
University of Connecticut
OpenCommons@UConn

Doctoral Dissertations University of Connecticut Graduate School

5-4-2017

Computability Theoretic Results for the Game of
Cops and Robbers on Infinite Graphs
Rachel D. Stahl
University of Connecticut - Storrs, rachel.stahl@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation
Stahl, Rachel D., "Computability Theoretic Results for the Game of Cops and Robbers on Infinite Graphs" (2017). Doctoral
Dissertations. 1463.
https://opencommons.uconn.edu/dissertations/1463

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/gs?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations/1463?utm_source=opencommons.uconn.edu%2Fdissertations%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages

Computability Theoretic Results for the
Game of Cops and Robbers on Infinite

Graphs

Rachel Stahl, Ph.D.

University of Connecticut, 2017

ABSTRACT

Several results about the game of cops and robbers on infinite graphs are analyzed

from the perspective of computability theory and reverse mathematics. Computable

robber-win graphs are constructed with the property that no computable robber

strategy is a winning strategy, and such that for an arbitrary computable ordinal

α, any winning strategy has complexity at least 0(α). Symmetrically, computable

cop-win graphs are constructed with the property that no computable cop strategy

is a winning strategy. However the coding methods used in the robber-win case

fail here. Locally finite infinite trees and graphs are explored using tools of reverse

mathematics. The Turing computability of a binary relation used to classify cop-win

graphs is studied.

Computability Theoretic Results for the
Game of Cops and Robbers on Infinite

Graphs

Rachel Stahl

M.S. Mathematics, University of Connecticut, Storrs, CT, 2014

M.A. Secondary Mathematics Education, Columbia University Teachers College,

New York, NY, 2009

B.A. Mathematics, Bard College, Annandale-on-Hudson, NY, 2008

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2017

Copyright by

Rachel Stahl

2017

APPROVAL PAGE

Doctor of Philosophy Dissertation

Computability Theoretic Results for the
Game of Cops and Robbers on Infinite

Graphs

Presented by

Rachel Stahl, B.A. Math., M.A. Math. Ed., M.S. Math.

Major Advisor
Dr. David Reed Solomon

Associate Advisor
Dr. Damir Dzhafarov

Associate Advisor
Dr. Tom Roby

University of Connecticut

2017

ii

ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge my advisor Reed Solomon. I

cannot say enough about everything he has done to support me during my time at

UConn. In addition to being my research advisor for the past few years, he has acted

an advocate and mentor to me since I applied to UConn in 2011. As graduate director,

his encouragement and accommodation is what led me to believe that UConn would

be a good fit for me, and in the years since he has continued to be an unmatched

role model in both research and teaching. His comments on my dissertation were

invaluable, as was his guidance as I navigated the job market.

I would also like to thank the other members of my committee, Damir Dzhafarov

and Tom Roby, with whom I have had the privilege of taking many classes. I have

learned so much from each of them, not just in the content areas of logic and combi-

natorics but in the art of teaching as well. I want to thank all three of my committee

members for their insight and feedback on my interview quandaries, their thoughtful

letters of recommendation, and all the phone calls and hassle that came with it. I am

incredibly grateful for the time they have offered me.

I want to acknowledge my officemates, in particular Rebecca and Mike (and

Karin), for being there for 5 years of venting, prelims, student stories, field trips,

and smelly office foods. Thank you to Jackie, Liz, and Tom for listening to me

practice my job talk on vacation, and for humoring me when I want to talk about

Fibonacci. Thank you to Shaun for his patience, and Mo for the same reason.

iii

iv

I also want to thank my family including my siblings, Omie, Becky, Jackie, and

Johnny, and especially my parents. They have supported me in every imaginable way

throughout this process (and my life), including but not exclusive to offering their

home to my dog during my job search. I could not have made it through graduate

school without their encouragement and I am incredibly grateful.

Contents

Ch. 1. Introduction 1

1.1 Cops and Robbers Background . 2

1.2 Computability . 18

1.3 Reverse Math . 20

Ch. 2. Infinite Trees 23

2.1 Computability Results for Infinite Tree Graphs 23

2.2 Robber-Win Strategies of Arbitrary Complexity 28

2.3 Reverse Math Results for Infinite Trees 31

Ch. 3. Locally Finite Infinite Graphs 34

3.1 Results for Locally Finite Infinite Graphs 34

3.2 Computability Results for Infinite Locally Finite Graphs 38

3.3 Reverse Math Results for Locally Finite Graphs 40

Ch. 4. Cop-Win Strategies for Infinite Graphs 42

4.1 Computability Results for Cop-Win Infinite Graphs 43

4.2 Separating Sets . 55

Ch. 5. Properties of the Binary Relation � 59

5.1 Computability results for ≤α . 60

5.2 Rank Functions and the Binary Relation ≤α 72

Bibliography 78

v

Chapter 1

Introduction

Cops and Robbers is a vertex-pursuit game played on a connected reflexive graph

wherein two players, a cop and a robber, begin on a pair of vertices and alternate

turns moving to adjacent vertices. The cop attempts to capture the robber, while

the robber tries to evade the cop. Since the game was first studied in the late 1970’s,

much work has been done to study the game on finite graphs ([2]). While there are

some known results about the game of cops and robbers on infinite graphs, we wish

to investigate whether these theorems hold if we consider computable infinite graphs,

and require that cop and robber strategies be effective.

