Functional Study of Long Noncoding RNA H19 in Muscle and Liver

Na Zhang

University of Connecticut - Storrs, zhangnala5@live.cn

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation

https://opencommons.uconn.edu/dissertations/1705
Functional Study of Long Noncoding RNA H19 in Muscle and Liver

Na Zhang, PhD
University of Connecticut, 2018

Abstract

The study in this thesis mainly focus on understanding the regulatory roles of LncRNA H19 in the muscle and liver. In order to better understand the role of H19 in muscle differentiation, we utilized RNA-seq to compare the differential gene expression between control and H19 knockdown cells during C2C12 myoblast differentiation. This study can lead us to identify candidate genes that are regulated by H19 during muscle differentiation. We also found that H19 plays an important role in the liver through regulating hepatic glucose production (HGP), which is a major contributor to hyperglycemia in type-2 diabetes (T2D). Results from our study revealed a novel epigenetic mechanism utilized by LncRNA H19 in regulating HGP in both normal and pathological conditions.
Functional Study of Long Noncoding RNA H19 in Muscle and Liver

Na Zhang

B.S., Henan University, 2009

M.S., Institute of Microbiology Chinese Academy of Sciences, 2012

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy
at the
University of Connecticut

2018
Functional Study of Long Noncoding RNA H19 in Muscle and Liver

Presented by

Na Zhang, B.S., M.S.

Major Advisor

Gordon G. Carmichael

Associate Advisor

Stormy J. Chamberlain

Associate Advisor

Yuanhao James Li

Associate Advisor

Arthur Gunzl

University of Connecticut

2018
ACKNOWLEDGMENTS

My graduate school study experience at University of Connecticut Health Center is an extremely important part of my life. I have had many happy moments, but also experienced a lot of challenges during this period of time. Fortunately, with the help and support from people around me, I was able to overcome those challenges and finish this journey. Therefore, I would like to acknowledge many people who have helped me along the way.

First of all, I would like to express my sincere gratitude to my major advisor and mentor, Dr. Gordon Carmichael. He is very open-minded and has encouraged me to work on any project that I was interested in. He guided me to think independently and critically and has always been very supportive. When I want to discuss with him about my project, he would always be ready for a discussion and providing valuable suggestions. Thanks to Gordon’s understanding and generosity, I was able to work on a collaborate project between Gordon’ lab and Dr. Yingqun Huang’s lab at Yale School of Medicine, from which I have gained additional precious research experiences. Other than being a wonderful mentor, Gordon has also been a good friend. There were a lot of happy memories left from our lab parties. I will always be grateful for the guidance, encouragement, support and friendship that Gordon gives to me during my graduate study.

I would also like to express my deep gratitude to my external advisor, Dr. Yingqun Huang from Yale school of medicine. Her passion for science and her creative thinking have made it a great pleasure to work with her. She has given me a lot of helpful suggestions on both technique issues and project hypothesis related problems. She has also patiently helped me on improving my presentation skills. I am very grateful to have Dr. Yingqun Huang as my additional advisor while I was working on my thesis project.
I would like to express my appreciation to my committee members Dr. Stormy J. Chamberlain, Dr. Arthur Günzl and Dr. Yuanhao James Li who have provided many valuable suggestions and constructive advices to me throughout my thesis work.

Gordon has attracted a lot of interesting and intelligent people to work with him. I am very glad I have worked in his lab. I would like to express my thanks to the current and past lab members, Kim Morris, Yinzhou Zhu, Ahmad Osman, Stephan Pirnie, Seth Garren, Xiaoxiao Hong, Tulika Sharma, Yuvabharath Kondaveeti and Joseph Autuoro, who have created a lovely working environment in Gordon's lab. Special thanks to Yinzhou Zhu, who has given me a lot of help on solving my sequencing data analysis related problems.

It was also very pleasant to work with the team in Dr. Yingqun Huang’s lab. I would like to express my thanks to Tingting Geng, Ya Liu, Yuanyuan Shen, Zhangsheng Wang, Tiefeng Cao, Ruling Zhang, Liyong Zhu. I would like to thank Tingting Geng and Ya Liu in particular for their significant contributions to our collaborative project.

I would also like to thank Gerald I. Shulman and Joao Paulo Camporez from Yale School of Medicine for their help on our hyperinsulinemic/euglycemic clamp studies.

I would like to express my special thanks to Dr. Michael Duff and Dr. Justin L. Cotney for their intellectual help and useful discussion on my sequencing data analysis.

Finally, I would like to express my special gratitude to my mom, who has always been supportive to me along my growing up, although sometimes at the cost of her own happiness. Without her sustaining encouragement and strong support, I wouldn’t be able to go through many tough times and achieve the goals in my life. I would also like to deeply thank my husband who has been by my side in the last two and half years of my graduate study. Without his company, love, understanding and support, I wouldn’t be able to complete my thesis.
TABLE OF CONTENTS

APPROVAL PAGE..iii

ACKNOWLEDGMENTS...iv

TABLE OF CONTENTS..vi

LIST OF FIGURES..x

LIST OF TABLES...xii

I. INTRODUCTION
 A. Long Noncoding RNA...1
 B. LncRNA H19..2
 C. Function of LncRNA H19...8
 D. H19 Mechanism of Action..10
 E. Thesis Objectives..13

II. ROLE OF H19 IN MUSCLE DIFFERENTIATION
 A. Abstract...16
 B. Background...17
 C. Material and Methods..19
 1. Materials...19
 2. Cell culture and transfection...19
 3. RNA-Seq library construction..20
 4. RNA-Seq data analysis..21
 5. RNA extraction and RT-qPCR..21
 6. Western blot analysis..21
7. Immunofluorescence analysis ... 22

D. Results
1. Knockdown of H19 in differentiating C2C12 cells 24
2. RNA-Seq and data analysis ... 24
3. RNA-Seq results suggest that H19 negatively regulates muscle differentiation ... 29
4. H19 knockdown leads to increased expression of muscle terminal differentiation-specific genes ... 34
5. H19 knockdown induces precocious myotube formation 34

E. Discussion .. 39

III. ROLE OF H19 IN HEPATIC GLUCOSE PRODUCTION

A. Abstract .. 43
B. Background ... 44
C. Material and Methods .. 49
1. Materials ... 49
2. Animals ... 50
3. AAV production and in vivo AAV administration 50
4. Pyruvate tolerance test (PTT) and glucose tolerance test (GTT) 51
5. Hyperinsulinemic-euglycemic clamp studies .. 51
6. Cell culture and transfection ... 52
7. Methyl-MiniSeq library construction .. 52
8. Methyl-MiniSeq sequence alignments and data analysis 53
9. RNA-seq and data analysis...54
10. RNA extraction and RT-qPCR...55
11. Western blot analysis..55
12. Glucose output assay..56
13. Quantitative Methylation-Specific PCR (QMSP)56
14. Statistical Analysis..57

D. Results
1. H19 knockdown reduces gluconeogenic gene expression and glucose production..59
2. H19 regulates Hnf4a promoter methylation..59
3. Fasting upregulates H19 and induces hypomethylation of Hnf4a........64
4. Glucagon upregulates H19..67
5. H19 deletion mice exhibit enhanced insulin-mediated suppression of HGP ..67
6. Liver-specific H19 overexpression augments HGP79
7. H19 expression is chronically increased in the liver of glucose intolerant mice...79

E. Discussion...88

F. Author Contributions..90

IV. CONCLUSIONS AND FUTURE DIRECTIONS
1. Understanding the regulatory mechanisms of H19 in muscle differentiation...91
2. Exploring other regulatory mechanisms of H19 in hepatic glucose production

V. BIBLIOGRAPHY
LIST OF FIGURES

1. Schematic representation of regulation at the imprinted Igf2-H19 locus 3
2. Transcripts from the H19 locus .. 6
3. Experimental procedure and results of H19 knockdown in differentiating C2C12 cells .. 25
4. Flow chart of RNA-Seq analysis strategy .. 27
5. Genes of Hypertrophic Cardiomyopathy (HCM) pathway that are up-regulated in siH19 versus siCon ... 32
6. H19 knockdown leads to increase of RNA and protein expression of MyoG and MyHC .. 35
7. Precocious myotube formation induced by H19 knockdown 37
8. Schematic representation of H19/SAHH - mediated regulation of gene methylation ... 47
9. Effects of H19 knockdown on glucose production and gluconeogenic gene expression in HepG2 cells ... 60
10. Sequences of DMRs in the conserved promoter region of human and mouse Hnf4α .. 6
2
11. Regulation of Hnf4α promoter methylation via the H19/SAHH pathway 65
12. Effects of fasting on H19 and gluconeogenic gene expression 68
13. Glucagon up-regulates H19 via cAMP/PKA pathway .. 70
14. H19 KO mice show altered Hnf4a methylation and gluconeogenic gene expression 73
15. H19 KO mice exhibit increased insulin-mediated suppression of EGP 75
16. Hepatic expression of Igf2 and miR-675...77

17. Mice with liver-specific H19 overexpression exhibit altered Hnf4a methylation,
gluconeogenic enzyme expression..80

18. Mice with liver-specific H19 overexpression show elevated HGP..........................82

19. HFD mice show altered hepatic H19 expression, Hnf4a methylation, and gluconeogenic
gene expression..84

20. A proposed model..86
LIST OF TABLES

1. Primers (Chapter II) .. 23

2. Gene ontology analysis on up-regulated genes using DAVID ... 30

3. Primers (Chapter III) ... 58
Chapter I

Introduction

A. Long Noncoding RNA

In the past decade, due to the advances in genomic sequencing and data analysis, tens of thousands of RNA transcripts that are similar to mRNA but do not encode proteins have been discovered. These transcripts are referred to as long noncoding RNA (lncRNA), defined as any transcribed RNA molecules that are longer than 200 nucleotides but do not have protein-coding potential (Engreitz et al., 2016). Although similar to mRNAs in structure, many lncRNAs being 5’ capped, spliced and poly-adenylated (Carninci et al., 2005), lncRNAs are much more abundant than mRNAs in the transcriptome, comprising about 80% of all transcripts (Kapranov et al., 2007). In addition to generation from coding region, lncRNAs can also be transcribed from intergenic and intronic regions (Ma et al., 2013). LncRNAs are less conserved than mRNAs in sequence across different species (Carninci et al., 2005). The expression pattern of lncRNAs seem to be highly tissue specific (Engreitz et al., 2016). Further, lncRNAs are very heterogeneous in several additional aspects, such as evolution, abundance, biogenesis, stability and the functional mechanisms (Engreitz et al, 2016). Although many lncRNAs could be non-functional transcriptional products, more and more lncRNAs have been found functional in regulating gene expression in a variety of biological processes (Engreitz et al, 2016).
B. LncRNA H19

H19 is the first discovered and characterized lncRNA (Brannan et al., 1990). It is also one of the most well-studied lncRNAs. The H19 gene is located on chromosome 11 in the human and chromosome 7 in the mouse. Both human and mouse H19 genes contain five exons and four introns, producing a predominantly cytoplasmic ~2.3kb RNA. Similar to the structure of mRNAs, the spliced H19 RNA has a 5’ cap and a 3’ poly-A tail (Pope et al., 2017).

The H19 gene belongs to an imprinted gene network (IGN) that controls embryonic growth (Varrault et al., 2006). The neighbor gene of H19 that also belongs to this IGN is insulin-like growth factor-II (Igf2), which is an important growth-promoting factor in development. Due to genomic imprinting, H19 is transcribed only from the maternal allele, whereas Igf2 is transcribed from the paternal allele (Kaffer et al., 2001). This allele-specific expression pattern of H19 and IGF2 is controlled by two kinds of cis-regulatory sequence elements in this region: a common set of enhancers located 3’ downstream of the H19 gene and an insulator called imprinting control region (ICR) located between the Igf2 gene and the H19 gene. The ICR contains CTCF (CCTC-binding factor) binding sites (Szabo et al., 2004; Kurukuti et al., 2006). The detailed regulatory mechanism of this imprinted region is indicated in Figure 1. The ICR contains a differentially methylated region (DMR) that has different methylation statuses between the maternal and the paternal chromosomes. On the maternal allele, the ICR is hypomethylated, allowing the binding of CTCF to its binding sites on the ICR. ICR/CTCF interaction mediated chromosome looping prevents the interaction between the 3’ downstream common enhancers and the IGF2 promoter, leading to silencing of IGF2 transcription. Meanwhile, the common enhancers would interact with H19 promoter and activate H19 transcription, resulting in H19 expression from maternal allele. In contrast, on the paternal allele, due to hypermethylation of the ICR, CTCF/ICR interaction is prohibited. As a result, the 3’ downstream common enhancers could be close to IGF2.
Figure 1. Schematic representation of regulation at the imprinted *Igf2-H19* locus.

A. Imprinted expression of H19 and IGF2. On the maternal allele, the imprinting control region (ICR) is hypomethylated, allowing the binding of CTCF to its binding sites on ICR. The enhancers activate the expression of H19. On the paternal allele, the ICR is hypermethylated, preventing CTCF from binding to the ICR. The enhancers activate the transcription from Igf2 promoter. B. ICR-mediated chromosome looping controls the imprinted expression of H19 and IGF2. On the maternal allele, the chromatin loop that mediated by ICR/CTCF interaction insulates the Igf2 gene from enhancers downstream of H19. On the paternal allele, without ICR/CTCF interaction, a different chromatin confirmation brings the enhancers close to Igf2 gene, leading to activation of Igf2 expression.
A

Enhancers

B

Enhancers
promoter and stimulate IGF2 transcription, leading to increased IGF2 expression and repressed H19 expression on the paternal allele (Kurukuti et al., 2006, Sanli and Feil, 2015). Disruption of genomic imprinting at the *Igf2-H19* locus can result in growth disorders. Hypermethylation at the ICR leads to loss of H19 expression and gain of IGF2 expression from the maternal allele, resulting in the overgrowth related disorder Beckwith-Wiedemann syndrome (BWS). On the other hand, hypomethylation at the ICR site leads to loss of IGF2 expression and gain of H19 expression from the paternal allele, resulting in poor growth related disorder Silver-Russell syndrome (SRS) (Nativio et al., 2011).

