences were mapped to the mouse genome (mm9). To further remove possible redundant PET sequences after genome mapping, the PETs with genomic locations from both head and tail tags within 2 bp were merged to further reduce the library sequence redundancy arising from clonal PCR amplification. This processing step also takes into account any Single Nucleotide Polymorphisms (SNPs) between the reference and the test genome and sequencing errors that may have occurred and resulted in a 1 base pair or 2 base pair difference in the tag sequences.

PET Classification

Mapping ChIA-PETs to the mm9 reference genome reveals whether they are self-ligation products (between the two ends of the same DNA fragment) or inter-ligation products (interactions between two DNA fragments that were captured in the same chromatin complex by protein interactions). Since chromatin fragment sizes were sonicated within a relatively narrow range from 100 base pairs up to around 3 kilobase pairs, the mapping orientation and distance between the tags of a PET sequence can indicate if the PET was derived from self-ligation or interligation interaction.
Peak Calling of RNAPII Binding

The coverage of all self-ligation PET sequences across the genome reflects the enrichment by RNAPII ChIP on specific locations, just as ChIP-Seq read mapping reflects the binding profile for a protein. Using a similar method as that of the ChIP-Seq peak calling program MACS (Zhang et al., Genome Biology 2008), we performed peak calling on our ChIA-PET data. The local summits of the sequence coverage were called as potential peaks. The significances of the potential peaks were estimated with p-values from a Poisson distribution. The background parameters in the Poisson distribution were estimated from: 1) the maximum of the global tag density, 2) tag density in a 10 kilobase window around the peak, and 3) the tag density in a 20 kilobase window around the peak. The p-value was corrected as false discovery rate (FDR) with the Benjamini-Hochberg (B-H) method for multiple hypothesis testing. The criteria for our final peaks were that 1) the sequence coverage is at least 5 and 2) the FDR is smaller than 0.05.

Defining Interaction PET Clusters

Inter-ligation PETs potentially reflect long-range chromatin interactions. However, in this class of PETs there is inevitably technical noise from various sources. To distinguish true long-range interaction signals from non-specific interaction noise, we reasoned that for true interactions, multiple unique interaction PETs would be generated from the same general interacting regions. To identify such legitimate long-range chromatin interactions, mapping locations of the inter-ligation PETs were extended 1.5 kilobase pairs downstream, and the PETs that overlapped at both ends formed interaction PET clusters. Overlapping PET clusters are used to distinguish detectable interaction signals over background noise represented by singleton PETs, which could also include weak interaction events that are not distinct from background noise. The PET count
of a PET cluster is the frequency of the interaction between the two locations involved. The statistical significance of such interactions was evaluated with p values from a hyper-geometric distribution. The hyper-geometric model takes into consideration the tag counts from both anchor regions and the sequencing depth for p value calculation, thus normalizing the effects of random ligations between two highly-enriched regions that would give rise to potentially noisy inter-ligation PETs. The p values were corrected as false discovery rate (FDR) with the B-H method for multiple hypothesis testing and the FDR cutoff is 0.05.

Downloaded Data Used

Raw fastq files for the following datasets were obtained from associated databases (Kim et al 2010 Nature, Malik et al 2014 Nature Neuro), mouse mm9 ENCODE (Shen et al. Nature 2012; Stamatoyannopoulos et al. Genome Biology 2012), additional ChIA-PET libraries previously published.
Discussion

Here, we report the first RNAPII ChIA-PET map of genome wide chromatin interactions in cortical mouse neurons. We have found that depolarization induces dynamic changes in the intensity of chromatin interactions that are associated with regulation of transcription of activity dependent genes. In addition to validating chromatin interactions previously reported, ChIA-PET identified new interactions between RNAPII bound active promoter and enhancer regions, potentially involved in the regulation of AD transcription. Comparisons of RNAPII ChIA-PET anchors before and after KCl depolarization revealed the overwhelming majority of enhancer anchors were unique to the depolarization condition. However, due to high cell input requirements (100 million cells) for ChIA-PET library construction, we were unable to validate these findings in human cells at this time.

The data generated in this study should serve as a resource for future studies to explore the complexity of mammalian neuronal cell regulatory programs uncovered in this study and to guide targeted mechanistic studies of gene regulatory networks of relevance to neuronal biology. Risk variant loci in the human genome for myriad of neurological diseases have been found to mark gene regulatory elements that are active in the human brain (Ng et al. Nature Neuro 2017; Allen et al. Neurol Genetics 2015; Short et al. Nature 2018; O’Roak et al. Nature 2011; Brandler et al. Science 2018; Lim et al. Nature Neuro 2017). Variation in imprinted genes has been shown to be associated with various forms of Alzheimer’s disease (Chaundhry et al. JAlzDis 2015) and genome wide changes have been shown to accompany autism and spectrum like disorders (Papikshak et al. Nature 2016).
Chapter II: 3D Genome Technology Development

To date, the overwhelming majority of 3D genome connectivity sequence data has been obtained from bulk cell lysate of millions of cells at a time or from imaging in single cells (Appendix E). This approach has allowed the modeling of chromosome structure, but has inhibited the detailed study of many biological questions concerning cell-to-cell heterogeneity and finite genomic structural details of transcription. To overcome this issue, we will develop a variety of complementary methods to probe the 3D genome at nucleotide resolution. The following is a description of a selection of approaches used to target significant common bottlenecks in the core molecular biology of chromosome capture experiments such as: mean read length of PET reads, decreasing false positive and noise during proximity ligation, and increasing molecular resolution of the chromatin sample to allow direct visualization.

Results

Development of Long-Read (LR) ChIA-PET

The LR ChIA-PET protocol involves three major sections: chromatin immunoprecipitation (ChIP), library construction, and library sequencing. The use of a bridged linker and tagmentation are the key distinguishing steps of long read ChIA-PET when compared to traditional ChIA-PET.

Overview of the LR ChIA-PET Protocol
Figure 7 shows an illustrative depiction of the molecular biology steps involved in the LR ChIA-PET protocol. Cross-linked cells are harvested and ChIP is performed using an antibody of interest; typically targeted at a known transcription factor or structural chromatin protein. A high-quality ChIP is crucial to the successful construction of a ChIA-PET library and great care should be taken to select an antibody and optimize crosslinking conditions before proceeding to any further library construction steps. Following ChIP is library construction, which includes proximity ligation of chromatin bound DNA fragments and tagmentation of ligated products by Tn5 transposase. Tagmented fragments are selected and PCR amplified, then subject to size selection for optimal sequencing. The LR ChIA-PET library is sequenced using Illumina Mi-Seq, Next-seq, or Hi-Seq with paired-end sequencing mode.
Figure 7: Overview of the LR ChIA-PET Protocol.
Protocol steps for long-read ChIA-PET library preparation are highlighted in Figure 8 in boxes, indicating the timeline on the left and corresponding steps in the protocol are labeled above each box. Five quality control steps are shown displaying a typical DNA fragment distribution profile as captured by Agilent 2100 Bioanalyzer High Sensitivity DNA Assay. QC1, CTCF ChIP DNA fragment distribution with a peak near 3.5 kb (arrow); QC2 proximity ligation DNA distribution with a peak near 4.3 kb (arrow); QC3 shows the typical size range for Tn5 tagmentation DNA product between 140 bp and 1 kb, peaking around 200 bp (arrow); QC4, the DNA fragment size distribution of the PCR amplified product typically falls between 200-900 bp (arrow); and QC5, the final DNA library is ready for sequencing after size selection from 320-500 bp (arrow). FU, fluorescence units. Long Read ChIA-PET pipeline data processing steps are shown in Appendix F.
Figure 8: LR ChIA-PET flowchart and QC profiles.
Development of ChIA-SMS (Chromatin Interaction Analysis by Single Molecule Sequencing)

A prototype single-molecule platform has been demonstrated for simultaneous detection of histone modifications and genomic positions of individual nucleosomes (Shema et al., Science 2016). Using this sequencing platform, the unamplified DNA complexed within a single nucleosome has been directly detected. We will adapt this platform to enable single-molecule Chromatin Interaction Analysis (ChIA-SMS) in single nuclei. The ChIA-SMS approach will detect individual, unamplified chromatin complexes. Development of this unique method will allow determination of the nature of individual chromatin complexes, including their protein composition and genomic sequence (Appendix B). A set of customized, barcoded DNA linker oligonucleotides containing a terminal biotin were designed and synthesized (Appendix J and K). Using a cleavable fluorescent tag we additionally labeled one of the barcoded DNA linker oligonucleotides (Linker 1) to serve as a marker for sample density and binding on the flowcell.