In computability theory, we characterize and compare different sets, functions,

and algebraic structures such as graphs in terms of a notion of complexity. A set or

function is computable if, in short, there is some algorithm so that a computer is able

to describe membership of the set or, in the case of functions, the set of ordered pairs.

Similarly, a structure is computable if a computer is able to describe the domain and

relations within the structure. These notions of computability are made precise using

1

2

Turing machines.

We often consider two main types of questions in the field of computability theory.

First, how complicated is it to describe a given set or structure? To make this question

precise, we formalize the notion of relative complexity of sets by determining whether

knowledge of one set is enough information to compute another set. In particular,

the Turing degree of a set gives a precise measure of its computational content.

Another common question to ask in computability theory is whether given prob-

lems in mathematics can be solved effectively. For example, we know that a ring is

not a field if and only if it contains a nontrivial proper ideal. However, if we consider

a computable ring which is not a field, is it necessarily the case that we are able to

effectively find a nontrivial proper ideal? This idea of considering whether solutions

are constructive or more complex is also tied to proof theory; it has allowed math-

ematicians to give a negative answer to Hilbert’s tenth problem, and to show the

undecidability of the word problem for finitely presented groups.

Finally, we wish to compare the proof-theoretic strength of known results. In

particular, given a theorem, which standard axioms of second order arithmetic are

truly necessary to prove a given result, and which axioms can we eliminate? The

investigation of this question is made precise in the study of reverse mathematics.

1.1 Cops and Robbers Background

Notation. Let G = (V,E) be a connected undirected graph without multiple edges,

and with vertex set V and edge relation E. We often identify G with the vertex set

V . In graph theory, the edge set of such a graph is considered to be a collection of

3

two-element subsets of the vertex set, and for a pair of elements v, w ∈ V , an edge

between v and w is written {v, w} ∈ E. However, we use the convention in logic

(as seen in [7]) of writing E as a binary relation, and say that if there is an edge

between v and w then E(v, w) holds, or sometimes simply E(v, w). Notice that since

the graph is undirected, this implies that the relation is symmetric, so that E(v, w)

holds if and only if E(w, v) holds.

Throughout, we assume that G is connected, and that G is reflexive, i.e., for

each v ∈ G, we have E(v, v). In diagrams, we omit drawing these reflexive edges to

avoid clutter. Also, when determining the degree of a node, we will not count reflexive

edges. Typically when we consider infinite graphs, we assume for the sake of studying

computability theoretic questions that the vertex set is countable (though the theory

works for uncountable graphs as well). Note that although we assume that G does

not contain multiple edges, this assumption is to simplify notation and in fact makes

no difference in game play. For v ∈ G, we define N [v] = {w ∈ G : E(v, w)} to be the

set of neighbors of v. Note by reflexivity that v ∈ N [v] for all v.

Definition 1.1.1. In the game of Cops and Robbers on Graphs, a player C

controls a single cop while a player R controls a single robber 1. The game is played

in rounds, with the cop making a move first followed by the robber in each round.

In round 0, a move consists of the cop choosing a vertex c0 ∈ G to occupy, followed

by the robber choosing a starting vertex r0 ∈ G. In subsequent rounds, a move is a

player’s choice to occupy a neighboring vertex of that player’s current vertex. Note

that by the reflexivity of G, a player may “pass” on their turn by moving to the same

1While the game traditionally allows for C to control multiple cops at a time, we consider only
games with a single cop and a single robber and, thus, may be inclined to call this game Cop and
Robber on Graphs instead.

4

vertex they currently occupy.

The game ends with a win for the cop if after finitely many moves, the cop

occupies the same vertex as the robber. The robber wins if he is able to evade

capture indefinitely.

Informally, we call a given graph G cop-win if there exists a winning strategy for

the cop, i.e. some set of rules that the cop can follow that will allow her to win no

matter what the robber does. A formal definition will follow after we consider the

following motivating examples.

Example 1.1.2. Let G = {a, b, c, d, e}, with edges as seen below.

A cop C can begin the game at vertex e, which is adjacent to every other vertex in

G. Thus no matter the initial starting point for the robber R, the cop will win in the

next round by moving to that vertex. So G is cop-win. The key to winning in this

case relies on the vertex e which is adjacent to every other vertex in the graph. Such

a vertex is called universal, and any graph with a universal vertex is cop-win using

the strategy of starting at the universal vertex.

Note that if there exists a cop-win strategy fC for G with initial starting position

c0, then there is a cop-win strategy for G with initial starting position v for any v ∈ G.

5

This is because a cop starting at v can follow a strategy of first moving to vertex c0,

and then following the strategy fC to win. Therefore, when convenient, we can fix a

vertex c0 ∈ G and assume without loss of generality that all cop strategies start at

c0.

If the robber has a strategy that allows him to evade capture indefinitely on a

graph G regardless of the cop’s strategy, we say that G is robber-win.

Example 1.1.3. Let G = {a, b, c, d}, a 4-cycle as seen in the image below.

For any starting position of the cop, the robber has a strategy of starting distance 2

from the cop. On each subsequent round, no matter where the cop moves, the robber

will always be able to then choose a vertex distance 2 from the cop and evade capture,

making this graph robber-win. Similarly, any cycle graph on n vertices for n > 3 is

robber-win.