In addition to lncRNA H19, the *H19* locus generates a few other transcripts (Fig. 2). The first exon of H19 encodes two variants of highly conserved microRNAs, miR-675-5p and miR-675-3p (Cai and Cullen., 2007, Keniry et al., 2013). There are also two antisense transcripts from this locus, 91H and H19 opposite tumor suppressor (HOTS). The human 91H is a ~120kb transcript that spans the ICR between *H19* and *Igf2*, the entire *H19* gene, and the enhancers that drive expression of H19 and IGF2. Despite not being imprinted, both mouse and human 91H are expressed predominantly from the maternal allele (Berteaux et al., 2008). As an evolutionarily conserved lncRNA, 91H positively regulates IGF2 expression in mouse myoblasts through activating a novel promoter of *Igf2*, which can be counteracted by excess of H19 (Tran et al., 2012). In human, 91H has been found to promote the expression of H19 and IGF2 by regulating genomic imprinting and promoting the development of breast cancer (Vennin et al., 2017). The human HOTS transcript extends from 2.8kb downstream to 1 kb upstream of H19 (Onyango and Feinberg, 2011). HOTS is conserved in primates but not in mouse. Like H19, HOTS is also imprinted with maternal expression. The product of *HOTS* gene is a nucleus localized protein, which has been
reported to bind to the enhancer of rudimentary homolog protein and inhibit tumor growth (Onyango and Feinberg, 2011).

Figure 2. Transcripts from the H19 locus.

Transcripts from the *H19* locus include the well-characterized H19 lncRNA, microRNA miR-675 encoded in the first exon of H19, 91H lncRNA and HOTS mRNA. These transcripts are almost all transcribed from the maternal allele, except for 91H lncRNA, which can be partially generated from the paternal allele. 91H and HOTS are antisense transcripts from this locus. The product of *HOTS* gene is a nucleus-localized protein. The relative positions of each transcript are as indicated in the picture.
C. Function of LncRNA H19

As a lncRNA, H19 does not have an uniformly conserved open reading frame (ORF) among mammalian species that protein-coding genes normally have (Juan et al., 1999). But H19 has highly conserved islands of 20-40 nucleotides across its sequence, the pattern of which has also been observed in bacterial 16 ribosomal RNAs. Moreover, based on the comparison of H19 genes from nine species including human, mouse, cat and rabbit, Juan et al. found that H19 has evolutionarily conserved secondary structure. Together, these results suggest that H19 gene exerts its function as a structured RNA. The unique expression pattern of H19 during different developmental stages and in different tissues further supports the notion that H19 is a functional lncRNA. H19 is prevalently expressed in all tissues during embryonic development. But after birth, H19 expression is repressed in most tissues except for a few tissues including skeletal muscle and heart muscle (Poirier et al., 1991).

The high expression of H19 in embryo suggests an important role of H19 during embryonic development. Keniry et al. found that in the second half of gestation, H19 limits the growth of the placenta through its processed product miR-675, which can target the insulin like growth factor 1 receptor (Igf1r), a common receptor of Insulin, IGF1 and IGF2 (Keniry et al., 2012). Full length H19 has also been reported to control embryo growth by acting in trans to regulate the expression of IGF2 as well as other growth-promoting genes, such as Slc38a4 (solute carrier family 38 member 4) and Peg1 (paternally expressed gene 1) (Monnier et al., 2013). These genes, including H19 itself, are from the imprinted gene network (IGN). Through forming a complex with the methyl-CpG-binding domain protein 1 (MBD1), H19 has been reported to recruit repressive epigenetic markers to the target genes and down-regulate their expression (Monnier et al., 2013).
The sustained high expression of H19 in muscle after birth indicates a special role of H19 in muscle tissues. In undifferentiated multipotent mesenchymal C2C12 cells, H19 was reported to help to maintain cells in an undifferentiated status by assisting KSRP (RNA binding protein K homology-type splicing regulatory protein) mediated decay of myogenin mRNA (Giovarelli et al., 2014). Kallen et al. found that H19 could act as a molecular sponge to sequester let-7 family miRNAs from their targeted transcripts, resulting in changes in myogenic differentiation (Kallen et al., 2013). Moreover, miR-675-5p and miR-675-3p generated from the first exon of H19 have been discovered to promote myoblast differentiation and muscle regeneration in vivo (Dey et al., 2014).

Existing evidence suggests that H19 is involved in liver development and liver diseases. Wang et al. found that H19 prevents overgrowth of fetal liver by inhibiting cell proliferation through Wnt signaling. Specifically, H19 can block the hnRNP U/Actin interaction, resulting in repression of Pol II-mediated transcription of genes involved in the Wnt signaling pathway. On the other hand, H19 can inhibit the expression of Wnt pathway regulator Frat1, leading to reduction of b-catenin protein and further inactivation of the Wnt/b-catenin signaling (Wang et al., 2016). In addition to liver development, several examples suggest the involvement of H19 in liver diseases. For instance, it has been reported that targeting H19 could reduce apoptosis regulator BCL-2-induced liver injury in cholestatic liver fibrosis (Zhang et al., 2016). In a study about non-alcoholic fatty liver disease (NAFLD) in mice, down-regulating PLIN2 (Perilipin 2), an important driver of fatty liver development, was found to dramatically increase H19 expression by 548-fold and significantly decrease triglyceride production, indicating the involvement of H19 in NAFLD (Imai et al., 2012). Furthermore, association of H19 with Type II diabetes (T2D) in the liver has also been suggested in a study carried out with T2D patients. In the study, significant decrease in methylation and increase in expression of H19 were observed in T2D livers.
compared to control livers (Nilsson et al., 2015). The underlying molecular mechanism behind this association needs to be further investigated.

Beside important functions in normal cells and tissues, accumulating data have suggested that H19 is an important player in cancer (Raveh et al., 2015). H19 is expressed in almost every human cancer and has been reported to be involved in all stages of tumorigenesis, such as cell proliferation, differentiation, epithelial to mesenchymal transition (EMT) and also mesenchymal to epithelial transition (MET). Although there are controversies about the role of H19 as an oncogene or tumor repressor, it seems like the function of H19 in a specific tumor depends on its context within the stage of tumor progression (Raveh et al., 2015).

D. H19 Mechanism of Action

Given the evolutionarily-conserved sequence pattern and secondary structure of H19, it is reasonable to speculate that the main mode of action of H19 is to interact with proteins or miRNAs through its conserved binding sites. In addition, as the host of miR-675, H19 was also considered to exert its function through miR-675 (Keniry et al., 2012; Dey et al., 2014; Gao et al., 2012; Tsang et al., 2010; Hernandez et al., 2013). But as an independent transcript that is different from full length H19, miR-675 does not necessarily need to share its function with H19.

H19 can mediate gene expression regulation by binding to its protein partners. This can occur in the nucleus or in the cytoplasm and the expression of targeted genes can be either activated or repressed, depending on the specific protein partner that H19 interacts with. There are several examples of H19 mediated regulation in the nucleus. In bladder cancer, Luo et al revealed that through binding to enhancer of zeste homolog 2
(EZH2), a component of the polycomb repressive complex 2 (PRC2), H19 could recruit PRC2 to the E-cadherin gene and silence its expression, promoting cancer metastasis (Luo et al., 2013). Similarly, during embryonic development, H19 was found to form a complex with MBD1, which binds to methylated DNA and recruits histone lysine methyltransferase (KMT)-containing complexes such as SETDB1 and SUV39H1 to silent genes in the imprinted gene network (IGN) via H3K9 methylation (Monnier et al., 2013). Other than repression of gene expression, H19 is also involved in activation of gene expression. In a study of hepatocellular carcinoma (HCC), Zhang et al. discovered that H19 acts as a tumor suppressor by epigenetic activation of the miR-200 family. H19 associates with an HnRNP U/PCAF/RNAPol II complex via binding to HnRNP U, activating the expression of miR-200 family by enhancing histone acetylation (Zhang et al., 2013). Interestingly, H19 can even mediate epigenetic regulation of gene expression by binding to protein partners in the cytoplasm. For instance, in our previous study, we found that H19 can regulate genomewide DNA methylation by binding to and inhibiting S-adenosylhomocysteine hydrolase (SAHH)’s function. The details of this regulatory mechanism will be explained in Chapter III of this dissertation. H19 has also been found to regulate gene expression at the post-transcriptional level by interacting with cytoplasmic protein partners. For example, in myoblast cells, H19 binds to KSRP and stabilizes the binding of KSRP to myogenin mRNA, assisting KSRP mediated myogenin mRNA degradation (Giovarelli et al., 2014). In gastric cancer, H19 acts as an oncogene in at least two ways. On the one hand, it binds with and stabilizes angiogenesis inhibitor Isthmin 1 (ISM1) (Li et al., 2014). On the other hand, it interacts with the tumor suppressor p53 to inhibit its activity (Yang et al. 2012).

H19 can act as a microRNA sponge and affect the expression of microRNA target genes. For example, Kallen et al. found that there are predicted let-7 binding sites in
H19 from human, mouse, rat or even bovine subjects. Using an immunoprecipitation assay, these authors further discovered that H19 associates with let-7 in miRNPs, suggesting potential regulation of let-7 function by H19. In both human and mouse cells, change of H19 levels has been found to positively correlate with the expression levels of let-7 target genes such as HMGA2 (High Mobility Group AT-Hook 2) and Dicer (Ribonuclease III) (Kallen et al., 2013). These results suggest that H19 can bind to and sequester let-7, leading to positive regulation of let-7 targets (Kallen et al., 2013). Another example is the association of H19 with miR-141 in gastric cancer, through which H19 can regulate the expression of ZEB1 (Zinc Finger E-Box Binding Homeobox 1) (Zhou et al., 2015).

H19-derived miR-675 plays important roles during development and in cancer. MiR-675 has been reported to inhibit human trophoblast cell proliferation by targeting the 3’-UTR of Nodal Modulator 1 (NOMO1) mRNA (Gao et al., 2012). During muscle differentiation and regeneration after injury, miR-675 was found to promote muscle differentiation by targeting and down-regulating transcriptional factor Smad and DNA replication initiation factor Cdc6 (Cell Division Cycle 6) (Dey et al., 2014). In the case of cancer, miR-675 has been revealed to target the tumor suppressor Rb in both AFP-secreting hepatocellular carcinoma (Hernandez et al., 2013) and colorectal cancer (Tsang et al., 2010).

Together, these results show that H19 appears to be a multi-functional lncRNA that utilizes distinct molecular mechanism to regulate gene expression, depending on the biological contexts during development and disease conditions.
E. Thesis Objectives

The studies in this thesis mainly focus on understanding the regulatory roles of H19 in the muscle and liver. In Chapter II, I will discuss the role of H19 during muscle differentiation. In Chapter III, I will describe H19-mediated regulation of hepatic glucose production via a novel epigenetic mechanism.

H19 is highly expressed in the muscle but not other tissues in adults (Poirier et al., 1991). It is also known that the expression of H19 increases remarkably after the start of muscle differentiation (Kallen et al., 2013, Dey et al., 2014). However, the significance of these phenomena remains unclear. Previously, two studies focused on the role of H19 in muscle differentiation have drawn contradictory conclusions. One study suggested that H19 inhibits muscle differentiation (Kallen et al., 2013), while the other one indicated that H19 promotes muscle differentiation via its embedded miR-675 (Dey et al, 2014). The goal of my first project (Chapter II) was investigating the correlation between H19 and muscle differentiation: Does H19 inhibit or promote muscle differentiation? To address this question, I would compare the gene expression patterns of differentiating muscle cells with or without H19 depletion using RNA-seq. To achieve H19 depletion in differentiating muscle cells, H19-specific siRNA (si1H9) would be transfected into day 1 differentiating mouse C2C12 myoblasts. I expected to observe an at least 80% of H19 knockdown in siH19 treated cells versus control. Further, RNA-seq analysis would be carried out on control and H19 knockdown cells to examine the differential gene expression under these two conditions. I expected to see expressional change of genes associated with cell proliferation and/or muscle terminal differentiation. Next, the expressional change of specific genes observed from RNA-seq data would be verified by RT-qPCR and Western blot. Finally, the physiological effect of H19 depletion on muscle differentiation would be examined by evaluating the status of myotube formation. If H19 inhibits muscle differentiation, I would
expect to see the down-regulation of cell proliferation related genes and/or the up-regulation of muscle terminal differentiation related genes in H19 knockdown cells versus control. In addition, premature myotube formation was also expected in H19 knockdown versus control cells if H19 plays a negative regulatory role in muscle differentiation. In Chapter II, through transcriptome-wide analysis, I have found that H19 plays an inhibitory role in muscle differentiation.

As I discussed in the introduction, despite low levels of expression in the liver after birth, H19 has been reported to be involved in liver development and diseases. The increase of H19 expression in Type 2 diabetes (T2D) livers compared to control livers (Nilsson et al., 2015) suggests a potential role of H19 in the development of T2D. The hallmarks of T2D are elevated blood glucose levels (hyperglycemia) and insulin resistance. It is known that excessive hepatic glucose production (HGP) contributes significantly to the hyperglycemia of T2D (Rines et al., 2016). However, the causal mechanism of excessive HGP in T2D remains poorly understood. Furthermore, our previous data have suggested a positive correlation between H19 and a transcriptional factor HNF4A that is critical for HGP. Previously, we found that H19 could regulate genome wide DNA methylation by binding to SAHH and inhibiting its enzyme activity (Zhou et al., 2015). We also noticed a correlation between low H19 expression level and high promoter DNA methylation level of Hnf4a (Zhong et al., 2016), indicating H19 might regulate HNF4A expression by affecting Hnf4a promoter DNA methylation through interacting with SAHH. Therefore, in my second project (Chapter III), we hypothesized that H19 positively regulates HGP, contributing to the progression of T2D, potentially by epigenetic regulation of Hnf4a. First, we would test our hypothesis in a cell model HepG2, which is a widely used cell line for glucose metabolism study. Then I would test whether H19 regulates HGP in vivo using four mouse models including overnight fasting model, high-fat diet-induced obesity model, H19 whole-body
knockout model and liver-specific overexpression of H19 model. We have found that H19 knockdown led to an increase of Hnf4a promoter DNA methylation and a decrease of Hnf4a expression and glucose production in HepG2 cells. Experimental results from our overnight fasting mouse model and high-fat diet-induced obesity mouse model could demonstrate that in both models, an increase of H19 expression correlates with a decrease of Hnf4a promoter DNA methylation and an increase of HNF4A expression. Moreover, evidence from H19 loss-of-function and H19 gain-of-function studies using H19 knockout mouse model and liver-specific overexpression of H19 mouse model respectively further supported that H19 negatively regulates Hnf4a promoter DNA methylation, leading to increased HNF4A expression and enhanced hepatic glucose production in vivo.
Chapter II