Single Molecule Sequencing and Alignment To Reference Genome

We sought to demonstrate the feasibility of single molecule sequencing ChIP DNA and downstream mapping of reads to previously known RNAPII ChIA-PET peaks in the genome, similar to what was done in the Shema et al. science paper, but in the case, with the addition of chromatin crosslinking. To test this, we dual cross linked Drosophila S2 cells, sonicated to an average fragment size of 3kb, then immunoprecipitated for the general transcription factor RNAPII. These RNAPII-enriched chromatin complexes were ligated with a mixture of barcoded
biotinylated and fluorescent linkers, then loaded to the flowcell for sequencing. In one test run, we loaded complexes, de-cross linked proteins on the flow cell, and generated about 16k quality reads of average length, 30bp (Figure 9, top panel). We then aimed to directly sequence in the context of cross linked chromatin, and found we could indeed generate about 48k high quality reads of average length of 30bp in the presence of cross-linked chromatin (Figure 9, bottom panel).
Figure 9: Single Molecule Sequencing Read Length Distribution
When reads were mapped to the dm3 drosophila reference genome, we found enrichment for sequence reads to align to known RNAPII ChIA-PET peaks, confirming the ability of our method for detection of sequences from RNAPII-bound chromatin complexes (Figure 10). The top panel of Figure 10 shows sequence reads generated from purified DNA that came from an RNAPII ChIP, the second panel shows sequence reads generated directly from unpurified ChIP DNA, and the third panel shows ChIA-PET RNAPII sequence reads. The bottom panel shows RNAPII ChIA-PET reference anchors.
Figure 10: Single Molecule DNA Sequencing and Alignment to reference genome from purified, chromatinized, and RNAPII IP samples.
Single Molecule Sequencing of Chromatin Complexes

To detect multiple DNA fragments originating from the same 400 nm optical spot (two examples are circled below in Figure 11A), and theoretically from the same individual chromatin complex, we generated a set of barcoded linkers to allow the initiation of multiple rounds of sequencing from the same sample. The aggregate fluorescence intensity plot (below, B) shows the incorporation of the first sequencing primer, followed by the synthesis and decay of fluorescence signal. With the incorporation of the second primer, the fluorescence signal spikes, and decays again. This is a typical profile for the SeqLL platform single molecule sequencing. In (Figure 11C), we show two examples of multiple genomic sequences (uniquely mapped genomic loci highlighted in red) being detected using distinct barcoded primers (index sequences in blue and purple), coming from the same 400 nm optical spot. We were able to align such sequences to previously know RNAPII ChIA-PET interaction anchors generated previously.
Figure 11: ChIA-SMS Identifies Known RNAPII ChIA-PET Anchor Interactions.
To visualize the co-localization of RNAPII protein and the biotinylated DNA linker, individual chromatin complexes were imaged using 2-color TIRF (Figure 12). First, we examined the samples for the presence of the biotinylated linker, to confirm complex binding and density for imaging. We found that we were able to control the density and eliminate much of the background signal by modifying density and by using a PBS/Triton X100 wash step. Finally, we wanted to see if the complexes that we generated from in situ ligated nuclei were actually bound by RNAPII, indeed we were able to observe complexes (marked by Alexa-647) co-occupied by RNAPII (marked by Alexa-488) (Figure 12).
Figure 12: Co-localization of RNAPII and DNA Linker Within Individual Chromatin Complex
Methods and Techniques

Long Read (LR)-ChIA-PET

This protocol was optimized using 100 million cells of the Drosophila S2 cell line and RNAPII antibody. Different cell type and antibody may require alterations in sonication and immunoprecipitation conditions. The major molecular biology steps of LR-ChIA PET are depicted in Figure 13.
Figure 13: Long Read (LR)-ChIA-PET Protocol.
Chromatin immunoprecipitation (ChIP)

Cell Harvesting and Dual Cross-linking

Note that cross-linking was done using an adherent cell line- cells in suspension will therefore require optimization of crosslinking conditions.

Reagents Required:

1. 1X PBS
2. 1.5 mM EGS / 1 X PBS solution (Refer to the EGS product manual)
3. 37% formaldehyde
4. 2.5 M glycine

Procedure:

1. Count cells and transfer 1 x10⁸ cells in to a 50 mL falcon tube, spin at 1000 rpm for 5 min.
2. Wash pellet with 20 mL warm PBS twice, spin at 1000 rpm for 5 min.
3. Add 20 ml of EGS / 1 X PBS solution to each tube (About 20 mL per tube/1 x 10⁸ cells) and shake for 45 min at room temperature (RT).
4. Add of 37% formaldehyde (final concentration: 1%) and shake the plate or tube on rotator for 20 min at RT.
5. Add glycine to achieve final concentration of 0.2 M, and shake the plate or tube on rotator for 10 min at RT.
6. Centrifuge collected cells at 2000 rpm for 10 min at 4 °C.
7. Discard media by pipetting and wash cells with 20 mL-chilled PBS then centrifuge the tube at 2000 rpm for 5 min at 4 °C.
8. Repeat washing step and discard supernatant.
9. Freeze cells at -80 °C to store, or continue to cell lysis.

Prepare Antibody-Bead Coating Reaction and Lysis Solutions

Reagents Required:

1. ChIP Grade Antibody (PolII antibody used as an example below)
2. 0.1% Triton X-100 / 1 X PBS
3. Dynabeads® Protein G beads

Procedure:

1. Thaw antibody of interest on ice.
2. Mix magnetic bead solution well and transfer 1 mL bead mixture into a new 1.5 mL microcentrifuge tube.
3. Place the tube on magnetic rack, wait for pellet to form, and remove supernatant.
4. Wash beads with 1 mL 0.1% Triton X-100 / 1 X PBS by mixing, then return to magnetic rack to remove supernatant.
5. Repeat wash two times.
6. Add a fresh 1 mL 0.1% Triton X-100 / 1 X PBS to the washed beads and 80 μL PolII antibody, mix gently.
7. Incubate the tube at 4°C, overnight on rotating mixer.
Cell Lysis, Sonication, Preclearing Chromatin, Input QC, and Preparation of IP

Cell Lysis

Reagents Required:

1. 1 X PBS
2. 0.1% SDS FA Cell Lysis Buffer
3. Proteinase Inhibitor (+PI) Cocktail Tablets (Roche)

Procedure:

1. Thaw cell pellet, wash once with 30 mL 1 X PBS in 50 mL tube by gently resuspending, then spin down at 4 °C, 2000 rpm for 5 min and remove supernatant.
2. Add 30 mL 0.1% SDS FA Cell Lysis buffer (+PI) to resuspend pellet.
3. Incubate at 4 °C for 15 min on circular shaker.
4. Spin down at 2000 rpm, 4 °C, for 5 minutes and discard supernatant.
5. Repeat cell lysis steps 2-4, two more times.