These simple examples have strategies that are easily explained in words, but for

more complicated graphs a rigorous definition is needed. To that end, we first define

a tree (in the logical sense, rather than the graph theoretical sense). We denote

ω = {0, 1, 2, 3, . . . } to be the set of non-negative integers, and define a tree as follows,

using standard convention in logic (as seen in [7]).

6

Definition 1.1.4. Let S be a set. Then a countable tree T ⊆ S<ω is a set of

finite strings of elements of S which is closed under initial segments. That is, if

σ = 〈s0, s1, . . . , sn〉 ∈ T , then for all i < n, 〈s0, s1, . . . , si〉 ∈ T . We write |σ| for

the length of σ, and notice that by closure under initial segments, we must have

an empty string of length 0 in T ; we usually denote this empty string by λ. For

σ = 〈s0, s1, . . . , sn〉, we write σ(i) = si and |σ| = n+ 1.

For σ = 〈s0, s1, . . . , sn〉, we write σ ∗sn+1 as an abbreviation for the concatenation

of σ by sn+1, i.e. σ ∗ sn+1 = τ where τ has length n+ 2, τ(i) = σ(i) for all i < n+ 1,

and τ(n+ 1) = sn+1.

The definition of tree above is standard in logic literature, with the set S often

being the set of nonnegative integers ω. This differs from the classical definition of a

tree in graph theory, which is a simple connected graph without cycles, or equivalently,

a simple graph such that between every pair of vertices there is a unique path. These

notions, however, are equivalent in the following sense.

Given a countable tree T ⊆ S<ω (in the logical sense, as defined above), we can

view T as a tree GT in the graph sense with a vertex set of the nodes of T , and

an edge relation such that E(σ, τ) if and only if τ is an initial segment of σ with

|τ | + 1 = |σ|, or σ is an initial segment of τ with |σ| + 1 = |τ |. It is clear that this

yields a connected graph with no cycles.

On the other hand, given a tree G with countable vertex set (in the graph theo-

retical sense), we can enumerate the vertex set as v0, v1, Then we can define a

tree TG in the logical sense by λ ∈ TG, and σ ∈ TG if and only if σ = 〈vi0 , . . . , vin−1〉

(where n = |σ|) is a sequence of distinct nodes with E(v0, vi0) and E(vik , vik+1
) for

all k < n − 2. Then TG is a tree in the logical sense, as it is closed under initial

7

segments. The map from TG to G defined by λ 7→ v0 and σ 7→ σ(|σ| − 1) for σ 6= λ is

a bijection which is an isomorphism between G and GTG , i.e. between G and the tree

graph version of the tree TG.

Throughout this paper, we will use the term “tree” to mean both a tree and a tree

graph, and we rely on context to determine whether we refer to a tree in the logic

sense or in the graph theory sense.

We define an allowable R-play sequence for a fixed G = (V,E) to be a finite

sequence σ of elements of V that describe a (perhaps partial) play of the game. In

particular, we let σ ∈ V <ω be such that

1. |σ| is even,

2. if |σ| > 0, then σ = 〈c0, r0, c1, r1, . . . , cn, rn〉 such that for all i < n, ri+1 ∈ N [ri]

and ci+1 ∈ N [ci], and

3. if σ(i) = σ(i+ 1), then i = |σ| − 2.

Note that an allowable R-play sequence is a string of vertices of G that is either the

empty string (denoted λ), or describes a finite sequence of moves in a game, ending

with a robber move. The third condition requires that if the cop and robber ever

occupy the same vertex, the game ends and thus the string ends. We analogously

define an allowable C-play sequence to be a string σ ∈ V <ω of odd length de-

scribing a finite sequence of moves in the game, ending with a cop move. Then an

allowable play sequence σ ∈ V <ω is an allowable R- or C-play sequence. We call

a play sequence σ terminal if σ(|σ| − 1) = σ(|σ| − 2); that is, if the string ends in

the same pair of vertices, the game is over so the string ends.

Observe that the set of allowable play sequences forG = (V,E) is a treeAG ⊆ V <ω,

because if σ is an allowable play sequence, every initial segment of σ is as well. In

8

fact, as long as |V | ≥ 2, AG is an infinite tree, since each player is allowed to remain

on a vertex indefinitely. We give an example of part of the tree of allowable play

sequences for a graph consisting of a 3-cycle below.

Example 1.1.5. Let G = {a, b, c} with E(a, b), E(b, c) and E(a, c). The diagram be-

low is a part of the tree of allowable play sequences AG, with hollow circles indicating

terminal sequences. Note that every node that is not a terminal play sequence has

extensions in the tree. This tree is in fact infinite; for example, for all n, we have the

2n-length string 〈a, b, a, b, . . . , a, b〉, which represents the cop and robber remaining

on their initial vertices, a and b respectively, indefinitely.

9

We use play sequences to give a formal definition of strategies.

Definition 1.1.6. A cop strategy fC is a function with domain {σ : σ is a non-

terminal allowable R-play sequence}, and such that fC(〈c0, r0, . . . , cn, rn〉) = cn+1 ∈

N [cn]. Note that since the empty string λ is a non-terminal allowable R-play sequence,

this strategy includes choosing an initial starting position for the cop. Robber

strategies are defined analogously with the set of non-terminal allowable C-play

sequences as a domain.