Role of H19 in muscle differentiation

A. Abstract

In skeletal muscle myogenesis, the determination and terminal differentiation of muscle cells are thought to be controlled by evolutionarily conserved networks of transcription factors such as MyoD, Myf5, Myogenin and Mrf4. Moreover, accumulating evidence from recent studies suggests that microRNAs and long noncoding RNAs (lncRNAs) are also involved and play important roles in muscle differentiation. LncRNA H19, the first discovered lncRNA, is known to have a unique muscle-specific expression pattern in adults. A dramatic increase in H19 expression shortly after the onset of myoblast differentiation \textit{in vitro} has been conventionally observed (Neguembor et al., 2014), which leads to interest in studying the role of H19 during muscle differentiation. However, two previous studies focusing on the role of H19 in muscle differentiation have reached almost opposite conclusions. One study found that H19 acts as a molecular decoy for let-7 microRNA, thus inhibiting muscle differentiation (Kallen et al., 2013). The other study claimed that H19 promotes muscle differentiation and regeneration due to the effects of H19-derived miR-675 (Dey et al., 2014). In order to better understand the role of H19 in muscle differentiation, here we utilized RNA-seq to compare the differential gene expression between control and H19 knockdown cells during C2C12 myoblast differentiation. This study can also lead us to identify candidate genes that are regulated by H19 during muscle differentiation.
B. Background

Muscle differentiation is the process where after muscle lineage commitment, proliferating myoblasts withdraw from the cell cycle and fuse to become multinucleated myotubes, which have a contractile phenotype, express a series of muscle-specific genes, and will eventually mature into myofibers (Olson, 1992). In skeletal muscle myogenesis, the determination and terminal differentiation of muscle cells are mainly governed by the MyoD family of basic helix-loop-helix transcription factors: MyoD, Myf5, Myogenin and Mrf4. Among these four myogenic regulatory factors (MRFs), MyoD and Myf5 play critical roles in specification and commitment of muscle progenitors into skeletal muscle lineage, whereas myogenin is essential for directing the terminal differentiation of committed myoblasts (Berkes and Tapscott, 2005). Myf4 seems to have a dual role, involving both muscle cell fate specification and differentiation (Braun and Gautel, 2011). Given that a large set of muscle-specific genes expressed by cardiac muscle overlap with those expressed by skeletal muscle, a common underlying regulatory scheme may exist to control both skeletal and cardiac muscle gene expression (Olson, 1993). Apart from these well known MRFs mentioned above, accumulating evidence from previous studies suggests that microRNAs (miRNAs) including let-7 and long noncoding RNAs (lncRNAs) (Neguembor et al., 2014; Mousavi et al., 2013; Hube et al., 2010; Wang et al., 2013) including lncRNA H19, are also involved in and play important roles in muscle differentiation.

LncRNA H19 and its role in muscle differentiation. The unique muscle-specific expression of H19 after birth was of great interest to us. Besides, dramatic increase of H19 expression occurs shortly after onset of myoblasts differentiation *in vitro* (Neguembor et al., 2014). These interesting facts lead us to ask: What is the function of H19 in muscle
differentiation? In the past few years, two studies focusing on the role of H19 in muscle differentiation have reached almost opposite conclusions. In an *in vitro* study using C2C12 cells as a model system, Kallen, A. N. et al. found that H19 has multiple binding sites for several miRNAs from the let-7 family, which was known to have important roles in development and cancer. These authors also proved that H19 physically associates and sequesters let-7 in a miRNP complex, leading to increased expression of let-7 targets. Moreover, they observed that both overexpression of let-7 and knockdown of H19 in day 1 differentiating C2C12 myoblasts led to precocious muscle differentiation. Therefore, they concluded that H19 acts as a molecular sponge for let-7 microRNAs, leading to inhibition of muscle differentiation (Kallen et al., 2013). In contrast, the other study carried out by Dey, B. K. et al. revealed that H19 promotes skeletal muscle differentiation and regeneration due to the effects of miR-675 generated from the H19 transcript (Dey et al., 2014). These authors reported that, like H19, miR-675 is significantly induced during skeletal muscle differentiation. C2C12 myoblasts with H19 knockdown displayed decreased differentiation, which was rescued by exogenous expression of miR-675. Similarly, mice with H19 deficiency showed impaired skeletal muscle regeneration after injury, which was also rescued by reintroduction of miR-675 (Dey et al., 2014). As a result of these contradictory studies, the role of H19 in muscle differentiation is still controversial and needs to be further investigated.

Is H19 playing a role to promote muscle differentiation or inhibit muscle differentiation? Are full length H19 and its derived miR-675 acting independently or maybe even having opposite roles in muscle differentiation? To address these questions, we first carried out transcriptome analysis using RNA-seq to compare the differential gene expression between differentiating C2C12 cells with or without H19 knockdown. We found
that many muscle terminal differentiation associated genes were up-regulated after H19 knockdown, suggesting an inhibitory role of H19 in muscle differentiation. The increase of muscle terminal expression marker genes myogenin (MyoG) and myosin heavy chain (MyHC) under H19 knockdown was further verified by RT-qPCR and Western blot. Finally, we observed precocious myotube formation after H19 knockdown with immunofluorescence staining of MyHC.

C. Material and Methods

1. Materials

Antibodies for MyoG (Santa Cruz, Dallas, TX, cat# sc-12732), MyHC (Sigma-Aldrich, St. Louis, MO, cat# M4276), and Tubulin (Cell signaling, Danvers, MA, cat# 3873S) were purchased. Mouse H19 siRNA (siH19, Invitrogen, Carlsbad, CA, cat# 4390815/n253566) and control siRNA (siCon, Invitrogen, Carlsbad, CA, cat# 12935-200) were purchased from Invitrogen.

2. Cell culture and transfection

Mouse C2C12 myoblasts (Sigma-Aldrich, cat# 91031101-iVL) were maintained at undifferentiated status in growth medium (GM; DMEM, Gibco, cat# 11965-092, supplemented with 10% fetal bovine serum, heat-inactivated, 1% penicillin/streptomycin, 1% L-glutamine and 1 mM sodium pyruvate). To induce cell differentiation, cells were seeded in GM at a density of 2 x 10^5 cells per well in a 6-well plate or at a density of 2 x 10^4 per well in a 24-well plate. Two days later when cells reach confluence, GM was replaced with differentiation medium (DM) containing 2% horse serum in place of 10% fetal bovine
serum to initiate myoblast differentiation. Transfection was performed at 40 h after changing GM to DM.

To prepare siRNA transfection mix for one well of a 6-well plate, 500 pmol of siCon or siH19 was gently mixed with 600 ul OPTI-MEM. In parallel, 25 ul lipofectamine 2000 was mixed with 600 ul OPTI-MEM. After incubation at room temperature for 5 min, the above two solutions were mixed gently and incubated for 20-30min at room temperature to allow the formation of siRNA/lipid complexes. Then the final mix was added to the cells pre-washed with OPTI-MEM. After overnight (12h – 18h) incubation, the transfection mixture was replaced with fresh DM. RNA, protein were extracted and analyzed at the indicated time points following transfection.

3. RNA-Seq library construction

C2C12 cells were transfected with siCon or siH19 in a 6-well plate. Cells were harvested for RNA extraction 48 h post transfection using the Purelink RNA mini kit (Thermo Fisher Scientific, Waltham, MA, cat# 12183018A). RNA-seq libraries were prepared using the TruSeq Stranded Total RNA LT kit with Ribo-Zero Human/Mouse/Rat, set A (Illumina, San Diego, CA, cat# RS-122–2201) according to the sample preparation protocol. Briefly, 1 μg of total RNA was subjected to Ribo-Zero depletion to remove rRNAs. The remaining RNA was purified, fragmented and primed with random hexamers for cDNA synthesis. After first and second cDNA synthesis, cDNA fragments were adenylated and then ligated to indexing adapters. The cDNA fragments were enriched by PCR, purified and then sequenced on an Illumina NextSeq500 sequencer using paired-end chemistry and 76-bp cycles. Sequencing data are available from the GEO with accession number GSE73014.
4. RNA-Seq data analysis

Illumina BaseSpace (https://basespace.illumina.com/-embedding tools were used to analyze the RNA-seq data. TopHat Alignment v1.0.0 was used to map sequencing reads to mm10 genome. Cufflinks Assembly & DE v1.0.0 containing Cufflinks 2.1.1 and Cuffdiff 2.1.1 was applied to assemble mapped transcripts and calculate differential expression of genes. DAVID bioinformatics resources (Huang et al., 2009) tool was used to do gene ontology and pathway analysis. iRegulon (Janky et al., 2014) was utilized to identify transcriptional factors (TFs) and the targets from the differentially expressed genes.

5. RNA extraction and RT-qPCR

Total RNAs were extracted from C2C12 cells using PureLink RNA Mini Kit (ThermoFisher Scientific, Waltham, MA, cat# 12183018A). cDNA was synthesized using iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA, cat# 1708891) in a 20ul reaction with 0.5 – 1 ug of total RNA. Real-time quantitative PCR was performed in a 15ul reaction containing 0.5-1ul of cDNA using iQSYBRGreen (BIO-RAD, Hercules, CA, cat #1708880) in a Bio-Rad iCycler. PCR was performed by initial denaturation at 95°C for 5 min, followed by 40 cycles of 30 sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C. Specificity was verified by melting curve analysis and agarose gel electrophoresis. The threshold cycle (Ct) values of each sample were used in the post-PCR data analysis. Gene expression levels were normalized against housekeeping gene Tubulin. Real-time PCR primers are listed in Table 1.

6. Western blot analysis

C2C12 cells in a 6-well plate were washed twice with ice-cold PBS and then lysed in the plate with cold RIPA buffer containing protease inhibitors. Cell lysate was then
transferred to a 1.5 ml tube and kept on ice for 10 min, followed by centrifugation at 12,000 rpm for 10 min at 4°C. The supernatant was transferred to a new tube and stored at -20°C for further analysis. Protein concentration was determined by using the DC Protein Assay Kit (BIO-RAD, Hercules, CA, cat# 5000112). 2 x Laemmli loading buffer (BIO-RAD, Hercules, CA, cat# 1610737) was used to load 10 ug protein/sample into a 12% SDS-PAGE gel, followed by western blot analysis. Western blot analysis procedure for LI-COR Odyssey Infrared Imager was performed. For membrane blocking and antibody diluting, Odyssey Blocking Buffer (TBS) (LI-COR Biosciences, Lincoln, NE, cat# P/N 927-50000) was used. For secondary antibody incubation, IRDye dye-labeled secondary antibodies were used. Blots were developed on the LI-COR Odyssey Infrared Imaging System.

7. Immunofluorescence analysis

Day 4 differentiating C2C12 myoblasts grown on glass coverslips were washed with PBS briefly, followed by fixation with 4% paraformaldehyde in PBS pH7.4 for 10 min at room temperature. Then cells were permeabilized with 0.1% Triton X-100 in PBS for 5 min, followed by three times of washing in PBS for 5 min. Blocking unspecific binding of the antibodies was performed using 5% BSA and 5% goat serum in PBS for 1h. Cells were then incubated with anti-MyHC antibody for 1h at room temperature in a humidified chamber. After washing with PBS for three times, cells were incubated with Alexa-488 conjugated goat anti-mouse IgG antibody for 1h in a humidified chamber in dark, followed by three times of washing in PBS. Cells were then mounted with mounting medium containing DAPI (Vector Laboratories, Burlingame, CA). Images were taken using fluorescence microscopy (LSM 780, Carl Zeiss, Oberkochen, Germany).
Table 1. Primers

Sequence for RT-qPCR analysis (shown 5’ to 3’)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>mH19</td>
<td>Forward: AATGGTGCTACCCAGCTCAT</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCAGAACGAGACGGACTTAAAGAA</td>
</tr>
<tr>
<td>mMHC</td>
<td>Forward: CGCAAGAATGTTCAGGCT</td>
</tr>
<tr>
<td></td>
<td>Reverse: GCCAGGGTTGACATTGGATTG</td>
</tr>
<tr>
<td>mMyogenin</td>
<td>Forward: CAATGCACTGGAAGTGCGGT</td>
</tr>
<tr>
<td></td>
<td>Reverse: CTGGGAAGGCAACAGACAT</td>
</tr>
<tr>
<td>mb-Actin</td>
<td>Forward: ACACCGGACCACGTTC</td>
</tr>
<tr>
<td></td>
<td>Reverse: TACAGGGCCGGCGGCAGCAT</td>
</tr>
<tr>
<td>mb-Tubulin</td>
<td>Forward: CGTGTTCCGCGAGTGCTGCGC</td>
</tr>
<tr>
<td></td>
<td>Reverse: GGGTAGGGGATGACGCTGAATG</td>
</tr>
</tbody>
</table>
D. Results

To determine the role of H19 in muscle differentiation, we used mouse C2C12 myoblasts as a model system. Day 2 differentiating C2C12 cells were transfected with control siRNA (siCon) or H19-specific siRNA (siH19), followed by evaluation of knockdown efficiency using RT-qPCR two days post transfection (Fig. 3A). Through H19-specific siRNA mediated knockdown, H19 level was decreased by ~ 90% compared to the control (Fig. 3B). The high knockdown efficiency of H19 is a good preparation for comparative transcriptome analysis between control and H19 depleted cells.

2. RNA-Seq and data analysis

H19 knockdown experiments were performed in differentiating C2C12 cells as indicated (Fig. 3A), followed by genome-wide transcriptome analysis using RNA-Seq. The RNA-seq library construction and data analysis were performed as shown in the flow chart (Fig. 4). Total RNA with ribosomal RNA removed was used for RNA-seq library construction. Triplicate samples for each treatment group were included and ~ 60 million reads per sample were acquired. The quality of raw sequencing reads was confirmed by running FASTQC. Tophat alignment results showed on average 86% sequencing reads were successfully aligned to the mouse mm10 reference genome, with ~ 50% of reads aligned to the coding region, suggesting a good capture of coding transcripts in this RNA-seq experiment. Differential expression analysis using Cufflinks Assembly & DE indicated that among ~ 30 thousand genes identified from the sequencing reads, 3019 genes have significant differential expression (q Value < 0.05) between siCon and siH19 samples. Furthermore, 604 out of the 3019 genes were up-regulated by at least 1.5 fold, whereas 218
Figure 3. H19 knockdown in differentiating C2C12 cells.