Nuclear Lysis:

Reagents Required:

1. 1% SDS FA Cell Lysis buffer (+PI)
2. 0.1% SDS FA Cell Lysis buffer (+PI)
3. Proteinase inhibitor (PI) Cocktail Tablets (Roche)

Procedure:
1. Add 30 mL of 1% SDS FA Cell Lysis buffer (+PI) to resuspend pellet.
2. Incubate at 4 °C for 15-30 min on circular shaker (this time and temperature should be optimized for different cell types)
3. Spin down at 4000 rpm, 4 °C for 10 min, the discard supernatant.
4. Resuspend pellet in 30 mL 0.1% SDS FA Cell Lysis buffer (+PI).
5. Incubate at 4 °C for 15 min on circular shaker.
6. Spin down at 4000 rpm, 4 °C for 10 min, discard supernatant.
7. Repeat nuclear lysis steps 4-6, once.
8. Store nuclear pellet at -80°C or continue to next step.

Sonication and Preparation of Input Quality Control (QC) Sample

Reagents Required:

1. 0.1% SDS FA Cell Lysis buffer
2. Proteinase inhibitor (PI) Cocktail Tablets (Roche)
3. TE buffer
4. ChIP elution buffer (1% SDS in TE buffer)
5. Proteinase K (Ambion)

Procedure:

1. Add 4 mL 0.1% SDS FA Cell Lysis buffer (+PI), and gently resuspend nuclei pellet the aliquot 1 mL nuclei solution into (4) 14 mL tubes taking care not to generate bubbles.
2. Sonicate chromatin in cold room using ice bath. The sonication probe should be cleaned with ethanol before use and centered in the sample volume. (For the development of this
protocol, the sonicator programmed to 6 min: pulsing on for 30 seconds and off for 30 seconds at amplitude of 36%, and lasted for 12 minutes.)

3. After sonication, take 20 μL of sonicated chromatin as “total input chromatin” into a sample tube.

4. Add 300 μL elution buffer and 5 μL proteinase K, incubate the input chromatin at 55 °C for reverse cross-linking overnight.

5. Purify the DNA. Run a High Sensitivity Bioanalyzer to determine the size range of sonicated ChIP DNA fragments in the second day. Using Qubit, confirm the concentration of DNA in the sample falls within indicated range required for library construction.

Preclearing Chromatin

Reagents Required:

1. 0.1% Triton X-100 in 1 X PBS

Procedure:

1. Aliquot 1 mL of magnetic beads into a new tube and place on magnet rack.

2. Wash beads twice with 0.1% Triton X-100 / 1 X PBS.

3. Spin down the remaining sonicated chromatin at 4000 rpm, 4 °C for at least 10 min.

4. Collect supernatant and resuspend washed bead. Transfer to a new 15 mL tube and incubate using rotating shaker at 4°C for at least 1 hour or overnight.

Immunoprecipitation (IP) of Chromatin Complexes
Procedure:

1. Place the antibody-bound beads (from overnight incubation) on magnetic rack.
2. Wash the antibody beads two times with 1 mL 0.1% Triton X-100 / 1 X PBS.
3. Transfer supernatant from precleared chromatin tube to the antibody-covered bead tube, and pipette gently to resuspend.
4. Incubate antibody-coupled beads with chromatin overnight at 4° C.

Wash of On-Bead Chromatin Complexes and Elution of QC Sample

Reagents Required:

1. 0.1% SDS FA Cell Lysis buffer (low salt buffer)
2. 0.1% SDS FA Cell Lysis buffer/ 0.35M NaCl (high salt buffer)
3. LiCl wash buffer
4. TE buffer
5. ChIP elution buffer
6. Proteinase K (Ambion)

Procedure:

1. Remove supernatant from immunoprecipitated beads using magnetic rack.
2. Wash three times (3x) using 5 mL of 0.1% SDS FA Cell Lysis buffer (low salt buffer).
3. Add 5 mL of low salt buffer to resuspend, incubate on rotating rack at 4 °C for 5 min.
4. Short spin the tube and place back on magnetic rack, remove supernatant.
5. Wash twice (2x) using 1mL 0.1% SDS FA Cell Lysis buffer/ 0.35M NaCl (high salt buffer).

6. Add 5 mL high salt buffer and gently resuspend, incubate rotating at 4 °C for 5 min.

7. Short spin the tube and place back on magnet rack, then remove supernatant.

8. Wash once (1x) using 1 mL LiCl wash buffer.

9. Add 5 mL LiCl wash buffer to resuspend, place on rotating rack at 4 °C for 5 min.

10. Short spin the tube and place back on magnet rack to assist removal of supernatant.

11. Wash twice (2x) using 1 mL TE buffer.

12. Add 5 mL TE buffer to resuspend, place on rotating rack at 4 °C for 5 min.

13. Short spin and place tube back on mag rack, remove supernatant.

14. Remove TE buffer from mag beads. Resuspend with 1 mL TE buffer, aliquot 20-50 μL beads to a new tube for “ChIP enrichment QC” sample, remaining beads are kept at 4 °C for following library preparation steps after QC is performed and quality is considered acceptable.

15. For elution of ChIP-DNA to be used for QC, place aliquot tube with 20-50 μL beads on magnet rack, remove the TE buffer, resuspend beads using 200 μL ChIP elution buffer then shake at 900 rpm, 65 °C for 15 min.

16. Move 200 μL of eluted ChIP DNA to a new tube using magnet rack.

17. Add 400 μL of Qiagen elution buffer to the magnet tube, mix well, place on magnet rack and transfer supernatant to elution tube, totaling 600 μL of eluted DNA solution.

18. Add 10 μL of Proteinase K to tube, incubate at 65 °C overnight.

Column Purification and Collection for ChIP-DNA QC Sample:
Reagents Required:

1. Zymo Genomic DNA Clean & Concentrator Kit

Procedure:

1. Add (2x) volume-binding buffer to sample. For example, 600 μL of eluted DNA would require the addition of 1200 μL of Zymo binding buffer.
2. Load mixture into column that is placed in collection tube.
3. Spin down at 13000 rpm for 30 sec at RT.
4. Load the flow through again, spin down at 13000 rpm for 30 sec, RT.
5. Discard the flow through.
6. Add 200 μL of wash buffer to the column and spin-down at 13000 rpm, RT for 30 sec, discard flow through.
7. Add 200uL of wash buffer to the column again, spin down at 13000 rpm, RT for 30 sec, discard flow through.
8. Spin down 13000 rpm, RT for 1 min to remove residual wash buffer from column.
9. Move column to a new 1.5mL eppendorf collection tube.
10. Add 10 μL of elution buffer directly on top of column filter spin down at 13000 rpm, RT for 1 min.
11. Repeat with another 10 μL Elution Buffer directly on top of column filter, spin down at 13000 rpm, RT for 1 min.
12. 20μL of eluted DNA is collected in the 1.5mL eppendorf tube.
ChIP-DNA Quality Control (QC):

1. **Qubit:** Estimate DNA concentration (use 1-2uL sample).
2. **Bioanalyzer:** Determine distribution of DNA fragments, should be diluted to ~1ng/µL.
3. **qPCR:** Determine enrichment of particular genomic region over control region. Design primer sets, two positive and one negative control and perform two technical replicates for each sample.