Then fC is a winning cop strategy if for any robber strategy fR, the allowable

play sequences determined by the cop following fC and the robber following fR even-

tually produces a sequence 〈c0, r0, . . . , cn, rn, cn+1〉 such that rn = cn+1, or a sequence

〈c0, r0, . . . , cn, rn〉 with cn = rn. If a winning cop strategy exists for the cop, we say

the graph is cop-win. Similarly, fR is a winning robber strategy if, for every

10

cop-strategy fC , the play sequence generated by fC and fR is infinite, in which case

we say the graph is robber-win.

Note that if fC is a complete strategy for the cop, then fC determines a subtree of

TG such that each non-terminal even length node has exactly one immediate successor.

Similarly, if fR is a complete robber strategy then it determines a subtree of TG such

that each non-terminal odd length node has exactly one successor.

Then it is clear by analogy that a partial cop strategy has a domain that is

a subset of all non-terminal allowable R-play sequences, and similarly for partial

robber strategies. Given a (complete or partial) cop strategy fC and a (complete

or partial) robber strategy fR, we can generate a string which simulates the gameplay

if the cop follows fC and the robber follow fR as long as possible. Given fC and fR,

we define Play(fC , fR) by defining a sequence of strings σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · such

that |σi| = i. In particular, σ0 = λ, σ1 = fC(λ) = 〈v0〉, then if σi has been defined,

we define σi+1 as follows:

Case 1 : If |σi| is odd:

• If fR is not defined on σi, then set Play(fC , fR) = σi and end recursion.

• If fR is defined on σi, with fR(σi) = vk for some k, then define σi+1 = σi ∗ vk.

If σi(i) = vk, then define Play(fC , fR) = σi+1 and end recursion. Otherwise

continue recursion for σi+1.

Case 2 : If |σi| is even:

• If fC is not defined on σi, then set Play(fC , fR) = σi and end recursion.

• If fC is defined on σi, with fC(σi) = vj for some j, then define σi+1 = σi ∗ vj.

If σi(i) = vj, then define Play (fC , fR) = σi+1 and end recursion. Otherwise

11

continue recursion for σi+1.

Observe that if fC and fR are full strategies, then this process may define an infinite

sequence, in which case we say Play(fC , fR) =
⋃
i∈ω σi, and the robber playing fR

evades the cop playing fC indefinitely.

In some cases, we may wish to consider game play from a fixed starting position.

In this case, we denote this by Play(fC , fR, c0) where we assume that fC(λ) = 〈c0〉

and continue as above. Similarly, if we wish to fix a starting position for both the cop

and the robber, we define Play(fC , fR, c0, r0) with the assumption that fC(λ) = 〈c0〉

and fR(〈c0〉) = 〈c0, r0〉.

A natural question is whether we can characterize a given graph G based on

whether it is cop- or robber-win. The game of Cops and Robbers is well understood

for finite graphs, and results are surveyed in The Game of Cops and Robbers on

Graphs, by Bonato and Nowakowski ([2]). We present some illuminating examples

here.

Theorem 1.1.7. Every finite tree graph is cop-win.

Proof. Recall that a tree graph is a connected graph with no cycles, and we have

restricted the definition of graphs to consider only connected graphs. Every tree

graph contains leaves, i.e., vertices of degree 1, and between any pair of vertices in

a tree there is a unique path connecting them. Suppose after round 0, the cop and

robber are distance n apart. The cop follows a distance-minimizing strategy of moving

to the neighbor on the unique shortest path between the cop and robber. Since every

maximal path in a finite tree has finite length, the robber must eventually either

decrease the distance between himself and the cop by choice, or reach a leaf, at which

point the distance between the players will decrease to n − 1. Then by induction,

12

after finitely many rounds the distance will be decreased to 0, at which point the cop

has won.

We can generalize this result for infinite trees.

Theorem 1.1.8. An infinite tree is cop-win if and only if it contains no infinite path.

Proof. If G is an infinite tree with an infinite path, then the robber has a winning

strategy as follows. Suppose the cop starts at c0. The robber can choose a vertex on

the infinite path that is distance at least 2 from the cop. Then by remaining on the

path, the robber can evade the cop indefinitely.

On the other hand, if G is an infinite tree without an infinite path, it contains

end-vertices and has the property that every maximal path has finite length. The

cop can follow a distance-minimizing strategy and the robber must either let distance

decrease by choice, or encounter an end vertex as in Theorem 1.1.7. By induction the

distance decreases to 0 in finitely many rounds.

In the proof above, we refer to the distance between two vertices. We take this

to mean the length of the shortest path between two vertices, and we will define

this more carefully in Section 3.1. Notice here that if a tree is cop-win, a distance-

minimizing strategy is a winning one for the cop. However, in [3], Lehner provides

an example that demonstrates that distance-minimizing strategies are not always

winning strategies in cop-win graphs. Consider the following graph.

Example 1.1.9. ([3]) In the graph below, with starting positions c0 = x21 and r0 = x23,

a distance-minimizing strategy will result in a loss for the cop provided the robber

remains on the x2i vertices.

13

To minimize distance, the cop must stay within the x2i vertices or x1i vertices, which

will decrease the distance to 1. In doing so, the robber can always move to another

x2j vertex, increasing the distance back to 2. In order to win, the cop must move to

vertex a, and on her next turn with the robber on x2i move to the corresponding x1i .