A. Experimental procedure of H19 knockdown in differentiating C2C12 cells. Differentiating C2C12 myoblasts were transfected with siCon or siH19 at 40 h post induction of differentiation. Cells were harvested for further analysis at 48 h after transfection. B. RT-qPCR analysis results of H19 knockdown. Relative RNA levels are presented. Numbers are mean ± SD (n=3). **p<0.01.
A

Myoblast 48h 40h 48h Myotube

Induce differentiation

48h after transfection, harvest cells

40h after start of differentiation, transfect cells with siCon or siH19

B

Relative H19 level

siCon siH19

0.0 1.4

0.2 1.2

0.4 1.0

0.6

0.8

1.0

1.2

1.4

**
Total RNA with ribosomal RNA depleted was used for Illumina TruSeq Stranded Total RNA library construction. The RNA-Seq libraries were sequenced on an Illumina NextSeq 500 sequencer. Raw sequencing data were processed via a standard RNA-Seq data analysis pipeline. Briefly, the raw sequencing reads were first checked by using FASTQC, then aligned to the reference genome using TopHat, followed by gene assembly and gene reads quantification using Cufflink, and then differential gene expression analysis using Cuffdiff. Functional analysis on the differentially expressed genes were carried out using DAVID and iRegulon.
TruSeq Stranded Total RNA library preparation

RNA-seq using NextSeq 500 sequencer

Data processing

Functional analysis

FASTQC - quality control

TopHat - alignment

Cufflink – assemble and calculate transcripts abundances

Cuffdiff – detection of differentially expressed (DE) genes

➢ Function and pathway enrichment analysis with “DAVID”
➢ Detection of master regulators (TFs) with “iRegulon”
out of them were down-regulated by at least 1.5 fold, suggesting changing of H19 levels during muscle differentiation does extensively affect gene expression in the cells.

3. **RNA-Seq results suggest that H19 negatively regulates muscle differentiation.**

To understand which cellular processes or pathways are influenced by H19 knockdown as well as to determine the regulatory role of H19 during muscle differentiation, gene ontology analysis with DAVID was performed on the up-regulated gene set (604 genes) and down-regulated gene set (218 genes) respectively. Surprisingly, the gene ontology analysis based on the up-regulated 604 genes showed that many genes associated with myotube and muscle fiber formation were significantly enriched in the list. For instance, in the cellular components category, genes related to myofibril, contractile fiber, sarcomere were extremely significantly enriched in the up-regulated gene set, with a very small P-value $\sim 10^{-13}$ (Table. 2A). Myofibril, contractile fiber, sarcomere are important components of mature muscle fibers (Greising et al., 2012). Besides, in the biological process category, morphogenesis, muscle contraction, muscle cell differentiation associated genes were highly enriched in the up-regulated gene set. The calculated P-value from these biological processes is as low as $\sim 10^{-5}$ (Table. 2B). Consistently, the pathway analysis also revealed that genes related to muscle overgrowth and muscle contraction pathways were significantly enriched (Table. 2C). The up-regulated genes enriched in the Hypertrophic Cardiomyopathy (HCM) pathway are shown in Fig 5. Therefore, the gene ontology analysis results based on up-regulated genes strongly suggest that down-regulation of H19 leads to enhanced muscle differentiation. That is, H19 may negatively regulate muscle differentiation. The gene ontology analysis was also performed on down-regulated genes. However, no significantly enriched biological processes or pathways were identified in this gene set.
Table 2. Gene ontology analysis on up-regulated genes using DAVID.

Among 3019 genes that have significant differential expression (q Value < 0.05) between siCon and siH19 samples, 604 genes were up-regulated by at least 1.5 fold. Gene ontology analysis was performed on these 604 up-regulated genes. A. Cellular Component (CC) enrichment of up-regulated gene set. B. Biological process (BP) enrichment of up-regulated gene set. C. Pathway enrichment of up-regulated gene set. Filter: Count of genes in each term is higher or equal to 5, P-value is smaller or equal to 0.05.
A.

Cellular Component (CC) enrichment of up-regulated gene set

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>P-Value</th>
<th>Benjamini</th>
</tr>
</thead>
<tbody>
<tr>
<td>myofibril</td>
<td>23</td>
<td>2.00E-14</td>
<td>6.20E-12</td>
</tr>
<tr>
<td>contractile fiber</td>
<td>23</td>
<td>5.20E-14</td>
<td>8.10E-12</td>
</tr>
<tr>
<td>sarcosome</td>
<td>20</td>
<td>1.80E-12</td>
<td>1.80E-10</td>
</tr>
<tr>
<td>contractile fiber part</td>
<td>20</td>
<td>7.00E-12</td>
<td>5.40E-10</td>
</tr>
<tr>
<td>actin cytoskeleton</td>
<td>24</td>
<td>5.70E-08</td>
<td>3.50E-06</td>
</tr>
<tr>
<td>myosin filament</td>
<td>8</td>
<td>1.10E-07</td>
<td>5.80E-06</td>
</tr>
<tr>
<td>I band</td>
<td>12</td>
<td>4.00E-07</td>
<td>1.70E-05</td>
</tr>
<tr>
<td>myosin complex</td>
<td>12</td>
<td>1.70E-06</td>
<td>6.70E-05</td>
</tr>
<tr>
<td>cytoskeleton</td>
<td>62</td>
<td>3.80E-06</td>
<td>1.30E-04</td>
</tr>
<tr>
<td>sarcoplasmic reticulum</td>
<td>9</td>
<td>5.80E-06</td>
<td>1.80E-04</td>
</tr>
<tr>
<td>sarcoplasm</td>
<td>9</td>
<td>9.20E-06</td>
<td>2.60E-04</td>
</tr>
<tr>
<td>striated muscle thick filament</td>
<td>5</td>
<td>5.20E-05</td>
<td>1.30E-03</td>
</tr>
<tr>
<td>muscle myosin complex</td>
<td>5</td>
<td>1.50E-04</td>
<td>3.50E-03</td>
</tr>
<tr>
<td>myosin II complex</td>
<td>5</td>
<td>3.30E-04</td>
<td>7.30E-03</td>
</tr>
<tr>
<td>Z disc</td>
<td>8</td>
<td>4.20E-04</td>
<td>8.50E-03</td>
</tr>
</tbody>
</table>

Count ≥ 5, p value ≤ 0.05

B.

Biological process (BP) enrichment of up-regulated gene set

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>P-Value</th>
<th>Benjamini</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellular component morphogenesis</td>
<td>28</td>
<td>2.30E-05</td>
<td>5.90E-03</td>
</tr>
<tr>
<td>muscle contraction</td>
<td>11</td>
<td>1.80E-05</td>
<td>6.20E-03</td>
</tr>
<tr>
<td>muscle cell differentiation</td>
<td>15</td>
<td>2.10E-05</td>
<td>6.30E-03</td>
</tr>
<tr>
<td>protein localization</td>
<td>47</td>
<td>1.70E-05</td>
<td>7.20E-03</td>
</tr>
<tr>
<td>heart development</td>
<td>21</td>
<td>3.20E-05</td>
<td>7.20E-03</td>
</tr>
<tr>
<td>muscle system process</td>
<td>12</td>
<td>8.00E-06</td>
<td>8.20E-03</td>
</tr>
<tr>
<td>regulation of transcription from RNA polymerase II promoter</td>
<td>41</td>
<td>1.60E-05</td>
<td>8.20E-03</td>
</tr>
<tr>
<td>muscle organ development</td>
<td>18</td>
<td>4.90E-05</td>
<td>9.10E-03</td>
</tr>
<tr>
<td>regulation of cell morphogenesis</td>
<td>13</td>
<td>5.90E-05</td>
<td>9.30E-03</td>
</tr>
<tr>
<td>phosphate metabolic process</td>
<td>50</td>
<td>6.60E-05</td>
<td>9.60E-03</td>
</tr>
<tr>
<td>phosphorus metabolic process</td>
<td>50</td>
<td>6.60E-05</td>
<td>9.60E-03</td>
</tr>
<tr>
<td>striated muscle contraction</td>
<td>7</td>
<td>8.50E-05</td>
<td>9.60E-03</td>
</tr>
<tr>
<td>striated muscle cell development</td>
<td>10</td>
<td>4.70E-05</td>
<td>9.70E-03</td>
</tr>
</tbody>
</table>

Count ≥ 5, p value ≤ 0.05

C.

Pathway enrichment analysis of up-regulated gene set

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>P-Value</th>
<th>Benjamini</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertrophic cardiomyopathy (HCM)</td>
<td>15</td>
<td>3.80E-07</td>
<td>4.90E-05</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>14</td>
<td>6.80E-06</td>
<td>4.40E-04</td>
</tr>
<tr>
<td>Tight junction</td>
<td>16</td>
<td>2.60E-05</td>
<td>1.20E-03</td>
</tr>
<tr>
<td>Cardiac muscle contraction</td>
<td>12</td>
<td>3.60E-05</td>
<td>1.20E-03</td>
</tr>
<tr>
<td>Regulation of actin cytoskeleton</td>
<td>18</td>
<td>6.10E-04</td>
<td>1.60E-02</td>
</tr>
<tr>
<td>Adherens junction</td>
<td>9</td>
<td>3.00E-03</td>
<td>4.80E-02</td>
</tr>
<tr>
<td>TGF-beta signaling pathway</td>
<td>9</td>
<td>6.90E-03</td>
<td>8.60E-02</td>
</tr>
<tr>
<td>MAPK signaling pathway</td>
<td>17</td>
<td>1.20E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Wnt signaling pathway</td>
<td>11</td>
<td>2.20E-02</td>
<td>1.70E-01</td>
</tr>
</tbody>
</table>

Count ≥ 5, p value ≤ 0.05
Figure 5. Genes of Hypertrophic Cardiomyopathy (HCM) pathway that are up-regulated in siH19 versus siCon.

Pathway enrichment analysis using DAVID software identified Hypertrophic Cardiomyopathy (HCM) pathway as the top enriched pathway from the KEGG pathway database. The up-regulated genes involved in this pathway are labeled with red star.
4. **H19 knockdown leads to increased expression of muscle terminal differentiation-specific genes.**

Among many myotube and muscle fiber formation associated genes that were up-regulated by H19 knockdown, we noticed a dramatic and significant increase of two critical muscle differentiation related genes: MyoG (Myogenin) and MyHC (myosin heavy chain). MyoG is one of the four key myogenesis transcriptional factors. It expresses at the later stage of myotube formation and is essential for directing the terminal differentiation of committed myoblasts (Berkes and Tapscott, 2005). MyHC is a structure component of muscle fibers, usually used as a maker of myotube. The increased expression of MyoG and MyHC in siH19 versus siCon cells could strongly indicate the negative regulatory role of H19 in muscle differentiation. Interestingly, prediction of master regulators (TFs) from the up-regulated set of genes using iRegulon identified MyoG as a critical TF for many genes in the up-regulated gene set, suggesting that H19 might negatively regulate muscle differentiation at least partially through inhibiting MyoG expression. To verify the increase of MyoG and MyHC observed from RNA-Seq data, we did RT-qPCR to evaluate the RNA expression change of MyoG and MyHC under siH19 vs siCon. We also measured the protein expression change of MyoG under siH19 vs siCon. The results turned out to be consistent with our RNA-Seq results (Fig. 6)

5. **H19 knockdown induces precocious myotube formation**

Since decrease of H19 leads to increased expression of MyoG and MyHC as well as other muscle terminal differentiation associated genes, we were curious whether it could cause observable physiological changes in myotube formation. In order to addressing this question, we knocked down H19 using siH19 as previously described, followed by imaging
Figure 6. H19 knockdown leads to increase of RNA and protein expression of MyoG and MyHC.

A. RT-qPCR analysis results of MyoG, MyHC with siH19 versus siCon in differentiating C2C12 cells. Day 2 differentiating C2C12 cells were transfected with either control siRNA (siCon) or H19-specific siRNA (siH19). RT-qPCR was performed 48h post transfection. Relative RNA levels are presented as mean ± SD (n=3). b-Actin was used as a negative control. b-Tubulin was used as internal control for normalization. Numbers are mean ± SD (n=3). **p<0.01. n.s., not statistically significant. B. Western blot analysis of MyoG with siH19 versus siCon in differentiating C2C12 cells. Tubulin was used as a loading control.
A

![Graph showing relative RNA levels for MyoG, MyHC, and Actin with siCon and siH19 conditions.]

B

![Image showing gel electrophoresis with bands labeled Tubulin and Myog for siCon and siH19 conditions.]

n.s.
Figure 7. Precocious myotube formation induced by H19 knockdown.

C2C12 myoblasts were treated as described in Fig 3A. Immunostaining of MyHC was performed on cells 48 h post siRNA transfection. The cell nucleus was stained with DAPI to indicate the cell number under each treatment.
day 4 differentiating myotubes via immunostaining of MyHC. As shown in Fig 7, many more myotubes were formed in siH19 cells compared to siCon cells on the 4th day of differentiation, suggesting H19 depletion leads to precocious myotube formation.

E. Discussion

In this study our discoveries clarified the controversy over the role of H19 in muscle differentiation, revealing that H19 negatively regulates muscle differentiation. Precocious myotube formation in response to H19 knockdown (Fig. 7) is solid physiological evidence that supports this conclusion. The up-regulation of muscle terminal differentiation related genes shown from our gene ontology analysis (Table. 2) and pathway analysis (Fig. 5) constitutes further molecular evidence supporting the negative regulatory role of H19 in muscle differentiation. We also found that the inhibition of transcriptional factor myogenin expression by H19 (Fig. 4) could at least partially contribute to the H19-mediated inhibition of muscle differentiation.

In fact, an *in vivo* study conducted later by Martinet et al. verified the conclusions of this study. These authors discovered that adult loss-of-function H19Δ3 mice displayed increase muscle mass with hypertrophy compared to wt mice (Martinet et al., 2016), which is in line with our finding that H19 knockdown in differentiating myoblasts leads to up-regulation of genes enriched in Hypertrophic Cardiomyopathy (HCM) (Fig. 5). HCM is a disease that features abnormally thick muscle (hypertrophied) in the heart which can make it harder for the heart to pump blood (Liew et al., 2017). In addition, Martinet et al. also found that muscle from H19Δ3 mice has better regeneration potential after injury due to more efficient proliferation of myoblasts. However, why have the *in vitro* and *in vivo* studies conducted by Dey et al. drawn an opposite conclusion about the role of H19 in muscle differentiation and regeneration? Dey et al. claimed that H19 promotes muscle
differentiation and regeneration through its embedded miR-675 (Dey et al., 2014). The possible explanation could be that full length H19 and miR-675 act independently or maybe even oppositely in regulating muscle differentiation. It is also interesting that in a recent study using mouse models, Park et al. found that substantial overdose of IGF2 inhibits muscle differentiation, which could not be obviously rescued by overexpression of H19 from transgene. The authors concluded that IGF2 but not H19 plays a major negative role in regulating muscle differentiation (Park et al., 2017). It is possible that normal level of IGF2 expression is required for muscle differentiation (Yoon and Chen, 2008) while overdose of IGF2 induces strong negative feedback on muscle differentiation. Since H19 can only moderately regulate the level of IGF2, restoration of H19 expression could not revert the effect of overdose of IGF2.