Construct the following table to calculate Final Δ Ct:

<table>
<thead>
<tr>
<th></th>
<th>qPCR Samples</th>
<th>Replicate 1</th>
<th>Replicate 2</th>
<th>Replicate Average</th>
<th>Δ Ct</th>
<th>Final Δ Ct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Primer Set 1</td>
<td>Input</td>
<td>23.76</td>
<td>23.53</td>
<td>23.645</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChIP</td>
<td>18.53</td>
<td>18.75</td>
<td>18.64</td>
<td>-5.005</td>
<td>-7.645</td>
</tr>
<tr>
<td>Test Primer Set 2</td>
<td>Input</td>
<td>23.11</td>
<td>23.04</td>
<td>23.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ChIP</td>
<td>18.74</td>
<td>18.53</td>
<td>18.635</td>
<td>-4.44</td>
<td>-7.08</td>
</tr>
<tr>
<td>Negative Control</td>
<td>Input</td>
<td>23.26</td>
<td>23.55</td>
<td>23.405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Set</td>
<td>ChIP</td>
<td>26.16</td>
<td>25.93</td>
<td>26.045</td>
<td>2.64</td>
<td></td>
</tr>
</tbody>
</table>

1. Place raw values in corresponding Replicate 1 and Replicate 2 columns
2. Calculate the average of the replicates using =Average(Rep1,Rep2)
3. Calculate the Δ Ct for each Primer Set using the following formula:
 \[Δ \text{ Ct} = \text{ChIP-DNA Replicate Average} - \text{Input Replicate Average} \]
4. Calculate the Final Δ Ct for each Test Primer ChIP-DNA using the following formula:
 \[\text{Final Δ Ct Primer Set} = Δ \text{ Ct Test Primer Set} - Δ \text{ Ct Negative Primer Set} \]
Long Read (LR) ChIA-PET Library Construction

The starting material should range from 500 ng-1000 ng (Qubit). On-Bead ChIP-DNA in TE buffer with fold enrichment of target sites by QPCR >50 fold (RNAPII).

On-Bead End-Blunting

Reagents Required:

1. T4 DNA Polymerase (Promega)
2. 10 mM dNTPs (NEB)

<table>
<thead>
<tr>
<th>End-Blunt Component</th>
<th>1X</th>
<th>1.5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free Water</td>
<td>616μL</td>
<td>923.7 μL</td>
</tr>
<tr>
<td>10x Buffer for T4 DNA Polymerase</td>
<td>70 μL</td>
<td>105 μL</td>
</tr>
<tr>
<td>10mM dNTPs</td>
<td>7μL</td>
<td>10.5 μL</td>
</tr>
<tr>
<td>Total:</td>
<td>693 μL</td>
<td>1039.3 μL</td>
</tr>
</tbody>
</table>

Procedure:

1. Wash beads with ChIP DNA once with ice-cold TE Buffer using magnet rack.
2. Short spin the tube at 800 rpm, 4°C for 1 min. Use magnetic rack to remove TE buffer and add all 693 μL of End Blunting Master Mix to the beads.
3. Add 7.0 μL of T4 DNA Polymerase to the mag bead-master mix tube.
4. Mix by flicking the tube gently, and incubate reaction at 37 °C on Intelli-Mixer (Program F8, 30 rpm) for 40 min.
5. Discard End-Blunting Reaction by using magnet rack.

6. Wash beads with ice-cold ChIA-PET wash buffer three times using 1 mL each time.

On-Bead A-Tailing

Reagents Required:

1. Klenow Fragment (3’-5’ exo-) (NEB)
2. 10x NEB buffer 2 (NEB)

<table>
<thead>
<tr>
<th>A-tail Component</th>
<th>1X</th>
<th>1.5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-Free Water</td>
<td>616 μL</td>
<td>924 μL</td>
</tr>
<tr>
<td>10x NEB Buffer 2</td>
<td>70 μL</td>
<td>105 μL</td>
</tr>
<tr>
<td>10mM dATP</td>
<td>7 μL</td>
<td>10.5 μL</td>
</tr>
<tr>
<td>Total:</td>
<td>693 μL</td>
<td>1039.5 μL</td>
</tr>
</tbody>
</table>

Procedure:

1. Short spin tube at 800 rpm for 1 minute at 4°C. Discard final ChIA-PET wash buffer using magnet rack, add entire volume of 693 μL (3’-5’ exo-) Master Mix to reaction tube.

2. Add 7 μL of Klenow Fragment (3’-5’ exo’) to the tube.

3. Flick tube to mix and incubate reaction at 37°C on Intelli-Mixer (Program F8, 30 rpm) for 50 min.

4. Wash beads with ice-cold ChIA-PET wash buffer three times with 1 mL each time.

On-Bead Proximity-Ligation
Reagents Required:

1. T4 DNA ligase (Fermentas)
2. 5X T4 DNA Ligase Buffer with PEG (Invitrogen)
3. Bridge Linker (IDT, 200ng/ul)

<table>
<thead>
<tr>
<th>Proximity Ligation Component</th>
<th>1X</th>
<th>1.5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free water</td>
<td>1110 μL</td>
<td>1665 μL</td>
</tr>
<tr>
<td>Bridge Linker (200ng/μL)</td>
<td>4 μL</td>
<td>6 μL</td>
</tr>
<tr>
<td>5X T4 DNA Ligase Buffer with PEG (Invitrogen)</td>
<td>280 μL</td>
<td>420 μL</td>
</tr>
<tr>
<td>Total:</td>
<td>1394 μL</td>
<td>2091 μL</td>
</tr>
</tbody>
</table>

Procedure:

1. Short spin at 800 rpm, 4°C for 1 minute, discard end-blunting reaction using magnetic rack, add all 1394 μL of proximity ligation mixture.
2. Add 6 μL of T4 DNA ligase to mixture, flick to mix reaction, parafilm cap immediately.
3. Incubate overnight at 16°C (Program F8, 30 rpm).

Elution of Proximity Ligation DNA

Reagents Required:

1. ChIP wash buffer
2. ChIP elution buffer
3. Elution Buffer (Qiagen)
4. Proteinase K

Procedure:

1. Short spin the ligated bead mix at 800 rpm for 2 minutes, discard the supernatant and wash the beads with 800 μL ChIA-PET wash buffer 3 times then add 200 μL fresh-made ChIP elution buffer to the tube.

2. Incubate at 900 rpm, 65°C for 35 minutes on Thermomixer.

3. Short spin the tube, place on magnet rack, then remove and save supernatant in a new tube.

4. Add 400 μL of Qiagen elution buffer to recover remaining DNA from the beads.

5. Short spin the tube, place on mag rack, remove and save supernatant into tube containing 200 μL, for a total of 600 μL of eluted chromatin.

6. Add 10 μL of Proteinase K to the tube containing 600 μL of eluted proximity ligated chromatin, flick to mix, spin down briefly, and incubate overnight at 65°C to reverse cross-link chromatin complexes.