At this point, N [x2i] ⊆ N [x1i], so the cop will win in the next round.

This example can be extended to show that the cop may need to move arbitrarily

far away from the robber first in order to win.

Theorem 1.1.10. For each n ≥ 3, there is a cop-win finite graph G with fixed starting

positions c0 and r0 that are distance 2 from each other, and a robber strategy fR such

that any winning cop strategy must increase the distance between the cop and the

robber to n.

Proof. Let G = {a, xki : 1 ≤ k ≤ n, 1 ≤ i ≤ 5}. We have edge relations analogous to

14

the example above:

• E(a, x1i) for all 1 ≤ i ≤ 5

• E(xki , x
k
i+1) and E(xk5, x

k
1) for all 1 ≤ k ≤ n and 1 ≤ i ≤ 4

• E(xki , x
k+1
i) for all 1 ≤ i ≤ 5 and 1 ≤ k ≤ n− 1

• E(xki , x
k+1
i±1) and E(xk1, x

k+1
5) and E(xk5, x

k+1
1) for all 1 ≤ k ≤ n−1 and 1 < i < 5

The following image shows this graph with n = 3.

Fix starting position c0 = xn1 and r0 = xn3 , and assume the robber follows a

strategy of maximizing the distance between himself and the cop while staying on the

15

xni vertices. Then a distance-minimizing strategy for the cop would result in the cop

staying on either the xni or xn−1i vertices, as these vertices will decrease the distance

between the cop and the robber to 1. However, as long as the robber stays on vertices

of the form xni , the cop can only win by moving to xn−1j when the robber is on xnj ,

as N [xnj] ⊆ N [xn−1j]. From starting the starting positions c0 = xn1 and r0 = xn3 , the

robber can arrange to be at vertex xn(i+1) mod 5 whenever the cop is at xki for k ≤ n.

Thus, the cop will never be able to move to xn−1j when the robber is at xnj unless the

cop first moves to vertex a, and the distance between the cop and robber will never

be less than 1.

However, if the cop increases the distance between herself and the robber by

moving to vertex a, she can win the game within n rounds. Say the cop is at a and

the robber is at xni . Then the cop now has a strategy of moving to x1i . From here,

if the robber moves to xlj, the cop moves to xa+1
j when the previous position was xai ;

in other words, the cop strategy is to keep the lower index the same as the robber’s

position while moving out on concentric pentagons. Then in at most n rounds, the

cop will win.

This result suggests that the winning strategies for cop-win graphs can be com-

plex and may be worth further study from a computability theoretic perspective. A

characterization for cop-win finite graphs is given using a notion of dismantlability

in [2], and this idea can be used to build winning strategies on finite cop-win graphs.

However, finite graphs and finite functions are less interesting in computability the-

ory, and to further investigate the complexity of various winning strategies, we wish

to understand what classes of infinite graphs are cop-win.

In [4], Nowakowski and Winkler gave a complete characterization of cop-win

16

graphs, including infinite graphs. This characterization relies on a binary relation

� defined on the vertices of a graph. We build up this relation by ordinal induction.

First, we define

v ≤0 w ⇔ v = w.

Now for an ordinal α > 0, and v, w ∈ G,

v ≤α w ⇔ ∀x ∈ N [v]∃y ∈ N [w](x ≤β y) for some β < α

The intuition here is that if u ≤α v for some ordinal α, then the cop has some strategy

to win the game if the cop occupies v while the robber occupies u.

Observe that the definition implies that if β < α and v ≤β w, we have v ≤α w so

that ≤β= {(v, w) : v ≤β w} ⊆ {(v, w) : v ≤α w} =≤α. Notice that there must be

some ordinal ρ such that ≤ρ=≤ρ+1, since the size of these sets are bounded above by

the cardinality of G × G. Then we define �=≤ρ for the least such ρ. We say that

the relation � is trivial on the vertices of G if for all v, w ∈ G we have v � w. Then

cop-win graphs are characterized as follows.

Theorem 1.1.11. [4] A graph G is cop-win if and only if the relation � on G is

trivial.

Proof. ⇒ Let G be a cop-win graph, and suppose by way of contradiction that there

exists vertices v, w ∈ G such that v 6� w. Since the cop must be able to win from any

starting vertex, suppose the cop begins at w while the robber begins at v, and assume

�=≤ρ for least such ρ. Now the cop can choose to move to any w′ ∈ N [w]. But since

v 6≤ρ w, we know that there exists v′ ∈ N [v] such that for all w′ ∈ N [w], v′ 6≤ρ w′,

since otherwise we would have v ≤ρ+1 w, a contradiction. Thus once the cop moves to

17

some w′, the robber can move to this v′ with v′ 6� w′. Then by induction, the robber

is always able to survive another round and win the game. This is a contradiction so

we must have � is trivial.

⇐ Suppose �=≤ρ is trivial on G. Choose an arbitrary first cop position c0, and

suppose the robber begins on r0. As r0 � c0, we have r0 ≤ρ c0, so since r0 ∈ N [r0]

there exists c1 ∈ N [c0] such that r0 ≤ρ1 c1 with ρ1 < ρ. The cop moves to this c1. For

any robber choice r1, there will be some c2 ∈ N [c1] such that r1 ≤ρ2 c2 with ρ2 < ρ1,

so the cop moves to this c2.