How does full length H19 negatively regulate muscle differentiation at molecular level? First, H19 can control muscle growth by repressing the expression of its co-imprinted growth-promoting genes from IGN, such as *Igf2, Dlk1*. Compared to wt mice, H19Δ3 mice display increased expression of *Igf2* and *Dlk1* in adult muscle (Martinet et al., 2016). Actually, 1.5 fold increase of *Igf2* expression in siH19 cells versus siCon cells was also observed from my RNA-seq data. These results suggest that the role of H19 in muscle is similar to its role in controlling embryo growth (Gabory et al., 2009), demonstrating that the major mission of H19 during development is acting against other IGN genes such as *Igf2* to restrict growth. During embryonic development, H19 can control the expression of genes from IGN by recruiting MBD1, bringing repressive histone marks to these target genes (Monnier et al., 2013). Whether or not H19 uses the same mechanism in regulating muscle growth needs further investigation. Second, H19 can regulate muscle differentiation by acting as a molecular sponge for let-7. Our previous study has shown that H19 can bind to let-7 and modulate its availability, thereby indirectly regulating the expression of let-7
target genes (Kallen et al., 2013). Interestingly, overexpression of let-7 leads to increase of Igf2 expression, suggesting Igf2 is a downstream effector of let-7 (Kallen et al., 2013).

Moreover, H19, let-7 and IGF2 have a similar expression pattern along the progression of muscle differentiation in vitro: their expression is increased after the onset of myoblast differentiation, which peaks on about the third day of differentiation then decreases as cells progress to become terminal differentiated myotubes (Kallen et al., 2013; Kou and Rotwein, 1993; Huang et al., 2014). Together these results suggest that H19 may tightly regulate Igf2 expression in an additional way by acting as a sponge for let-7. Notably, given that miRNAs of let-7 family target to many genes, the effect of H19/let-7 axis mediated regulation is not limited to the expression of Igf2. In addition, H19 has been predicted to have binding sites for many other miRNAs (Kallen et al., 2013). It is possible that H19 regulates muscle differentiation and regeneration through influencing target genes of other miRNAs that interact with it. Finally, H19 might inhibit muscle differentiation by negatively controlling the stability of myogenin mRNA in differentiating myoblasts similar to its negative control of myogenin expression in myoblasts. H19 has been reported to assist KSRP in degradation of myogenin mRNA to maintain myoblasts at undifferentiated status (Giovarelli et al., 2014). Whether a similar mechanism exists in differentiating myoblasts remains unclear. From the list of upregulated genes from our RNA-seq data, we have identified myogenin as a potential master regulator that is modulated by H19 during muscle differentiation. Therefore, further studies about the regulatory mechanism of myogenin expression mediated by H19 is wanted.

What is the physiological significance of H19-mediated regulation of muscle differentiation and regeneration? Adequate control of muscle production and preventing muscle overgrowth seem to be the primary reasons. During both normal or injury induced myoblasts differentiation, transcriptional factor myoD first initiates the upregulation of
genes from IGN including H19 and Igf2. The increased expression of IGN genes makes myoblast cells transit from quiescent cells into actively proliferating cells. IGF pathway associated genes such as IGF1 are also upregulated. As a result, after robust proliferation and growth, myoblast cells become myotubes that lead to myofiber formation and muscle repair after injury (Martinet et al., 2016). In this case of H19Δ3 mice, H19 depleted myoblasts have significant higher expression of Igf2 and other IGN genes compared to control, thereby showing enhanced potential of proliferation and growth, which eventually leads to muscle hypertrophy and significant increase in the mass of muscles after injury (Martinet et al., 2016). Overgrowth of muscle could possibly lead to tumorigenesis, given the fact that children with Beckwith-Wiedemann Syndrome (BWS) (loss of H19 expression from the maternal allele) are more likely to develop tumors such as Wilm’s tumors and rhabdomyosarcomas (Martinet et al., 2016). Except for tumorigenesis, what are the physiological consequences of H19 depletion associated skeletal muscle hypertrophy in terms of myofiber structure, muscle contraction and metabolism? There is no enough evidence to draw a conclusion yet. More comprehensive comparisons between skeletal muscle of H19Δ3 mice and wt mice are needed to answer that question. On the other hand, the consequences of cardiac muscle hypertrophy potentially mediated by H19 depletion is more foreseeable leading to possible heart failure. Although there is no in vivo evidence showing H19 knockout mice have cardiac hypertrophy or heart failure, in vitro studies have suggested that H19 negatively regulates the differentiation of parthenogenetic embryonic stem cells (p-ESCs) into beating cardiomyocytes (Yin et al., 2014; Ragina et al., 2012). In addition, an in vivo study conducted by Liu et al. has demonstrated that H19 negatively regulates cardiomyocyte hypertrophy via H19/miR-675 axis. Exacerbated cardiac hypertrophy was observed from a pressure overload-induced mouse model with miR-675 knockdown treatment (Liu et a., 2016).
Chapter III

Role of H19 in hepatic glucose production

(This work has been submitted for publication: Title: H19 IncRNA modulates hepatic glucose production by epigenetic modification of Hnf4α, Authors: Na Zhang, Tingting Geng, Ya Liu, Zhangsheng Wang, Yuanyuan Shen, Joao Paulo Camporez, Luisa Dandolo, Gerald I. Shulman, Gordon G. Carmichae, Hugh S. Taylor & Yingqun Huang)

A. Abstract

Hepatic glucose production (HGP) is crucial in maintaining blood glucose homeostasis. During starvation, HGP is activated to sustain blood glucose levels. Excessive HGP is a major contributor to hyperglycemia in type-2 diabetes (T2D), which leads to a lot of complications including high blood pressure and kidney disease. The molecular mechanism underlying the dysregulation of HGP in diabetes remains poorly understood. During fasting, hepatocyte nuclear factor 4α (HNF4α) acts in concert with transcriptional coactivators to promote gluconeogenesis, by activating the transcription of key gluconeogenic enzymes including glucose-6-phosphatase (G6pc) and phosphoenolpuruvate carboxykinase (Pck1). In this study, we show that the H19 long noncoding RNA (IncRNA) promotes Hnf4α expression by inducing hypomethylation within a conserved promoter region of this gene. In non-diabetic mice, hepatic H19 expression is acutely increased by fasting, while in diet-induced glucose intolerant mice, H19 expression level is chronically elevated. Using genome-wide DNA methylation and transcriptome analyses we demonstrate that H19 knockdown in human hepatic cells increases promoter methylation and decreases expression of Hnf4α, with concomitant reduction in glucose production. Consistently, H19 knockout mice show increased promoter methylation and decreased expression of Hnf4α in the liver, with enhanced insulin-induced suppression of HGP, whereas mice with liver-specific H19 overexpression display enhanced HGP. Moreover, we show that H19 can be up-
regulated by glucagon in a cAMP/PKA-dependent manner. Taken together, our results reveal a novel epigenetic mechanism by which an evolutionarily conserved lncRNA regulates HGP and which is unexpectedly shared by normal and pathological conditions.

B. Background

T2D and glucose homeostasis. Type-2 diabetic mellitus (T2D), a disease of impaired glucose homeostasis, develops as a result of insulin resistance in peripheral tissues and β-cell dysfunction. Persistently elevated blood glucose level (hyperglycemia) is the hallmark of T2D. Chronic hyperglycemia causes damages to major organs including the brain, eyes, heart, kidneys and blood vessels (Rines et al., 2016). Thus, treating hyperglycemia is most critical in T2D treatment. The liver is the main organ of endogenous glucose production (EGP), playing an important role in maintaining blood glucose levels. It is widely accepted that excessive hepatic EGP attributed to elevated rates of gluconeogenesis and glycogenolysis in the liver is the major contributor to the hyperglycemia of T2D, with proportionately larger contribution from gluconeogenesis (Rines et al., 2016). Gluconeogenesis is a process in which substrates such as amino acids, glycerol, pyruvate and lactate are converted to glucose, while glycogenolysis is a process wherein glycogen is degraded to generate glucose. Both processes lead to the production of a phosphorylated form of glucose, glucose-6-phosphate, which cannot be exported into the circulation until it is dephosphorylated by glucose-6-phosphatase (G6PC) to become glucose. Since G6PC controls the last rate-limiting step of both gluconeogenesis and glycogenolysis, it is a key enzyme for endogenous glucose production (Rines et al., 2016). It has been reported that G6pc deficiency could lead to diseases in both humans and mice. Infants with G6pc deficiency suffer from glycogen storage disease type Ia (GSD-Ia) with severe hypoglycemia especially in the morning or before feedings (Ozen, 2007). Likewise,
G6pc-deficient mice showed similar symptoms to human GSD-Ia cases, with only a few mice surviving beyond 5 weeks of age due to a failure to maintain blood glucose homeostasis (Lei et al., 1996).

Regulation of glycogenolysis and gluconeogenesis. The primary mechanism responsible for maintaining glucose homeostasis is the secretion of insulin and glucagon into the blood in response to the blood glucose concentration. During fasting blood glucose levels become low, triggering glucagon secretion from pancreatic α cells and inhibiting insulin secretion from pancreatic β cells. After feeding the blood glucose levels increase, leading to decreased glucagon but increased insulin secretion. Therefore, glucagon and insulin play opposite roles in the regulation of glycogenolysis and gluconeogenesis: Glucagon up-regulates glycogenolysis and gluconeogenesis to increase glucose production, while insulin down-regulates these two processes to inhibit glucose production (Rines et al., 2016). Insulin also inhibits glucagon secretion from pancreatic α cells to indirectly reduce glucose production (Edgerton et al., 2009). Similar to the high glucagon and low insulin status during fasting state, Type-2 diabetic individuals are known to have abnormally high glucagon levels (Alessio, 2011) and impaired insulin signaling—which is consistent with the aberrantly elevated gluconeogenesis and glycogenolysis in their livers (Rines et al., 2016).

The regulatory pathways of gluconeogenesis and glycogenolysis form an intricate network that involves a lot of transcriptional factors and co-activators that regulate the expression of key gluconeogenic genes including G6pc and Pck1. The enzyme encoded by Pck1 catalyzes oxaloacetate to form phosphoenolpyruvate (Rines et al., 2016). PGC-1α is a transcriptional coactivator that regulates energy metabolism by interacting with other transcriptional activator or coactivators (Zhang et al., 2012). In fasting mice or diabetic mice, PGC-1α is strongly induced, leading to the activation of an entire program of key gluconeogenic enzymes including G6PC and PCK1 thereby increasing glucose output (Zhang et al., 2012).
Another transcriptional coactivator, the hepatocyte nuclear factor 4α (Hnf4α), is required for PGC1-1α mediated activation of gluconeogenesis. PGC1-1α and HNF4α cooperatively bind on the promoters of G6pc and Pck1 to activate the transcription of these genes (Yoon et al., 2001; Rhee et al., 2003). In the studies of multiple diabetic animal models, hepatic expression of Hnf4α, G6pc and Pck1 has been found to be up-regulated (Zhang et al., 2012; Pauli et al., 2014; Wei et al., 2016), which is consistent with observations of enhanced gluconeogenesis in T2D patients. Although the role of Hnf4α as a transcriptional coactivator in promoting G6pc and Pck1 expression is well-defined, it remains unclear why the expression of Hnf4α increases under these conditions.

LncRNA H19 and genomic DNA methylation. From our previous studies, we found that H19 interacts with S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolyzing S-adenosylhomocysteine(SAH) in mouse skeletal muscle and human cancer cells (Zhou et al., 2015; Zhong et al., 2016). H19 binds to SAHH and inactivates it from hydrolyzing SAH, which leads to the accumulation of SAH. This in turn inhibits SAM-dependent methyltransferases including DNA methyltransferases such as DNMT3B, resulting in decreased DNA methylation (Zhou et al., 2015; Zhong et al., 2016). Therefore H19 negatively regulates genome-wide DNA methylation by binding and inhibiting SAHH (Fig. 8).

H19 is expressed at low but appreciable levels in adult livers (Zhang et al., 2016), but its expression is elevated in the liver of T2D patients (Nilsson et al., 2015) where gluconeogenesis as well as the expression of critical gluconeogenic genes such as Hnf4α, G6pc and PCK1 are also abnormally enhanced. Whether there is a causal relationship between up-regulation of H19 expression and that of gluconeogenic gene expression remains unexplored. In human endometrial cancer cells, we noticed a correlation between
Figure 8. Schematic representation of H19/SAHH - mediated regulation of gene methylation.

In the absence of H19 (left panel), S-adenosylhomocysteine hydrolase (SAHH) hydrolyses S-adenosylhomocysteine (SAH) to homocysteine and adenosine. DNA Methyltransferase DNMT3B is active in DNA methylation. When H19 is present (right panel), SAHH activity is attenuated because of its association with H19. This leads to accumulation of SAH, which binds to DNMT3B and prevents it from methylating DNA.
decreased H19 expression and increased promoter methylation of Hnf4α (Zhong et al., 2016). It is possible that H19 negatively regulates DNA methylation at Hnf4α promoter via interacting with SAHH. Given that promoter usually leads to transcriptional repression, H19 may positively regulate Hnf4α expression through inhibiting Hnf4α promoter methylation via H19/SAHH interaction. Therefore, we hypothesize that H19 may modulate Hnf4α expression through DNA methylation, and that increased H19 may contribute to abnormal hepatic glucose production in T2D patients.

In this work we report that hepatic H19 expression is increased acutely during fasting in non-diabetic mice and chronically in high fat diet (HFD) – induced glucose intolerant mice. Using cell culture and mouse models, combined with genome-wide methylation and transcriptome analyses we demonstrate that H19 induces promoter hypomethylation of Hnf4α, contributing to its increased expression and subsequent activation of the gluconeogenesis program. Thus, H19 acts as a novel epigenetic modulator of hepatic glucose production.

C. Material and Methods

1. Materials

Antibodies for HNF4A (Abcam, Cambridge, UK, cat# ab181604; used at a dilution of 1/1000), G6PC (Abcam, cat# ab83690; used at a dilution of 1/500), PCK1 (Abcam, cat# ab70358; used at a dilution of 1/1000), and ACTB (Cell Signaling, Danvers, MA, cat# 4967; used at a dilution of 1/5000) were purchased. Control siRNA (siCon) and human H19 siRNA (siH19) were previously described (Ghazal et al., 2015). Glucagon (Sigma-Aldrich, St. Louis,
MO, cat# G2044-1MG) and D-Eritadenine (DEA, Santa Cruz, Dallas, TX, cat# sc-207632) were purchased. DEA was used at a final concentration of 20 μM.