Purification, Tagmentation, Immobilization, PCR Amplification, and Size Selection of LR ChIA-PET Library

Purification of DNA using MaXtract High Density Tubes

Reagents Required:

2. 3 M Sodium Acetate pH 5.5 (Ambion)

3. GlycoBlue (Ambion)
4. Ice-cold Isopropanol
5. 75% ice-cold ethanol

Procedure:
1. Centrifuge the MaXtract tube at 13000 rpm, RT for 2 minutes to collect gel to bottom.
2. Add equal volume of Phenol-Chloroform-Isoamyl alcohol (pH 7.9) to de-crosslinked proximity ligated product (in this example, add 600 μL to a final volume of 1200 μL mixture).
3. Mix tube vigorously for 10 seconds, then transfer entire volume to MaXtract tube.
4. Centrifuge at 13000 rpm, RT for 5 minutes.
5. Carefully collect upper aqueous layer to a new 1.5 mL tube.
6. Add the following components to the tube as listed:

<table>
<thead>
<tr>
<th>DNA Purification Component</th>
<th>1X</th>
<th>1.5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M Sodium Acetate pH 5.5</td>
<td>60 μL</td>
<td>90 μL</td>
</tr>
<tr>
<td>GlycoBlue</td>
<td>2 μL</td>
<td>3 μL</td>
</tr>
<tr>
<td>Ice-cold Isopropanol</td>
<td>650 μL</td>
<td>975 μL</td>
</tr>
</tbody>
</table>

7. Invert tube to mix well, incubate at -80°C for 30-60 minutes to freeze mixture.
8. Centrifuge at 13000 rpm, 4°C for 30 minutes to precipitate DNA.
9. Carefully wash blue pellet with 1 mL of 75% ice-cold ethanol twice, then remove all ethanol and dry pellet for 2 minutes using vacuum.
10. Resuspend pellet in 20 μL Qiagen elution buffer.
11. Preform Qubit and Agilent high sensitivity ChIP to determine the quantification and quality of proximity ligated DNA product.
Tagmentation by Tn5 Transposase and Zymo Purification

Reagents Required:

1. Nextera DNA Library Preparation Kit (Illumina)
2. Nuclease free water
3. Zymo Genomic DNA Clean & Concentrator Kit

Procedure:

1. Prepare the reaction system in a PCR tube as stated below, pipette mix well after each addition:

<table>
<thead>
<tr>
<th>Tagmentation Component</th>
<th>1X</th>
<th>1.5X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximity Ligated DNA</td>
<td>50 ng (____μL)</td>
<td>75 ng (____μL)</td>
</tr>
<tr>
<td>Tagmentation Buffer</td>
<td>25 μL</td>
<td>37.5 μL</td>
</tr>
<tr>
<td>Transposase enzyme (TDE1)</td>
<td>8.5 μL</td>
<td>12.75 μL</td>
</tr>
<tr>
<td>Nuclease Free Water</td>
<td>______μL to raise total volume to 50 μL</td>
<td>______μL to raise total volume to 50 μL</td>
</tr>
<tr>
<td>Total</td>
<td>50 μL</td>
<td>75 μL</td>
</tr>
</tbody>
</table>

2. Short spin the tube, incubate reaction at 55°C for 5 minutes, then at 10°C for 10 minutes.

3. Purify tagmented DNA using Zymo column as described previously.

4. Quality Control: Assay sample using Agilent Bioanalyzer and Qubit, if profile is acceptable, repeat tagmentation reaction and purification on remainder of proximity ligated product. Typically, 5-6 tagmentation reactions are required to obtain enough material for a single library.

5. Combine all purified tagmentation DNA in preparation for next step.
Immobilization of DNA Library to Dynabeads

Reagents Required:

1. M-280 streptavidin dynabeads (Invitrogen)
2. 2 X Binding & Washing buffer
3. iBlock buffer
4. Sheared genomic DNA (500 ng / 100 uL 1 X Binding & Washing buffer)
5. 1 X Binding & Washing buffer
6. 0.5% SDS / 2 X SSC
7. EB buffer (Qiagen)

Procedure:

1. Let M280 streptavidin Dynabeads come to room temperature for 30 minutes, mix well then take 30 μL of suspended Dynabeads into a new 1.5 mL tube.
2. Place tube on mag rack, discard supernatant and wash beads with 150 μL 2X Binding & Washing buffer twice.
3. Resuspend beads in 100 μL iBlock Buffer, mix and incubate at RT for 45 minutes on rotating Intelli-mixer (UU, 50 rpm).
4. When beads have finished incubating, short spin the tube and place tube on magnet rack, discard iBlock buffer, then wash beads with 200 μL of 1X Binding and Washing buffer twice.
6. Discard wash buffer, add the 100 μL genomic DNA mixture, mix well with the i-Blocked beads, then incubate on Intelli-mixer with rotation for 30 minutes (UU, 50 rpm) at RT.

7. Discard the blocking DNA mixture, wash beads with 200 μL of 1X Binding and Washing buffer twice.

8. Add all of fragmented DNA library product (volume in 50 μl is appropriate) to the tube, add equal volume 2X Binding and Washing buffer, mix well, Incubate at RT for 45 minutes using Intelli-Mixer (UU, 50 rpm).

9. Short spin the tube, place tube on Magnet rack, discard supernatant, wash beads with 500 μL 0.5% SDS / 2 X SSC, five times.

10. Wash beads with 500 μL 1X Binding and Washing buffer twice, discard all the buffer, gently resuspend immobilized DNA library on beads in 30 μL EB buffer. Store at -20 °C or continue to next step.

PCR Amplification of DNA Library

First, only using 10 μL of beads from previous step as template, test optimum PCR cycle number to use for library amplification. This is done in order to prepare a library with the least redundancy (usually starting from 12 PCR cycles).

Reagents Required:

1. PCR Kit Reagents (Nextera DNA Library Preparation Kit- Illumina)
2. AMPure beads XP
3. 80% ethanol
4. TE buffer
Procedure:

1. Prepare the following reaction in a PCR tube:

<table>
<thead>
<tr>
<th>PCR Component</th>
<th>1X</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Library-Coated Beads</td>
<td>10 μL</td>
</tr>
<tr>
<td>Nuclease Free Water</td>
<td>10 μL</td>
</tr>
<tr>
<td>NPM Mix</td>
<td>15 μL</td>
</tr>
<tr>
<td>PPC PCR Primer</td>
<td>5 μL</td>
</tr>
<tr>
<td>Index Primer 1 (i7)</td>
<td>5 μL</td>
</tr>
<tr>
<td>Index Primer 2 (i5)</td>
<td>5 μL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>50 μL</td>
</tr>
</tbody>
</table>

2. Set up the following PCR program and run sample:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>72°C</td>
<td>3:00 min</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>30 sec</td>
<td></td>
</tr>
<tr>
<td>98°C</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>63°C</td>
<td>30 sec</td>
<td>11-13 cycles</td>
</tr>
<tr>
<td>72°C</td>
<td>40 sec</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>5:00 min</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>hold</td>
<td></td>
</tr>
</tbody>
</table>
3. Allow beads to come to RT for 30 minutes before using.

4. Transfer 50 μl PCR product supernatant from the reaction tube to a new 1.5 mL tube with magnet rack; vortex AMPure XP beads to resuspend. Add equal volume of AMPure beads to reaction tube, pipette mix well ~10 times. Incubate mixture at RT for 5 minutes using Intelli-Mixer (F8, 30 rpm).

5. Spin down tube briefly, place on magnetic rack and allow beads clear from solution (~3-5 minutes).

6. Discard the supernatant, add 200 μL of freshly prepared 80% ethanol to wash, carefully discard ethanol and repeat once.

7. Remove all ethanol; leave tubes open on mag rack to air dry on the bench top for up to 10 minutes to ensure evaporation is complete.