Now suppose by induction that after n rounds we have rn ≤ρn cn, with ρ > ρ1 >

· · · > ρn. Once again there must exist cn+1 ∈ N [cn] such that rn ≤ρn+1 cn+1 for some

ordinal ρn+1 < ρn. This choice of vertices yields a decreasing sequence of ordinals.

Since this sequence cannot be infinite, we conclude ρk = 0 for some k, at which point

we have rk ≤0 ck+1 which implies that the cop has won the game.

Observe then that if � is trivial on the vertices of G, we can define a cop-win

strategy using � as follows. For a cop-win graph G = (V,E), define f� on non-empty

R-play sequences by f�(〈c0, r0, . . . , cn, rn〉) = cn+1 where α is the least ordinal for

which ∃ y ∈ N [cn](rn ≤α y) and cn+1 is ≤N-least node such that cn+1 ∈ N [cn] and

rn ≤α cn+1. Then for any node v indicating a cop starting position and any full

robber strategy fR, we have Play(f�, fR, v) is a finite sequence ending in a cop win.

Notice then that if G is cop win, f� is a winning cop strategy that depends only

on the pair of vertices currently occupied by the cop and robber, rather than the

entire current play history. This implies that on a cop-win graph, the cop has a

strategy that is in some sense less complicated as it is memory-less. However, as

section 4.1 will explain, this distinction makes no difference within the framework of

18

Turing computability.

1.2 Computability

For a more thorough background in the basic notions of computability, the reader

can see [7].

Notation. Let ϕ0, ϕ1, ϕ2, . . . be a fixed enumeration of all partial computable

functions on natural numbers ω. We write ϕi(x) ↓= y, and say ϕi converges to y on

input x, if the ith partial computable function halts on input x after finitely many

steps, and outputs y. On the other hand, if the ith computable function never halts

on input x, we say ϕi diverges on x and write ϕi(x) ↑.

We also fix a canonical injective way of associating n-tuples σ = (x0, x1, . . . , xn−1)

to natural numbers aσ. Throughout, if ϕi is expressed as a function with an n-tuple

σ as an input, this is equivalent to ϕi(aσ).

Definition 1.2.1. A set A is said to be computable if its characteristic function

χA is a computable function.

A standard example of a non-computable set is the halting set, as defined below.

Example 1.2.2. Let K = {e | ϕe(e) ↓}, the halting set. Then K is not computable,

since if it were, the function f defined by

f(e) =

 ϕe(e) + 1 if ϕe(e) ↓

0 otherwise

would be computable as well. However for all e we have f 6= ϕe, a contradiction.

19

The halting set K is an example of a computably enumerable (or c.e.) set,

that is a set A such that A is the domain of some partial computable function. We

define We := dom(ϕe) = {x : ϕe(x) ↓} to be the eth c.e. set. It is easy to see that

a set A is c.e. if and only if A is Σ0
1, i.e. if x ∈ A ⇔ ∃ y R(x, y) for a computable

relation R.

We fix a canonical list of all Turing functionals ΦA
0 ,Φ

A
1 ,Φ

A
2 , that is the functional

related to the turing machine Φe with oracle A.

Definition 1.2.3. We say a set A is Turing-reducible to B, written A ≤T B, if

knowing membership of B is enough to compute membership of A. More rigorously,

A ≤T B if there exists an e such that ΦB
e (x) = χA(x), that is there is a Turing

functional with oracle B that is equal to the characteristic function for A. We say A

is Turing equivalent to B, written A ≡T B if A ≤T B and B ≤T A, and in this

case that A and B have the same Turing degree.

Definition 1.2.4. (a) Given a set A, define the jump of A by A′ := {e : ΦA
e (e) ↓},

that is, the halting set relativized to A.

(b) Let A(n) denote the nth jump of A, i.e., A1 = A′ and A(n+1) = (A(n))′.

Note that for all A, A ≤T A′, but A′ 6≤T A. Note also that 0′ = K, the halting set.

Definition 1.2.5. A set A is low if A′ ≡T 0′.

Observe that for any computable set A we have A′ ≡T 0′ and thus computable

sets are low. However there are non-computable sets which are also low.

20

1.3 Reverse Math

In addition to giving characterizations of sets and structures based on complexity

strength, we can also compare proof-theoretic strength. In the field of Reverse Math,

we use the framework of axiomatic systems in set theory to classify theorems based

on the set-theoretic axioms required to prove them. Just as it can be shown in

Zermelo-Fraenkel set theory that the axiom of choice is equivalent to Zorn’s Lemma,

in reverse math we look at axiomatic subsystems of Z2, second order arithmetic, to

find equivalences of theorems from across mathematics. We give a basic introduction

here, and the reader can find more information about the field of Reverse Math in

[6].

We generally work in a base system RCA0, a weak subsystem of Z2 which includes a

finitely axiomatized fragment of Peano Arithmetic (PA−), along with induction on Σ0
1

formulas (that is, formulas with only one existential quantifier) and set comprehension

for ∆0
1 formulas (that is, comprehension for computable sets).