2. Animals

All animal work was approved by the Yale University Institutional Animal Care and Use Committee. All mice used in this study were male. Mice were housed at 22°C–24°C with a 12 h light/12 h dark cycle with standard chow (Purina Chow; Purina Mills, Richmond, IN, USA) and water provided ad libitum. CD-1 mice were obtained from Charles River Laboratories (Wilmington, MA, USA). The H19 KO and WT mice with C57BL/6J background were gifts from Professor Luisa Dandolo (Institut Cochin, Paris, France). For fasting experiments, 12-week-old mice were fasted for 12 h and then sacrificed by ether anesthesia followed by cervical dislocation. Liver samples were collected and snap frozen in liquid nitrogen and stored at -80°C for further analysis. For HFD experiments, WT C57BL/6J mice at 9-week-old were exposed to HFD for 8 weeks, followed by glucose tolerance test (GTT) and gene expression analysis by RT-qPCR and Western blot.

3. AAV production and in vivo AAV administration

The AAV-H19 expression plasmid was created by cloning a mouse H19 full-length DNA (NR_001592) into an AAV8-TBG vector (Vigene Biosciences, Rockville, MD, USA). Viruses were prepared by Vigene Biosciences Company. Wild-type CD-1 mice at 16-week-old were tail vein injected with AAV-H19 or AAV-Vec (negative control) at 1x10^{10} gc/mouse in 150 μl of PBS/5% sorbitol. The viral dose was based on a previously published report (Bell et al., 2016). Before injection, mice were exposed to heat lamp to dilate the tail vein and then placed in a restrainer permitting access to the tail vein. The tail was cleansed with 70% ethanol and the injection was made in the lateral vein, using 27-gauge needles.
4. Pyruvate tolerance test (PTT) and glucose tolerance test (GTT)

PTT and GTT were performed as previously described (Toda et al., 2016).

Briefly, Mice injected with AAV-H19 or AAV-Vec were subjected to PTT at two weeks following the viral injection. Mice were fasted for 16 hours before PTT being carried out. Sodium pyruvate powder (Sigma-Aldrich, St. Louis, MO, cat# P5280) was resolved in PBS and the solution was filter sterilized before injection. The body weight and the fasting glucose levels of each mouse were measured before sodium pyruvate injection. Each mouse received an intraperitoneal injection (i.p.) of 2 g/kg BW sodium pyruvate. Blood glucose concentrations were measured from blood samples obtained from the tail vein at 15, 30, 45, 60, 90, and 120 minutes after the injection. Fasting plasma insulin levels were measured using Mouse Insulin ELISA kit (EMD Millipore, Billerica, MA, cat# EZRMI-13K) according to the manufacturer's instructions.

For GTT experiment, following overnight (12 h) fasting, the body weight and the basal level of blood glucose of each mouse were measured. Glucose (1 g/kg BW) was injected i.p. and the blood glucose concentration was measured from a blood sample obtained from the tail vein 15, 30, 45, 60, 90, and 120 minutes after the glucose injection.

5. Hyperinsulinemic-euglycemic clamp studies

The experiments were carried out on 11-week old WT and H19 KO mice as previously described with minor modification (Jurczak et al., 2012) (Fig. 12C-G). Briefly, mice were anesthetized and cannulated. After recovery for 7 days, mice were fasted overnight (14 h) followed by infusion of D-[3-3H] glucose to assess the basal rate of whole body glucose turnover. Following the basal period, a 2 hour hyperinsulinemic-euglycemic clamp was conducted with a fixed amount of insulin [4 mU/(kg-min)] and a variable
amount of 20% dextrose to maintain euglycemia. Tissues were collected at the end of the clamp.

6. Cell culture and transfection

HepG2 cells (ATCC, Manassas, VA, cat# HB-8065) were authenticated and were free from mycoplasma contamination. The cells were maintained in ATCC-formulated EMEM (30-2003) supplemented with 10% fetal bovine serum, heat inactivated, and 1% penicillin/streptomycin. To achieve H19 knockdown in HepG2 cells, H19-specific siRNA was used and the cells were transfected in suspension. To prepare siRNA transfection solution for one well of a 24-well plate, 2 pmol of siCon or siH19 was gently mixed with 100 μl OPTI-MEM. In parallel, 1 μl Lipofectamine 2000 was mixed with 100 μl OPTI-MEM. After incubation at room temperature for 5 min, the two mixtures were combined and incubated at room temperature for 20 - 30 min to allow the formation of siRNA/lipid complexes. During the above incubation period, growing HepG2 cells were collected, counted and pelleted, with the supernatant removed. At the end of incubation, the 200 μl transfection solution was used to re-suspend cell pellet (2 × 10^5 cells). After incubation at room temperature for 10 min, regular growth medium was added at a ratio of 1:2 (1 volume of transfection solution/2 volumes of growth medium) and the cell suspension was transferred to the culture plate. After 5 h incubation at 37 °C in 5% CO_2, the medium was replaced with fresh growth medium. RNA, genomic DNA, and protein were extracted and analyzed at the indicated time points following transfection.

7. Methyl-MiniSeq library construction

Genomic DNA was extracted from liver tissue samples using Quick-gDNA MicroPrep (Zymo Research Corporation, Irvine, CA; cat# D3021) according to the manufacturer's
instructions. For library preparation, 200 to 500 ng of genomic DNA was digested with 60 units of TaqαI and 30 units of MspI (NEB) sequentially and then extracted with DNA Clean & Concentrator-5 kit (Zymo Research, cat# D4003). Pre-annealed adapters containing 5′-methyl-cytosine instead of cytosine were ligated to the digested genomic DNA fragments according to Illumina’s specified guidelines (www.illumina.com). Adaptor-ligated fragments of 150–250 and 250–350 bp in size were recovered from a 2.5% NuSieve 1:1 agarose gel (Zymoclean Gel DNA Recovery Kit, Zymo Research, cat# D4001). Then the recovered fragments were bisulfite-treated and purified using the EZ DNA Methylation-Lightning Kit (Zymo Research, cat# D5020). The fragments were then subjected to PCR and the resulting products were purified (DNA Clean & Concentrator, Zymo Research, cat# D4005) for sequencing on an Illumina HiSeq.

8. Methyl-MiniSeq sequence alignments and data analysis

Sequence reads from bisulfite-treated EpiQuest libraries were identified using standard Illumina base-calling software and then analyzed using a Zymo Research proprietary analysis pipeline, which is written in Python and used Bismark (http://www.bioinformatics.babraham.ac.uk/projects/bismark/) to perform the alignment. Index files were constructed using the bismark_genome_preparation command and the entire reference genome. The non-directional parameter was applied while running Bismark. All other parameters were set to default. Filled-in nucleotides were trimmed off when doing methylation calling. The methylation level of each sampled cytosine was estimated as the number of reads reporting a C, divided by the total number of reads reporting a C or T. Fisher’s exact test or t-test was performed for each CpG site which has at least five reads coverage, and promoter, gene body and CpG island annotations were added.
for each CpG included in the comparison. Data are available from the GEO with accession number GSE103437.

9. RNA-seq and data analysis.

HepG2 cells were transfected with siCon or siH19 in a 6-well plate. RNA was extracted from cells 48 h after transfection using the PureLink RNA mini kit (ThermoFisher Scientific, Waltham, MA, cat# 12183018A). RNA-seq libraries were prepared using the Illumina TruSeq Stranded Total RNA LT kit with Ribo-Zero Human/Mouse/Rat, setA (Illumina, San Diego, CA, cat# RS-122–2201) according to the manufacturer’s instructions. Briefly, 1 μg of total RNA was subjected to Ribo-Zero depletion to remove rRNAs. The remaining RNA was purified, fragmented and primed with random hexamers for cDNA synthesis. After first and second cDNA synthesis, cDNA fragments were adenylated and then ligated to indexing adapters. The cDNA fragments were amplified by PCR, purified and then sequenced on an Illumina NextSeq500 using paired-end chemistry and 76-bp cycles. Sequencing data are available from the GEO with accession number GSE103437.

Illumina BaseSpace (https://basespace.illumina.com/)-embedding tools were used to analyze the RNA-seq data. RNA-Seq Alignment v1.0.0 was used to map sequencing reads to hg19 genome and quantifyreads of genes. DESeq2 v1.0.0 was applied to calculate differential expression of genes. IPA (Ingenuity Pathway Analysis, QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) was used to identify pathways that were enriched across the differentially expressed genes.
10. RNA extraction and RT-qPCR

Total RNAs were extracted from HepG2 cells or mouse liver samples using PureLink RNA Mini Kit (ThermoFisher Scientific, Waltham, MA, cat# 12183018A). cDNA synthesis was performed with 0.5 - 1 μg of total RNA in a 20 μl reaction using PrimeScript RT Reagent Kit (TAKARA, Japan, cat# RR037A). Real-time quantitative PCR was performed in a 15 μl reaction containing 0.5-1 μl of cDNA using iQSYBRGreen (BIO-RAD, Hercules, CA, cat #1708880) in a Bio-Rad iCycler. PCR program starts with initial denaturation at 95°C for 5 min, followed by 40 cycles of 30 sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C. PCR amplification specificity was verified by melting curve analysis and agarose gel electrophoresis. The threshold cycle (Ct) values of each sample were used in the post-PCR data analysis. Gene expression levels were normalized against house-keeping genes Hprt1 and Rpl0. Real-time PCR primers are listed in Table 3.

11. Western blot analysis

HepG2 cells in a 24-well plate were quickly lysed in the well in 2x SDS-sample buffer (100 μl/well). Cell lysate was then immediately transferred to a 1.5 ml tube and heated at 100 °C for 5 min, with occasional vortexing, followed by centrifugation at 12,000 rpm for 10 min at room temperature. The supernatant was transferred to a new tube and stored at -20°C for further analysis. In the case of liver samples, about 10 mg of frozen tissues were homogenized in 200 μl of 2x SDS-sample buffer and then heated at 100 °C for 5 min, with occasional vortexing, followed by max speed centrifugation. The supernatant of each sample was loaded onto a 12% SDS-PAGE gel (5 μg/well), followed by western blot analysis. The linear dynamic range of each protein of interest was determined by serial dilutions. Bands on Western blot gels were quantified using Image J. Housekeeping gene beta-actin was used as a loading control.
12. Glucose output assay

This assay was performed using Amplex Red Glucose/Glucose Oxidase Assay Kit (Invitrogen, Molecular Probes, cat# A22189) according to the manufacturer's instructions. Briefly, HepG2 cells cultured in a 24-well plate were transfected with either siCon or siH19. Forty-eight hours after transfection, glucose-free DMEM (Gibco, cat# 11966-025) was used to replace the culture medium to let the cells use up the remaining glucose. Two hours later, 120 μl glucose production medium (glucose-free DMEM, 20 mM sodium lactate, 2 mM sodium pyruvate, and 0.5% BSA) was used to replace the glucose-free DMEM to collect newly synthesized glucose. After 4 h of incubation, 50 μl of glucose production medium supernatant was used for measurement of glucose concentration, which was normalized against total protein content of cells.

13. Quantitative Methylation-Specific PCR (QMSP)

Genomic DNA was extracted from HepG2 cells in one well of 24-well plates or from mouse liver tissue samples using Quick-gDNA MicroPrep (Zymo Research, Irvine, CA, cat# D3021) according to the manufacturer's instructions. Bisulfite treatment and DNA purification were performed using EZ DNA Methylation-Gold Kit (Zymo Research, cat# D5006) with 200 ng of DNA as input. At the last step of purification, 100 μl of elution buffer was used to elute DNA from each column. Real-time quantitative PCR was performed in a 15 μl reaction containing 5 μl of the eluant using iQSYBRGreen (Bio-Rad, Hercules, CA, cat# 1708880) in a Bio-Rad iCycler. Two sets of PCR primers were designed: one for unmethylated and one for methylated DNA sequences. The PCR primers were used at a final concentration of 0.6 μM in each PCR reaction. PCR was performed by initial denaturation at 95°C for 5 min, followed by 40 cycles of 30 sec at 95°C, 30 sec at 60°C, and 30 sec at 72°C. PCR amplification specificity was verified by melting curve analysis and agarose gel
electrophoresis. The threshold cycle (Ct) values of each sample were used in the post-PCR data analysis. The relative levels of methylated versus unmethylated DNA sequences are presented. The primers used for QMSP are listed in Table 3.

14. Statistical Analysis

Statistical analyses and figure construction were performed using GraphPad Prism version 7.01 (GraphPad Software, La Jolla California USA, www.graphpad.com). *In vitro* data are presented as mean ± standard deviation (SD), while *in vivo* data are presented as mean ± standard error of the mean (SEM). Both data are analyzed using two-tailed Student t test. P values at 0.05 or smaller (two-sided) were considered statistically significant.
Table 3. Primers
Real-time PCR primer sequences (shown 5’ to 3’)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse H19</td>
<td>Forward: CCTCAAGATGAAAGAAATGTTGCTA</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCAGAACGAGACGGACTTAAAGAA</td>
</tr>
<tr>
<td>Mouse Hnf4a</td>
<td>Forward: TCTTTTTGATCCAGATGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse: GGTCGTTGATGTAATCCTCC</td>
</tr>
<tr>
<td>Mouse G6pc</td>
<td>Forward: ATCCGGGGCATCTACAATG</td>
</tr>
<tr>
<td></td>
<td>Reverse: TGGCAAAGGGTGATGTGTCTCA</td>
</tr>
<tr>
<td>Mouse Pck1</td>
<td>Forward: TGGTTACTGGGAAGGCATCG</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGGTCTACGGCCACCAAAG</td>
</tr>
<tr>
<td>Mouse Hprt1</td>
<td>Forward: CAGTCCCAGCCTGATATT</td>
</tr>
<tr>
<td></td>
<td>Reverse: GCCCTCCATCTCTCTCATG</td>
</tr>
<tr>
<td>Mouse Rplp0</td>
<td>Forward: GATGGGCAACTGTACCTGACTG</td>
</tr>
<tr>
<td></td>
<td>Reverse: CTGGGCTCCTCTGGAAATG</td>
</tr>
<tr>
<td>Mouse Igf2</td>
<td>Forward: GCTTTGTGACACGCTTACTTGT</td>
</tr>
<tr>
<td></td>
<td>Reverse: GTTGGCAGCGCTTGAAAGGC</td>
</tr>
<tr>
<td>Human H19</td>
<td>Forward: ACTCAGGAATCGGCTTGGAA</td>
</tr>
<tr>
<td></td>
<td>Reverse: CTGCTTCCGGATGGTGCTTT</td>
</tr>
<tr>
<td>Human Hnf4a</td>
<td>Forward: CAGAATGAGCGGGACCGGATC</td>
</tr>
<tr>
<td></td>
<td>Reverse: CAGCAGCTGTCCTCTCATGGAC</td>
</tr>
<tr>
<td>Human G6pc</td>
<td>Forward: CCTCAGGAATGCCTCTCTACG</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCTCAATCACAGCTACCA</td>
</tr>
<tr>
<td>Human Pck1</td>
<td>Forward: GGTTCCAGGGTGATGAAA</td>
</tr>
<tr>
<td></td>
<td>Reverse: CACGTAGGGTGATCCGCAG</td>
</tr>
<tr>
<td>Human Hprt1</td>
<td>Forward: GACCAGTCAACGGGGACAT</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCTGACCAAGGGAAGCAA</td>
</tr>
<tr>
<td>Human Rplp0</td>
<td>Forward: GGCGACCTGGAAGTCCAAC</td>
</tr>
<tr>
<td></td>
<td>Reverse: CCATCACACACAGCCTTC</td>
</tr>
<tr>
<td>Human Igf2</td>
<td>Forward: CCGAAACAGGCTACTCTCCT</td>
</tr>
<tr>
<td></td>
<td>Reverse: AGGGTGTTTAAAGCCAATCG</td>
</tr>
</tbody>
</table>