8. Elute DNA from beads by washing with 20 μL TE Buffer.

9. Quantify concentration and determine size distribution of sample using Qubit and Agilent 2100 respectively.

10. Increase or reduce the PCR cycle number accordingly to generate sufficient quantity of PCR product for upcoming size-selection step.

Size Selection and Sequencing of Long Read ChIA-PET Library

Refer to the blue pippin manual for detailed operation instructions of size selection. For Long Read ChIA-PET libraries, size selection is typically done using a range of 300-500 bp. Paired-end sequencing is then performed using 2*150bp module with the Mi-Seq 300 cycle sequencing
kit, Nextseq-500 300 cycle sequencing kit or Hi-seq 2500 300 cycles sequencing kit (RAPID module).

ChIA (chromatin interaction analysis)- SMS (by Single Molecule Sequencing) ChIA-SMS:

In the ChIA (chromatin interaction analysis)- SMS (by Single Molecule Sequencing) method, intact chromatin interaction complexes are detected allowing single molecule resolution of DNA fragment in contact. This method allows simultaneous detection of at least two and up to eight DNA sequences physically associated with one another in 3D nuclear space as well as detection of the protein components of the complex (**Appendix K**). The ChIA-SMS method has been developed in the following steps and is illustrated below in (**Figure 14**):

1. Crosslinking cells is required to allow chromatin to remain intact, permeabilization of nuclei allows *in-situ* digestion, alternatively chromatin can also be successfully prepared using sonication based methods.
2. Restriction enzyme digestion is used to generate individual chromatin complexes to allow ligation of adapters, end blunting, and a tailing.
3. Biotinylated and fluorescently labeled adapters are ligated genome wide.
4. Chromatin complexes are bound to streptavidin coated flowcell then imaged and sequenced using TIRF microscopy on the SeqLL single molecule sequencing platform (**Appendix L**).
Figure 14: ChIA-SMS Protocol.
ChIA-SMS Cell Preparation:

GM12878 or Drosophila S2 cells are single or dual cross linked with EGS and 1% FA and stored at -80 °C.

ChIA-SMS Adaptor Preparation (Appendix J):

1. ChIA-SMS adaptors contain a biotin modification and fluorescent labeling and synthesized by IDT, see appendix for details of oligonucleotide design.
2. Dissolved smChIA adaptor in 1× TNE buffer at 4 °C overnight.
3. Annealed smChIA adaptor, running PAGE for quality control.
4. Diluted smChIA adaptor at 200 ng/μl for the following experiments.

Chromatin Complex Generation and Preparation:

(Optimized with: GM12878-RNAPII-ChIP)

1. RNAPII antibody bounded to protein G beads: 1 mL of protein G beads, wash with PBS/0.1% triton-100 twice. The beads are then suspended with 7 mL of PBS/0.1% triton-X100 and incubated at 4 °C (F1 12rpm) about 6-8 hr.
2. 1x10⁸ GM12878 were washed with RT PBS (+PI) twice.

Cell and Nuclear Lysis

1. 10 mL of 0.1%FA without triton (PI) RT for 6 min, then added 900 μl of 10% SDS, 37 °C, rotate at F1 10 rpm for 10 min, check under microscope, if not lysis well then repeat again.
2. Then wash with 0.1% FA (no triton, +PI) twice, suspended in ice-cold 10ml of 0.1% FA with triton (PI) for sonication.

3. Aliquot to tubes for sonication, optimized using program 38% 20 sec on/30 sec off 6 min, then spin down for 5 min at 4000 rpm.

Preclearing Chromatin

1. Aliquot 1 mL of protein G beads and incubated with the Chromatin for at least 2 hours.

2. Washed RNAPII bounded antibody with 0.1%triton/PBS three times.

Immunoprecipitation

1. Discard the supernatant of antibody bounded beads and transfer the precleared chromatin into the tube with the antibody bounded beads, incubate rotating at 4 °C overnight.

2. Take out 20 μl of chromatin for fragment size QC.

3. Wash using 0.1%FA (+PI) three times; 0.1% FA/350 mM (+PI) once; LiCl buffer once; TE (+PI) three times.

End-blunting of Sonicated DNA Fragments

1. Wash the chromatin on beads with wash buffer and then wash with ice cold TE Buffer (Ambion, AM9849, nuclease free).

2. Prepare T4 Polymerase master mix (in 1.2X) in the tube as stated below on ice.
3. Discard the TE buffer and add in the 692.8 μl of T4 DNA Polymerase master mix for magnetic beads respectively (split into 4 tubes).

4. Add 7.2 μl of T4 DNA polymerase (Promega,M4215) to the magnetic beads respectively.

5. Mix and incubate at 37°C for 40 minutes with rotation on the Intelli-Mixer inside the 37°C incubator (program used: F8, 30 rpm; U=50, u=60).

6. After 40 minutes, take the tube out from the 37°C incubator. Discard the T4 DNA polymerase master mix. Wash the beads with ice-cold wash buffer [R+P] three times, and then wash with TE buffer once.

dA-Tailing:

(This step needs to be optimized and modified according to custom linker design.)

1. Prepare Klenow (3'-5' exo-) Master Mix as stated below.
2. Take the tube out from the 37 °C incubator and discard the mix. Wash the beads with ice-cold wash buffer [+PI] three times, then with TE buffer once.

Linker Ligation

1. Prepare the following mixture:
2. Add the mixture to the beads, mix by flicking.

3. Add 6µl T4 DNA ligase and mix by flicking followed by a short spin and light swirl.

4. Incubate at 16 °C, overnight.

Digestion of Linker Concatemers (as according to linker sequence)

<table>
<thead>
<tr>
<th>Digestion Reaction</th>
<th>X1(500 µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease free water</td>
<td>445 µl</td>
</tr>
<tr>
<td>10x NEB buffer</td>
<td>50 µl</td>
</tr>
<tr>
<td>PACI</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

1. Incubate at 37°C incubator for 1 hour on the Intelli-Mixer with rotation (F8, 30 rpm, U=50, u=60).

2. Wash using wash buffer three times.

Release Chromatin from Protein G Magnetic Beads

1. Washed excess linkers with wash buffer three times.

2. Prepare fresh elution buffer: 1% SDS (100µl 10% SDS + 900µl Buffer TE).

3. Add 200 µl of elution buffer to the protein G beads and place the tube on the Intelli-Mixer with rotation (F8, 30 rpm, U=50, u=60) at room temperature for 30 minutes.
4. Transfer the 200 µl elution buffer-containing chromatin DNA complex from Protein G beads to a fresh tube.

5. Quench SDS by adding 1.6% triton X-100 buffer and incubate at 37 °C for 1 hour in the 37 °C incubator.

Chromatin Capture on Coated Flow Cell

1. Flowcell preparation: prior to addition of chromatin complex, the flowcell surface is blocked with Spermine Tetrahydrochloride for 1 hour, washed with the following imaging buffer.

<table>
<thead>
<tr>
<th>ChIA-SMS Imaging Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mM MES pH 6.5</td>
</tr>
<tr>
<td>60mM KCl</td>
</tr>
<tr>
<td>0.32 mM EDTA</td>
</tr>
<tr>
<td>3mM MgCl2</td>
</tr>
<tr>
<td>10% glycerol</td>
</tr>
<tr>
<td>0.1mg/ml acetetylated BSA</td>
</tr>
<tr>
<td>0.02% Igepal (similar to NP40?)</td>
</tr>
</tbody>
</table>

2. Then, the flowcell was coated with streptavidin (0.2 mg/ml) for 10 min and then the flowcell surface was then washed with imaging buffer.
3. The chromatin complexes were incubated onto the surface and allowed to hybridized onto the flowcell.