As is the case when we study known results from a computability standpoint,

we will begin with a known theorem concerning the game of cops and robbers. We

attempt to determine which additional axioms A are sufficient to produce a proof

over this weak base system RCA0. Then we use RCA0 and the theorem itself to prove

the axioms of A, often called a reversal.

Most classical theorems involving properties of natural numbers, integers, and

rational numbers are provable in RCA0, as well as several theorems from across other

areas of math including the Baire Category Theorem and the Intermediate Value

Theorem. This is a relatively weak axiomatic system however, in particular when

dealing with non-computable sets. For example, RCA0 can prove neither the weak

21

nor the strong versions of König’s Lemma.

Weak König’s Lemma 1.3.1. Let T ⊆ 2<ω be an infinite binary tree. Then T

contains an infinite path.

König’s Lemma 1.3.2. Let T ⊆ ω<ω be a finitely-branching, infinite tree. Then T

contains an infinite path.

We can see that these theorems are not provable over RCA0 by showing that there

is a computable tree that contains no computable path (see Chapter 2). Thus, the

following axiomatic system is a proper extension of RCA0.

Definition 1.3.3. WKL0 is a subsystem of Z2 consisting of all the axioms of RCA0,

as well as Weak König’s Lemma.

By including this one new axiom, we find that many classical theorems are provable

over WKL0, but not over RCA0. For example, both the Heine-Borel Theorem and the

Brouwer fixed point Theorem are equivalent to WKL0 over RCA0; that is, they are

provable in WKL0, and if we assume either theorem as an axiom in addition to RCA0,

we can prove Weak König’s Lemma.

We cannot, however, prove König’s Lemma 1.3.2 in WKL0. In this case, we require

a stronger set-comprehension axiom.

Definition 1.3.4. Arithmetical Comprehension ACA0 is a subsystem of Z2 con-

sisting of all the axioms of RCA0, as well as comprehension for Σ0
1 formulas. Note

that this implies comprehension of all arithmetical formulas with no quantified set

variables.

22

While it is not immediately clear, one can show that ACA0 is a proper extension of

WKL0, and that it is equivalent to König’s Lemma. It is also equivalent to, for exam-

ple, the Balzano-Weirstrass Theorem and the fact that every countable commutative

ring has a maximal ideal.

There are two more subsystems of Z2 which commonly appear in reverse mathe-

matics.

Definition 1.3.5. Arithmetical Transfinite Recursion ATR0 is a subsystem of Z2

consisting of all the axioms of RCA0, as well as the axiom schema that any arithmetical

formula can be transfinitely iterated along a countable well ordering.

Definition 1.3.6. Π1
1-CA0 is a subsystem of Z2 consisting of all the axioms of RCA0,

as well as comprehension for Π1
1 formulas.

These 5 axiomatic subsystems make up what is called “The Big Five” in reverse

math, and it can be shown that they are proper extensions of each other:

Π1
1-CA0 ⇒ ATR0 ⇒ ACA0 ⇒ WKL0 ⇒ RCA0

While there are theorems in mathematics that are equivalent to other fragments of

Z2, in particular many results in Ramsey Theory, most of the results in the following

chapters will have equivalences to Big Five subsystems.

Chapter 2

Infinite Trees

Recall from Section 1.1 that a tree graph is robber-win if and only if it contains

an infinite path. We use this result to investigate the computability of robber-win

strategies on special classes of infinite trees.

2.1 Computability Results for Infinite Tree Graphs

Definition 2.1.1. A tree graph is locally finite if for every v ∈ G, N [v] is finite.

Definition 2.1.2. A locally finite computable graph with V = {vi : i ∈ N} is highly

locally finite if there is a computable function f : N → N such that for every n, if

E(vn, vm) holds, then m ≤ f(n).

Note that the second condition is stronger, since for each vertex v ∈ G it puts a

computable upper bound on the indices of the neighbors of that vertex. Theorem 1.4

yields the following result.

23

24

Theorem 2.1.3. A locally finite tree graph is cop-win if and only if it is finite.

Proof. This result follows directly from the fact that a locally finite tree has an infinite

path if and only if it is infinite.

While this result follows directly from Theorem 1.1.8, shifting our view towards

a locally finiteness property of graphs allows us to explore this result in the context

of computability theory. In particular, we will see that this characterization of cop-

win locally finite trees fails if we require that the cop and robber play with effective

strategies on computable graphs.

Let T ⊆ ω<ω (or T ⊆ 2<ω) be a tree. We view T as a graph whose vertex set are

the strings in T , and whose edge relation E is defined by E(σ, τ) holds if and only if

σ = τ or σ is an immediate successor or predecessor of τ on T .

Lemma 2.1.4. Let T be a tree in ω<ω (or 2<ω) viewed as a graph. If fR is a robber-

win strategy, then fR computes an infinite path in T .

Proof. Let fC be a cop strategy such that fC(λ) = λ, so that the cop starts at the

root of the tree T , and fC is distance-minimizing, i.e., the cop always moves up the

tree from the root toward the robber. Let fR be a robber-win strategy.

The cop starts at c0 = λ, and the robber starts at some node r0 ∈ T . Let n0

be the distance between c0 and r0 (which is also the length of the string r0 in the

tree). Assume that after round k, the cop is at ck and the robber is at rk, with

nk := |rk| − |ck| the distance between then. At round k + 1, the cop moves to ck+1

with |ck+1| = k + 1 and ck+1 ⊆ rk. That is, the cop moves one step towards rk on T .