QMSP primer sequences (shown 5’ to 3’)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Hnf4a methylated</td>
<td>Forward: TTTAATTTTAGAGTGGATAGGATAGTCG</td>
</tr>
<tr>
<td></td>
<td>Reverse: TCTTCTAACCCCAAAAATAATAAAATACG</td>
</tr>
<tr>
<td>Human Hnf4a unmethylated</td>
<td>Forward: TTTTAATTTTAGAGTGGATAGGATAGTTG</td>
</tr>
<tr>
<td></td>
<td>Reverse: TTCTTCTAACCCCAAAAATAATAAAATAC</td>
</tr>
<tr>
<td>Mouse Hnf4a methylated</td>
<td>Forward: GATTAGAAGATTAATAAGATACCCGGCC</td>
</tr>
<tr>
<td></td>
<td>Reverse: AAAAACAAACCCACACCAACACACACAC</td>
</tr>
<tr>
<td>Mouse Hnf4a unmethylated</td>
<td>Forward: GTGATTAGAAGATTAATAAGATATGGGTG</td>
</tr>
<tr>
<td></td>
<td>Reverse: AAAAARAAAACCCACACCAACACACACAC</td>
</tr>
</tbody>
</table>
D. Results

1. H19 knockdown reduces gluconeogenic gene expression and glucose production

To determine whether H19 may regulate HGP by regulating gluconeogenic genes, we used the HepG2 human liver cell line as an in vitro model system. Thus, HepG2 cells were transfected with control siRNA (siCon) or H19-specific siRNA (siH19) (Zhong et al., 2016) followed by glucose production assay. When H19 was downregulated (Fig. 9A, left column), the expression of Igf2 was not affected (right column), despite that H19 and Igf2 are co-regulated in mouse skeletal muscle during development (Gabory et al., 2010). There was a significant decrease in glucose output in the H19 knockdown cells (Fig. 9B), suggesting a positive role of H19 in glucose production. Next, H19 knockdown experiments were performed in HepG2 cells, followed by genome-wide transcriptome analysis. As shown in Fig. 9C, RNA-seq analysis revealed a significant decrease in the expression of Hnf4 as well as key gluconeogenic enzyme genes Pck1 and G6pc, which was further confirmed by RT-qPCR (Fig. 9D) and Western blotting (Fig. 9E). Collectively, these results suggest that H19 increases glucose production at least in part by stimulating gluconeogenic gene expression.

2. H19 regulates Hnf4a promoter methylation

In close inspection of our previous genome-wide methylation data from human endometrial cancer cells (Zhong et al., 2016) we noticed a correlation between decreased H19 expression and increased methylation at multiple CpG sites within a 362-bp highly conserved promoter region of human Hnf4 (herein designated as differentially methylated region, or DMR) (Fig. 10). To determine whether H19 knockdown in HepG2 cells might also lead to increased methylation of the DMR, quantitative methylation-specific PCR (QMS) was performed using previously described methods (Zhou et al., 2015; Zhong et al., 2016).
Figure 9. Effects of H19 knockdown on glucose production and gluconeogenic gene expression in HepG2 cells.

A. Cells were transfected with siCon or siH19, followed by RNA extraction and RT-qPCR analysis 48 h later. Transfection experiments (in a 24-well scale) were performed three times with one representative results shown. Relative RNA levels are presented as mean ± SD (n=3). Error bars were calculated based on triplicate PCR reactions. **p<0.01. B. Cells were transfected with siCon or siH19 in a 24-well scale. Glucose output assays were performed 48 h later. Relative glucose outputs are presented. Numbers are mean ± SD (n=5). **p<0.01. C. RNA-seq results showing fold decreases in the mRNA levels of Hnf4a, Pck1 and G6pc in siH19- versus siCon-transfected cells. Adjusted p values based on three transfected wells in each group are shown. D. RT-qPCR results of cells transfected with siCon or siH19 at 48 h time point from C. E. Cells were transfected with siCon or siH19, followed by Western blot analysis 48 h later. Representative gel images from three transfection experiments are shown, with fold decreases in siH19 compared to siCon transfected cells marked on the right. Numbers are mean ± SD (n=3). **p<0.01.
Figure 10. Sequences of DMRs in the conserved promoter region of human and mouse $Hnf4\alpha$.

The three differentially methylated cytosine residues in human or mouse are highlighted in red. The methylation level changes of each methylated cytosine from genome-wide DNA methylation seq data are indicated. The numbers at the beginning and end of the sequences mark the positions of the indicated nucleotides in the chromosomes.
As shown in Fig. 11A (compare red bar to blue bar), cells treated with siH19 had an increase in promoter methylation compared to cells treated with siCon. As increased promoter methylation often represses gene expression, there was indeed a decrease in the Hnf4a mRNA level in siH19 versus siCon treated cells (Fig. 11B, right column, compare red bar to blue bar). As H19 is known to bind SAHH and inactivate it, leading to decreased DNA methylation (Zhou et al., 2015; Zhong et al., 2016), we tested whether this H19/SAHH pathway might be involved in the regulation of Hnf4a methylation. As expected, in the presence of DEA, a SAHH-specific inhibitor (which mimics the inhibitory function of H19), both methylation (Fig. 11A, compare green bar to red bar) and mRNA (Fig. 11B, right column, compare green bar to red bar) of Hnf4a were restored to control levels. Taken together, these results suggest that H19 regulates promoter methylation and expression of Hnf4a in hepatic cells and that this regulation is dependent on the H19/SAHH pathway.

3. Fasting upregulates H19 and induces hypomethylation of Hnf4a

To test whether this H19-mediated regulation of Hnf4a and HGP occurs in vivo, we took advantage of the fasting mouse model which is known to increase HGP. Overnight fasting upregulated H19, together with Hnf4a, Pck1 and G6pc at both the mRNA (Fig. 12A) and protein (Fig. 12B) levels. Thus, H19 expression is induced by fasting under physiological conditions, which is not previously documented in the literature. As decreased H19 expression increases promoter methylation of Hnf4a (Fig. 10, Fig. 11A), we predicted that fasting (which increases H19 expression) would decrease Hnf4a methylation and subsequently increases its expression. Indeed, genome-wide DNA methylation analysis revealed decreased methylation at multiple CpG sites within the conserved promoter region...
Figure 11. Regulation of Hnf4α promoter methylation via the H19/SAHH pathway.

A. HepG2 cells were transfected with siCon, siH19, or siH19 plus DEA. Genomic DNAs were extracted 15 h later and analyzed by QMSP. Numbers are mean ± SD (n=3). **p<0.01. B. HepG2 cells were treated as described in A. RNAs were extracted 24 h later and analyzed by RT-qPCR. Numbers are mean ± SD (n=3). **p<0.01. DEA, D-Eritadenine, a SAHH-specific inhibitor.
of Hnf4α in fasted versus control mouse livers (Fig. 10), which was further confirmed by QMSP (Fig. 12C). Collectively, these results suggest that fasting increases hepatic H19 expression, leading to promoter hypomethylation and increased expression of Hnf4α, which subsequently activates gluconeogenesis and HGP. In contrast to Hnf4a whose promoter became hypomethylated in response to fasting, we noticed that the promoters of both G6pc and Pck1 showed hypermethylation. This suggests that the increase in expression of G6pc and Pck1 in fasted liver is not a direct effect of H19 but rather a result of HNF4A-dependent regulation. Collectively, the results suggest that fasting leads to increased hepatic H19 expression and decreased Hnf4a promoter methylation, thereby contributing to increased Hnf4a expression and HGP.

4. Glucagon upregulates H19

During fasting glucagon is the main peptide hormone secreted from the alpha cells of the pancreas. It acts on the glucagon receptor to increase cAMP, which activates cAMP-dependent protein kinase A (PKA), leading to enhanced gluconeogenic gene expression (Rines et al., 2016). Incubation of HepG2 cells with glucagon stimulated H19 expression (Fig. 13, second bar from the left), an effect which was mimicked by cAMP (third bar) and abolished by H89, a pharmacological inhibitor of PKA (He et al., 2016) (fourth bar). These results suggest that glucagon released during fasting may contribute to H19 up-regulation and that the cAMP-PKA signaling may be involved in this regulation.

5. H19 deletion mice exhibit enhanced insulin-mediated suppression of HGP

The imprinted H19-Igf2 locus plays an important role in embryo development and growth control (Gabory et al., 2010). It was not surprising that the whole-body H19
Figure 12. Effects of fasting on H19 and gluconeogenic gene expression.

A. CD-1 mice were fasted overnight. RT-qPCR analysis was performed on liver samples collected from fasted and non-fasted (Ctr) animals. Scatter plots of RNA levels are shown. The horizontal line depicts group median and the whiskers mark the interquartile range. Numbers are mean ± SEM (n=8-9). **p<0.01; *p<0.05. B. CD-1 mice were overnight fasted, followed by protein analysis of the indicated genes by Western blotting. Representative gel images from three mice from each group are shown. The fold increases in fasted versus non-fasted liver are marked on the right. Numbers are mean ± SEM (n=8-9). **p<0.01; *p<0.05. C. Scatter plots of Hnf4 methylation as assessed by QMSP in fasted and control livers. Numbers are mean ± SEM (n=8-9). *p<0.05.
Figure 13. Glucagon up-regulates H19 via cAMP/PKA pathway.

HepG2 cells were treated with the indicated reagents for 2 h. Then RT-qPCR was performed on RNAs extracted from the cells. Relative H19 RNA levels are presented. Numbers are mean ± SD (n=3). **p<0.01. cAMP, cyclic AMP, a known activator of PKA. H89, a specific inhibitor of PKA.
knockout mice H19Δ3 showed an overgrowth phenotype and skeletal muscle hyperplasia and hypertrophy (Ripoche et al., 1997; Martinet et al., 2016). Remarkably, hepatic H19 loss-of-function led to increased Hnf4α promoter methylation (Fig. 14A) with decreased expression of Hnf4α and gluconeogenic enzymes (Fig. 14B), further supporting a role of H19 in epigenetic regulation of Hnf4α and gluconeogenic gene expression. To determine the physiological role of H19 in HGP, hyperinsulinemic-euglycemic clamp studies were performed on WT and KO mice. The glucose infusion rate (GIR) in the KO mice was significantly higher compared to the WT mice (Fig. 15A), reflecting enhanced whole-body insulin sensitivity. While neither the peripheral glucose uptake (Fig. 15B) nor the endogenous glucose production under the basal condition (Fig. 15D) was affected, there was a significant reduction in endogenous glucose production (EGP) under the clamp (Fig. 15C) condition (see Discussion). Thus, the improved whole-body insulin sensitivity could be attributed to enhanced insulin-dependent suppression of EGP, which could be explained, at least in part, by lower levels of the key gluconeogenic enzymes in the KO liver (Fig. 15E).

Taken together, these results are consistent with the view that H19 depletion leads to increased promoter methylation of Hnf4a, thereby contributing to its decreased expression which in turn lowers key gluconeogenic enzyme production and sensitizes the liver for insulin-induced suppression of HGP.

To test whether miR-675 encoded by H19 and/or Igf2 (which is co-regulated with H19) in skeletal muscle may contribute to the H19-mediated regulation, hepatic expression of miR-675 and Igf2 are measured by RT-qPCR. In WT mice, no significant difference in levels of Igf2 mRNA and miR-675 was detected between control and fasted liver (Fig. 16A, Fig. 16B). Nor was there a significant difference in the Igf2 mRNA between WT and KO liver without or with fasting (Fig. 16C and Fig. 16D). Taken together with the notion that Igf2
Figure 14. H19 KO mice show altered Hnf4a methylation and gluconeogenic gene expression.

A. Genomic DNA was extracted from livers of WT (n=6) and H19 KO (n=5) mice fed ad libitum. Promoter methylation of Hnf4a was assessed by QMSP. Numbers are mean ± SEM (n=5-6). **p<0.01. B. Proteins were extracted from of WT (n=6) and H19 KO (n=5) mice fed ad libitum. Levels of the indicated proteins were analyzed by Western blotting. Representative gel images from three mice from each group are shown, with quantifications presented on the right. Numbers are mean ± SEM (n=5-6). **p<0.01; *p<0.05.
Figure 15. H19 KO mice exhibit increased insulin-mediated suppression of EGP.

A-D. Hyperinsulinemic/euglycemic clamp studies. Compared to the WT mice (n=5), the KO mice (n=7) have an increased glucose infusion rate (A), unchanged whole-body glucose uptake (B), and increased insulin-stimulated EGP suppression (C) with no change in basal EGP (D). Numbers are mean ± SEM (n=5-7). **p<0.01; *p<0.05. E. Proteins were extracted from overnight fasted WT (n=5) and KO (n=7) mice. Levels of the indicated proteins were analyzed by Western blotting. Representative gel images from three mice from each group are shown, with quantifications presented on the right. Numbers are mean ± SEM (n=5-7). **p<0.01; *p<0.05.
A Glucose infusion rate

B Whole body glucose uptake

C Clamp EGP

D Basal EGP

E Western Blots

<table>
<thead>
<tr>
<th>Protein</th>
<th>WT</th>
<th>KO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNF4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G6PC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **WT** (n=5)
- **KO** (n=7)

Legend:
- *p < 0.05
- **p < 0.01
Figure 16. Hepatic expression of Igf2 and miR-675.

A-B. CD-1 mice were fasted overnight. RT-qPCR analysis was performed on liver samples collected from fasted and non-fasted (Ctr) animals. Expressions of IGF2 and miR-675 were assessed. Numbers are mean ± SEM (n=4-5). C-D. WT and H19 KO mice were either un-fasted or fasted overnight, followed by RNA extraction from livers and IGF2 expression analysis by RT-qPCR. Numbers are mean ± SEM (n=5-6). n.s., not statically significant.
A) IGF2

B) miR-675

C) IGF2 (Basal)

D) IGF2 (Fasting)
expression was not affected by H19 knockdown in HepG2 cells (Fig. 9A), we conclude that Igf2 and miR-675 are likely not involved in the H19-dependent regulation of hepatic glucose production.