Single Molecule Imaging

1. A customized TIRF microscope with two lasers, 532nm/75mW and 640 nm/40mW, for fluorescence excitation (Compass 215M Cube-40C, Coherent) was used for imaging of chromatin complexes.

2. Both laser beams were filtered through band pass filters (Chroma) and spectrally separated by a dichroic mirror (T: 640nm, R: 532nm).

3. They then pass through the TIRF lens and total internal reflection is achieved through a 60 × TIRF oil objective with index of refraction 1.49 (Nikon), and imaged onto a CCD camera.

4. After imaging the chromatin complex, the fluorophore labeled at the linkers is cleaved via addition of TCEP diluted 1:10 in imaging buffer.

5. After incubation with TCEP for 10 min, the flowcell is washed with imaging buffer.

6. All positions are imaged again and residual spots excluded from further analysis (less than 2% of spots remain).

Immunostaining

1. Antibody specificity Dot-Blot Assay: array is blocked with 4 mL of blocking buffer (TBST containing 5% non-fat dried milk) for 4 hours. Next, array is washed 3 times with
TBST, and primary antibody is added. Antibody is incubated overnight for 4°C on a rotor. Then the array is washed 3 times in TBST. Second antibody is added for 1 hour at room temperature. Array is washed again 3 times in TBST, and signal is detected by FlourChemQ.

2. Antibodies are diluted in imaging buffer to a final concentration of 50-100ng/ml, and images are taken every 15 min for total incubation time of 3 hours. (For experiments requiring imaging of more than two marks, the flowcell is washed extensively with imaging buffer (10 washes x 5 min incubation for each wash). All positions are imaged again and residual spots excluded from further analysis. Next, we can apply and image the second round of antibodies as in the first round.

Single Molecule Sequencing Image Analysis

Single molecule scripts were adapted to disable fluidics while imaging flowcell for binding and dissociated events over time.

Discussion

Here we have developed two distinct methods to detect chromatin interactions, LR-ChIA PET and ChIA-SMS. LR ChIA-PET is currently matured and appropriate for production level 3D genome connectivity assays and for library construction. This essential protocol can be optimized directly to decrease the current cell numbers to allow application to a wider variety of cells and sample types. When compared directly to the original ChIA-PET method, LR-ChIA
PET performs better in key areas including uniquely mappable reads, uniquely mapped PETS, and SNP coverage (Appendix G). When subject to a direct comparison with the current in situ Hi-C method, while LR ChIA-PET knowingly requires many more cells, the number of libraries required to generate a meaningful dataset are 2 opposed to 29 (Appendix H). Additionally, the total number of sequence reads generated per library is a fraction of what is required for a single Hi-C library and leads to the generation of about twice as many more chromatin loop anchors per library.

The ChIA-SMS fundamental protocol has been developed with the capability to be expanded to allow the detection of many thousands of chromatin complexes (each made up of multiple molecules of DNA and protein) with application to single cells. Distinct to this method for chromatin conformation capture, chromatin complexes are ligated in situ with blunt end boitnlylated adapters, hybridized to a streptavidin-coated substrates serving as the flowcell for sequencing and subject to TIRF microscopy based single molecule sequencing. This method has simultaneous detected two DNA sequences physically associated with one another in 3D nuclear space as well as detection of the protein component of the complex. Expansion of the ChIA-SMS method to individualized single cells (Appendix M) is anticipated to provide unique insight into the dynamics of chromatin as mediated by regulated transcription among cells of the same type and tissue.

While ChIA-SMS has been shown to provide a novel view of chromatin conformation that is distinct from other methods, it should be mentioned that in order to glean meaningful biological insight about the dynamics of high-resolution chromatin structure complementary methods should also be developed and used in tandem. This is especially important considering the inherently low throughput and nature of the assay design. Complementary approaches
should focus on automation and preservation of cellular individualization. One such approach under current development is (Chromatin Interaction Analysis by droplet sequencing) ChIA-Drop approach will utilize microfluidic droplet based partitioning and molecular barcoding to specifically identify the sequence of interacting DNA fragments from individual chromatin complexes (Appendix N). This approach will allow many distinct chromatin complexes from different cells to be partitioned and analyzed in an automated and simultaneous way. In this method, chromatin complexes are first isolated using a microfluidics device (10X Genomics’ Chromium instrument), which produces Gel Beads in Emulsion (GEMs). This platform has been optimized for RNAseq and genome sequencing approaches, but has yet to be applied to chromatin complexes. The microfluidics system we adopted for multi-ChIA was developed for high molecular weight genomic DNA analysis (Zhang et al, 2017 Nature Commun.).
Appendix A: CTCF Contact Domain (CCD).
Appendix B: Depiction of Individual 3D Chromatin Complex.
Appendix C: ChIA-PET Library Summary Statistics for Mouse Cortical Neuron RNAPII Libraries.

<table>
<thead>
<tr>
<th>Library</th>
<th>Total PET</th>
<th>self-ligation PET</th>
<th>Interaction PET</th>
<th>PET clusters</th>
<th>intra-chromosomal clusters</th>
<th>inter-chromosomal clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN072M_L3</td>
<td>47759556</td>
<td>8683035</td>
<td>36376721</td>
<td>22592</td>
<td>20914</td>
<td>1878</td>
</tr>
<tr>
<td>CMN080M_L2</td>
<td>34035380</td>
<td>8628106</td>
<td>25407274</td>
<td>48404</td>
<td>44697</td>
<td>3706</td>
</tr>
</tbody>
</table>
Appendix D: Conservation of mir132 Genomic Locus.
Appendix E: Single Cell Imaging Validates ChIA-PET Identified Allele Specific 3D Chromatin Interactions.
Appendix F: Data Processing Steps and Data Features of LR ChIA-PET Libraries.
Appendix G: Comparisons of Original ChIA-PET and LR ChIA-PET Method

<table>
<thead>
<tr>
<th></th>
<th>Long-read GM12878 ChIA-PET (ChIA-PET v2)</th>
<th>Original GM12878 ChIA-PET (ChIA-PET v1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of sequencing tags</td>
<td>Up to 2 \times 150 bp</td>
<td>2 \times 20 bp</td>
</tr>
<tr>
<td>Enzymatic reactions (steps)</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Ligation reactions (steps)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Time (days)</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Uniquely mapped PETs</td>
<td>71.2% \pm 4.0%</td>
<td>59.1% \pm 1.3%</td>
</tr>
<tr>
<td>Uniquely mapped nonredundant PETs</td>
<td>49.2% \pm 3.0%</td>
<td>34.0% \pm 3.2%</td>
</tr>
<tr>
<td>Target protein for ChIA-PET experiment</td>
<td>RNAP II</td>
<td>CTCF</td>
</tr>
<tr>
<td>Uniquely mapped interligation PETs</td>
<td>17,492,999a</td>
<td>2,649,901a</td>
</tr>
<tr>
<td>Genome coverage (bp)</td>
<td>1,624,706,794</td>
<td>414,228,424</td>
</tr>
<tr>
<td>SNP coverage</td>
<td>848,765</td>
<td>223,096</td>
</tr>
<tr>
<td>Genome coverage (bp) fold increment (v2 vs v1)</td>
<td>5.1\times</td>
<td>5.6\times</td>
</tr>
<tr>
<td>SNP coverage fold increment (v2 vs v1)</td>
<td>4.8\times</td>
<td>5.2\times</td>
</tr>
</tbody>
</table>

aIn manifest the improvement by ChIA-PET v2 over the v1 protocol in terms of genome coverage and heterozygous SNP coverage, the same numbers of PET reads from different RNAPII and CTCF ChIA-PET libraries were collected for the calculations of fold change.
Appendix H: Comparisons of LR ChIA-PET (Tang et al.) and in-situ Hi-C (Rao et al.)