6. Liver-specific H19 overexpression augments HGP

To determine whether hepatic H19 gain-of-function promotes Hnf4a promoter hypomethylation and HGP, we overexpressed H19 in the mouse liver using a recombinant adeno-associated virus serotype 8 (AAV8) vector shown to have superior tropism for liver (Yan et al., 2012, Bell et al., 2016). Liver-specific H19 overexpression was achieved by intravenous administration of AAV-H19 that expresses mouse full-length H19 driven by a liver-specific promoter, thyroxin-binding globulin (TBG) (Yan et al., 2012, Bell et al., 2016) (Fig. 17A). In H19 overexpressed livers Hnf4a promoter methylation was decreased (Fig. 17B), with concomitant increase in expression of HNF4A, G6PC and PEPCK (Fig. 17C). The H19 gain-of-function mice also had an elevated fasting blood glucose (Fig. 18A) but with no change in fasting insulin levels (Fig. 18B). Pyruvate tolerance tests (PPT, a readout for HGP) (Stanya et al., 2013, Kim et al., 2011) showed that the H19-overexpression mice had higher glucose levels following pyruvate injection (Fig. 18C). Taken together, these results suggest that liver-specific H19 overexpression causes Hnf4a promoter hypomethylation which in turn increases expression of HNF4A and its regulated gluconeogenic genes leading to enhanced HPG.

7. H19 expression is chronically increased in the liver of glucose intolerant mice

To test whether increased hepatic H19 expression seen in the T2D patients (Nilsson et al., 2015) could be recapitulated in a mouse model, we treated mice with HFD to induce glucose intolerance (Fig. 19B). These mice displayed increased hepatic expression of H19
Figure 17. Mice with liver-specific H19 overexpression exhibit altered Hnf4a methylation, gluconeogenic enzyme expression.

A. RT-qPCR results of hepatic H19 expression in livers of mice injected with AAV-Vec or AAV-H19. n=5 animals in each group. Numbers are mean ± SEM (n=5). **p<0.01. B. QMSP results of Hnf4a methylation. n=5 animals in each group. Numbers are mean ± SEM (n=5). *p<0.05. C. Western blot results of gluconeogenic gene expression in livers of mice injected with AAV-Vec or AAV-H19. Numbers are mean ± SEM (n=3). *p<0.05.
Figure 18. Mice with liver-specific H19 overexpression show elevated HGP.

A. Fasting blood glucose levels from mice injected with AAV-Vec or AAV-H19. n=5 animals in each group. Numbers are mean ± SEM (n=5). *p<0.05. B. Fasting plasma insulin levels of mice injected with AAV-Vec or AAV-H19. Numbers are mean ± SEM (n=5). n.s., not statistically significant. C. PTT results from mice injected with AAV-Vec or AAV-H19. n=5 animals in each group. Numbers are mean ± SEM (n=5). *p<0.05, **p<0.01.
Figure 19. HFD mice show altered hepatic H19 expression, Hnf4a methylation, and gluconeogenic gene expression.

A. Body weight of mice fed with NC (chow, n=5) or HFD (n=7). Numbers are mean ± SEM (n=5-7). *p<0.05, **p<0.01. B. Results of glucose intolerance tests. NC, n=5; HFD, n=7. AUC, area under the curve. Numbers are mean ± SEM (n=5-7). **p<0.01. C. H19 expression in livers of NC and HFD mice. Numbers are mean ± SEM (n=5). *p<0.05. D. Proteins were extracted from livers of NC or HFD mice and subjected to Western blot analysis. Representative gel images from two mice from each group are shown, with fold increases in protein levels presented on the right. Numbers are mean ± SEM (n=5). *p<0.05. E. Genomic DNA was extracted from livers of NC and HFD mice. Promoter methylation of Hnf4a was assessed by QMSP. Numbers are mean ± SEM (n=5). *p<0.05.
A Body weight

B GTT

C RT-qPCR

D Western

E QMSP
Figure 20. A proposed model

Under fasting or T2D condition, H19 is up-regulated in the liver, potentially by glucagon signaling. Through H19/SAHH axis mediated DNA methylation regulation, Hnf4a promoter DNA methylation is decreased, associating with increased Hnf4a transcription. As a transcriptional co-activator, increased HNF4A actives the expression of gluconeogenic genes such as G6pc and Pck1, resulting in enhanced gluconeogenesis and increased glucose production.
Fasting/T2D

H19

Hnf4a methylation

Hnf4a expression

Gluconeogenic gene expression

Gluconeogenesis

Enhanced glucose production
(Fig. 19C) and gluconeogenic enzymes (Fig. 19D), with a concomitant decrease in

$Hnf4\alpha$ promoter methylation (Fig. 19E). These results suggest that the chronic H19 increase

in the liver may contribute to reduced sensitivity of the liver to insulin-mediated

suppression of gluconeogenesis.

E. Discussion

We have discovered that H19, which normally is barely detectable in the liver, is

acutely induced by fasting under physiological conditions. This H19 elevation associates

with decreased promoter methylation and increased expression of $Hnf4\alpha$, a master

gluconeogenic transcription factor, leading to gluconeogenesis activation and increased

HGP (Fig. 20). Unexpectedly, this H19-mediated mechanism is hijacked under pathological

conditions where a chronically elevated H19 is seen both in animals (Fig. 19C) and in

human subjects with T2D (Nilsson et al., 2015). While acute insulin-stimulated repression

of gluconeogenesis can occur without alteration in gluconeogenic gene expression (Perry et

al., 2015), in chronic diabetic states inhibition of rate-limiting gluconeogenic enzyme

production has been shown to reduce HGP and improve insulin sensitivity (Sharabi et al.,

2017). Along the same lines, in the H19 KO liver, the enhanced insulin-mediated

suppression of HGP (Fig. 15C) can be attributed, at least in part, to reduced expression of

the rate-limiting enzymes (Fig. 15E). It is thus conceivable that under diabetic conditions

the chronic increase in hepatic H19 leads to elevated levels of gluconeogenic enzymes,

thereby reducing the ability of insulin to suppress HGP.
The lack of reduction in EGP under the basal condition in the KO versus the WT livers (Fig. 15D) was initially unexpected. Under normal conditions the liver is the major source of EGP during fasting. However, mice with liver-specific deletion of G6pc (hence incapable of hepatic glucose production) were able to maintain normal fasting plasma glucose levels due to compensatory induction of gluconeogenesis in the kidney and intestine (Mutel et al., 2011; were et al., 2014) Thus, it is possible that a compensatory induction of extra hepatic gluconeogenesis in the H19 KO mice during fasting had helped to maintain the basal EGP.

We show that the mechanism of action of H19 in hepatic gluconeogenesis regulation is to induce hypomethylation of Hnf4 via the H19/SAHH axis. However, our RNA-seq analysis revealed profound gene expression changes in H19 siRNA knockdown cells, suggesting additional mechanisms contributing to the H19-mediated regulation, which warrants future investigation. While we cannot exclude that tissues other than liver may contribute to the observed in vivo effects (Fig. 15) (due to use of whole-body H19 KO mice), our results combined from both cell and animal models suggest H19 being a novel integrating mechanism of hepatic gluconeogenesis regulation under both physiological and pathological conditions.

The epigenetic control of Hnf4 expression and its impact on hepatic function was not previously documented. A recent genome-wide study of human liver revealed distinct gene methylation patterns between fetal and adult livers (Bonder et al., 2014). It also showed higher expression of Hnf4 in adult versus fetal livers, suggesting possible epigenetic modification. Our results represent the first example of epigenetic regulation of
Hnf4 by a conserved long noncoding RNA and its significant impact on hepatic glucose production.

It has been well established that gluconeogenesis is activated by glucagon and inhibited by insulin. The upregulation of H19 by glucagon in hepatic cells (Fig. 13) further supports a role of H19 in gluconeogenesis activation. The glucagon-stimulated H19 upregulation appears to be via the cAMP/PKA pathway, which is interesting because H19 upregulation by cAMP analogs or PKA activators has been reported to occur in primary cultures of human fetal adrenal cells as well as adult human adrenocortical cells (Voutilainen et al., 1994; Liu et al., 1995). While glucagon may promote hepatic H19 expression during fasting in healthy individuals, it may also contribute to the chronic increase in H19 in liver of T2D patients (Nilsson et al., 2015). It has long been known that T2D patients have chronic hyperglucagonemia in part due to inappropriately increased alpha cell function (Unger, 1970; Godoy-Matos, 2014). The detailed molecular mechanism by which glucagon regulates hepatic H19 expression remains to be investigated.

In summary, the findings presented in this study have important implications for understanding the regulatory mechanisms of glucose homeostasis, and suggest that targeting the H19/HNF4A pathway may represent a new strategy for the treatment of T2D.

F. Author Contributions

Na Zhang, Tingting Geng and Yingqun Huang designed the research and wrote the paper. Na Zhang, Tingting Geng, Ya Liu and Yuanyuan Shen performed the experiments, analyzed the data, and prepared the figures. Gerald I. Shulman and Joao Paulo Camporez designed and performed the hyperinsulinemic/euglycemic clamp studies. Luisa Dandolo
provided the WT and H19 KO mice. Gordon G. Carmichael and Hugh S. Taylor provided intellectual insights and critical discussion of the project.

Chapter IV

Future Directions

In summary, the studies described in this thesis have demonstrated the negative regulatory role of H19 in muscle differentiation (Chapter II) and discovered a novel function of H19 in regulating hepatic glucose production (Chapter III, Fig. 20). Notably, using unbiased genome-wide transcriptome profiling, we have successfully resolved the puzzle about whether H19 promotes or inhibits muscle differentiation. Moreover, to the best of our knowledge, we have described the first mechanism to explain the abnormal increase of H19 in the livers of type 2 diabetic patients. Furthermore, we have found that our proposed mechanism used by H19 in regulating hepatic glucose production is unexpectedly shared by both fasting and type 2 diabetes conditions. In the future, we will move on to do a deeper and more comprehensive study on the regulatory mechanisms of H19 in muscle differentiation and hepatic glucose production. The detailed plans are described below.

1. **Understanding the regulatory mechanisms of H19 in muscle differentiation.**

As it has been discussed in Chapter II, the mechanisms that H19 use to negatively regulate muscle differentiation include repressing expression of genes from the imprinted gene network (IGN) (Martinet et al., 2016), negatively regulating IGF2 expression by acting as a sponge for let-7 (Kallen et al., 2013) and potentially also include inhibiting myogenin expression by contributing to KSRP-mediated myogenin mRNA degradation. However, due
to lacking complete and comprehensive data we still have very limited knowledge of the mechanisms that H19 use in regulating muscle differentiation. The limitations will be explained in the following aspects.

First, little is known about the interaction network of H19 in muscle. As a multiple functional lncRNA with conserved secondary structure, we would expect that H19 interacts with a lot of partners including proteins, miRNAs and DNA. H19 has been reported to interact with proteins such as EZH2 (Luo et al., 2013), MBD1 (Monnier et al., 2013), HnRNP U (Zhang et al., 2013), SAHH (Zhou et al., 2015), KSRP (Giovarelli et al., 2014), with miRNAs such as let-7, miR-141, and with genomic DNA site such as p53 binding site within NOTCH1 promoter (Hadj et al., 2016). Some of these interactions have been verified in muscle but others have not. It would be very helpful for understanding the role of H19 in muscle differentiation if we have a more complete view of H19's interaction network in the muscle tissue. Second, we should keep in mind that muscle differentiation is a very dynamic process, along which a lot of specific-myogenic factors are activated at a specific period by demethylation at their gene locus (Carrio and Suelves, 2015). Thus, the interaction between H19 and its cofactor at one stage of differentiation could be different at another differentiation stage. In the present study (Chapter II), RNA-seq data analysis is restricted because samples were only harvested from one time point of muscle differentiation. More complete data collection across the whole process of muscle differentiation is needed. Third, multidimensional genomic profiling has been demonstrated to help to achieve better prediction of target genes and better understanding of what are really going on in the cell/tissue, attributed to the multiple layers of information integrated in the analysis. Therefore, integrating data from RNA-seq, Methyl-seq and ChIRP-seq (Chromatin isolation by RNA purification sequencing) is recommended for the study of regulatory mechanisms of H19 in muscle differentiation. ChIRP is a powerful approach to map global
genomic binding sites of a lncRNA. It can also be used to identify proteins and miRNAs that bind to a lncRNA (Chu et al., 2012).

In order to avoid the limitations described above, the following study plans will be executed in the future. Stable H19 knockdown primary myoblast cells will be constructed using lentivirus-mediated RNA interference technique. Control and H19 knockdown cell samples from at least four time points along muscle differentiation including myoblast, day 1, day 3, day 5 stages will be harvested for RNA-seq, Methl-seq and ChIRP-seq analysis respectively. Then a comprehensive comparison of RNA-seq, Methl-seq and ChIRP-seq data between control and H19 kd samples at each time point will be executed. Based on this complete and comprehensive information, we would expect to identify a lot of H19 interacting cofactors and draw connections among H19 and those cofactors, which would lead to promising hypotheses about novel regulatory mechanisms of H19 in muscle differentiation. The proposed hypotheses will be tested afterwards in vitro and in vivo.

2. **Exploring other regulatory mechanisms of H19 in hepatic glucose production.**

First, given the fact that H19 has many binding partners, we wouldn’t expect that H19/SAHH axis is the only mechanism used by H19 to regulate glucose production. Similar to the study in muscle, ChIRP-seq technique should be recruited to identify more binding partners of H19 and establish a complete picture of H19 interaction network in the liver. Second, it is known that H19/SAHH axis could mediate genome wide DNA methylation change (Zhou et al., 2015). As a result, it is easy to speculate that HNF4A won’t be the only target that whose promoter methylation and corresponding expression are regulated by H19/SAHH axis. In order to map other target genes that are affected by H19/SAHH mediated DNA methylation regulation, data collected from RNA-Seq, methyl-Seq and even ChIRP-Seq on the same sample and the subsequent integrative data analysis based on these data are required. Third, in order to further confirm the causal relationship between increased H19 and increased HGP and demonstrate that
H19 is a potential target in T2D treatment, in addition to using liver-specific overexpression of H19 mouse model, liver-specific knockdown of H19 mouse model should also be used. Comparing the effects of H19 kd in the liver between normal-chow-fed mice and high-fat-diet mice would be very useful for evaluating whether H19 is a driver of T2D development. Last but not least, a more precise method to quantify DNA methylation such as pyrosequencing instead of QMSP will be used in future studies to avoid false positive/negative results. Primary hepatocytes other than HepG2 cells will be utilized in future work to verify any proposed mechanisms in the normal physiological conditions.
V. Bibliography