<table>
<thead>
<tr>
<th></th>
<th>CTCF ChIA-PET (Tang et al.)</th>
<th>In situ Hi-C (Rao et al.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell line</td>
<td>GM12878</td>
<td>GM12878</td>
</tr>
<tr>
<td>No. of cells per library</td>
<td>100 million</td>
<td>5 million</td>
</tr>
<tr>
<td>No. of libraries used for the final data set</td>
<td>2</td>
<td>29</td>
</tr>
<tr>
<td>No. of cells used for the final data set</td>
<td>200 million</td>
<td>145 million</td>
</tr>
<tr>
<td>No. of sequencing reads generated</td>
<td>0.68 billion</td>
<td>6.5 billion</td>
</tr>
<tr>
<td>No. of nonredundant mapping reads</td>
<td>51 million</td>
<td>4.9 billion</td>
</tr>
<tr>
<td>Total high-confidence loops</td>
<td>42,297</td>
<td>9,448</td>
</tr>
<tr>
<td>Total chromatin loop anchors</td>
<td>21,777</td>
<td>12,903</td>
</tr>
<tr>
<td>Loop anchor size (bp)</td>
<td>50–100 (CTCF-binding sites)</td>
<td>1,000 (clustering bin size)</td>
</tr>
</tbody>
</table>
Appendix I: Hybridization of Oligos for Double Stranded Bridge Linkers Used In LR ChIA-PET.

Bridge Linker Sequences: (Ordered from IDT, HPLC purification)

Bridge linker-F
5'- /5Phos/CG CGA TAT C/iBIOdT/T ATC TGA CT -3'

Bridge linker-R
5'- /5Phos/GT CAG ATA AGA TAT CGC GT -3'

1. Oligos arrive concentrated at 250 nmole, HPLC purified in desalted form.
2. Add 1X Tris-NaCl-EDTA (TNE) buffer to make 100μM. (Refer to preparation of TNE buffer below)
3. Vortex to mix well, it is recommended to leave overnight at 4°C to allow oligos to resuspend completely.
4. Prepare 5 different ratios of top oligo:bottom oligos (1:1, 1.5:1, 2:1, 1:1.5, 1:2)
 Example shown here is for (1.5:1) mix together top oligonucleotide (100μM) 7.5μl bottom oligonucleotide (100μM) 5μl.
5. Run on PCR machine using the following program:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>2 minutes</td>
<td>Ramp 95°C to 75°C (Rate: 0.1°C/second) Hold at 75°C 2 minutes</td>
</tr>
<tr>
<td>75°C</td>
<td>2 minutes</td>
<td>Ramp 75°C to 65°C (Rate: 0.1°C/second) Hold at 65°C 2 minutes</td>
</tr>
<tr>
<td>65°C</td>
<td>2 minutes</td>
<td>Ramp 65°C to 50°C (Rate of 0.1°C/second) Hold at 50°C 2 minutes</td>
</tr>
<tr>
<td>50°C</td>
<td>2 minutes</td>
<td>Ramp 50°C to 37°C (Rate of 0.1°C/second) Hold at 37°C 2 minutes</td>
</tr>
<tr>
<td>37°C</td>
<td>2 minutes</td>
<td>Ramp 37°C to 20°C (Rate of 0.1°C/second) Hold at 20°C 2 minutes</td>
</tr>
<tr>
<td>20°C</td>
<td>2 minutes</td>
<td>Ramp 20°C to 4°C (Rate of 0.1°C/second) Hold at 4°C Indefinitely until collection</td>
</tr>
</tbody>
</table>

6. Measure the concentration of the annealed linkers/adapters using Nanodrop.
7. Dilute annealed linkers/adapters to 200ng/10μl (200ng) for loading into each gel lane. (For a ratio of 1.5:1, the nanodrop reading is 326.0ng/μl, mix 0.6μl of annealed adapter with 9.4 μl of TNE buffer).
8. Run 200 ng each of single stranded oligos with 200 ng of annealed adapters on the same 4- 20% TBE gel, refer to the gel image provided here to determine optimal ratio (In this example the ratio of top oligo:bottom oligo at 1.5:1 has the best result).
9. Perform large scales annealing of identified ratio, perform Nanodrop quantification.
10. Dilute the annealed adapters to 200 ng/μL for use in ChIA-PET protocol, store at 4°C.
Appendix J: ChIA-SMS Bridged Linker Oligonucleotide Design.
Appendix K: ChIA-SMS Estimation of DNA Fragments Contained in Chromatin Complex.

Based on connectivity patterns from RNAPII ChIA-PET data generated from the Long Read ChIA-PET Method, we can estimate that a single chromatin complex may tether up to 8 DNA fragments (that could represent 8 distinct regulatory or functional genomic loci associated in a complex containing RNAPII to mediate regulated transcription).
Appendix L: Depiction of Hypothetical Individual Chromatin Complex Bound To Streptavidin Coated Flowcell.
Appendix M: Image of Bound Labeled Linker on Flowcell as Imaged by TIRF Microscopy.
Appendix N: ChIA-Drop Approach Harnesses Microfluidic Droplet Based Partitioning.
REFERENCES

Allen et al. (2015) Late-onset Alzheimer disease risk variants mark brain regulatory loci *Neurology Genetics* PMID: 27066552

Björkblom et al. (2012) c-Jun N-terminal kinase phosphorylation of MARCKSL1 determines actin stability and migration in neurons and in cancer cells. *MCB.* PMID: 22751924

Durand et al. (2016) Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.* PMID: 27467250

Frasier et al. (2015) Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. *Mol Sys Bio.* PMID: 26700852

Greenburg et al. (1986) Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. *Science* PMID: 3749894

Ito et al. (2014) Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction. *Nature Communications.* PMID: 25034090

Ji et al. (2016) “3D Chromosome Regulatory Landscape of Human Pluripotent Cells” *Cell Stem Cell* PMID: 26686465

Kehayova et al. (2011) Regulatory elements require for the activation and repression of the protocadherin a gene cluster. *PNAS* PMID: 21949399

Li et al. (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. *Genome Biol.* PMID: 20181287

Li et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. *Cell* PMID: 22265404

Ng et al. (2017) An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. *Nature Neuroscience* PMID: 28869584

Nord et al. (2014) Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development. *Cell* PMID: 24360275

Parra-Damas et al. (2017) CRTC1 mediates preferential transcription at neuronal activity-regulated CRE/TATA promoters. *Scientific Reports* PMID: 29269871

Rhee et al. (2016) Expression of Terminal Effector Genes in Mammalian Neurons Is Maintained by a Dynamic Relay of Transient Enhancers. *Neuron* PMID: 27939581

Spiegel et al. (2014) Npas4 Regulates Excitatory-Inhibitory Balance within Neural Circuits through Cell-Type-Specific Gene Programs. *Cell* PMID: 24855953

Stevens et al. (2017) 3D structures of individual mammalian genomes studied by single-cell Hi-C. *Nature* PMID: 28289288

Watson & Tsai. (2017) In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory. *Curr Opinion Neurobiology* PMID: 28024185