Then fR does one of the following:

1. sets rk+1 = rk, in which case nk+1 = nk − 1

25

2. moves to rk+1 = the unique predecessor of rk in T , in which case nk+1 = nk− 2,

or

3. moves to rk+1 = some successor of rk in T .

Because fC moves toward the robber up the tree, fR can act as in case 1 or 2 at

most (n0−1)-many times without losing to the cop in the next round. Therefore, there

is some round k such that for every round s > k, fR acts as in case 3. The sequence

of nodes rk ⊆ rk+1 ⊆ rk+2 ⊆ · · · traces a path in T . This path is computable from

fC (which is computable), fR, and the non-uniform parameter k. Thus fR computes

a path in T .

Lemma 2.1.5. Let T be a tree in ω<ω or 2<ω, and let P ⊆ T be an infinite path.

There is a robber-win strategy fR such that fR ≡T P .

Proof. We define fR as follows. First let fR(c0) = r0 where |r0| = |c0|+ 2 and r0 ∈ P .

Then, define

fR(〈c0, r0, . . . , cn, rn, cn+1〉) =

 rn if cn+1 /∈ P

g(rn) if cn+1 ∈ P

where g : P → P is defined by g(σ) = the immediate successor of σ on P . Then we

claim fR is robber-win. Note that since r0 is on the path P and higher in the tree

than c0, we have that the robber begins at a distance of at least 2 from the cop. First

assume the cop starts at c0 ∈ P . Then each time the cop moves toward the robber

on P , the robber can increase the distance between himself and the cop by 1, and

evade the cop indefinitely.

Assume instead the cop begins at c0 /∈ P . If the cop never enters the path P , the

26

robber can remain on the path indefinitely. If the cop does enter the path, she must

enter the path at some node cn+1 such that |cn+1| < |r0| + 2, as she would need to

move toward the root node at least once. Once the cop enters the path, the robber’s

strategy will guarantee that the distance between the cop and robber is at least 1

indefinitely.

Clearly fR ≤T P . Furthermore, fR computes P , as a cop using distance-minimizing

strategy fC will require that the robber can only remain in his current position for

finitely many rounds. So there exists k so that for all rounds s > k, we have rk+1 6= rk.

Then the sequence λ = ri0 ⊆ ri1 ⊆ · · · ⊆ rij ⊆ rk ⊆ rk+1 ⊆ rk+2 ⊆ · · · will trace the

path P in T , where the ril sequence consists of the initial segments of rk.

Then fR ≡T P .

These lemmas allow us to prove the following results.

Theorem 2.1.6. There exists a computable infinite locally finite tree graph G such

that no computable robber strategy fR is a winning strategy for the robber. Moreover,

G can be chosen so that for all v, |N [v]| ≤ 3.

Proof. We rely on a classic construction of a computable infinite tree T ⊆ 2<ω with

no computable path; such a tree satisfies that for all v, |N [v]| ≤ 3. By Lemma 2.1.4,

any robber-win strategy computes a path of T . Thus any robber-win strategy is not

computable.

Notice that in this example, the unique path in T between the cop and the robber

is computable. Thus, if both players are restricted to computable strategies, the

cop is able to beat the robber on this classically robber-win graph. While the robber

requires a non-computable strategy to beat the cop, the following result demonstrates

27

that there is an upper bound on the complexity of winning strategies for the robber

in locally finite graphs.

Theorem 2.1.7. For every computable infinite locally finite tree graph, there is a

robber-win strategy fR such that fR ≤T 0′′.

Proof. Let G = (V,E) be a computable locally finite tree graph. Then treating v0 as

the root node, we view G as a computable finitely branching tree. This tree has an

infinite path computable in 0′′ by the Kreisel Basis Theorem ([8]). By Lemma 2.1.5,

there is a robber-win strategy computable in 0′′.

Observe that we can use these lemmas, along with an example in [8] of a com-

putable infinite locally finite tree such that every path P ≥T 0′, to show that there

is a robber-win graph such that every robber-win strategy fR is Turing equivalent to

0′. However, when we restrict these results to highly locally finite infinite computable

trees, we can lower our bound on the computability of robber-win strategies.

Theorem 2.1.8. (1) A highly locally finite tree graph is cop-win if and only if it is

finite.

(2) There exists a computable infinite highly locally finite tree graph G such that no

computable robber strategy fR is a winning strategy for the robber.

Proof. These are special cases of Theorem 2.1.3 and Lemma 2.1.4, viewing a com-

putable infinite highly locally finite tree graph G as a computably bounded com-

putable subtree of ω<ω.

Theorem 2.1.9. For every computable infinite highly locally finite tree graph, there

is a robber-win strategy fR that is low, i.e. such that (fR)′ ≤T 0′.

28

Proof. This theorem follows from the computability theoretic result that every com-

putable infinite highly locally finite tree has a low path. Thus this path P satisfies

P ′ ≤T 0′, and P computes a strategy fR for the robber to find the path P . Then

fR ≤T P implies (fR)′ ≤T 0′.

The results in this section imply that any robber-win tree will necessarily have a

robber-win strategy that is relatively low in complexity, as it will be computable from

0′. A natural question to ask is whether there exists a robber-win graph for which

any winning robber-strategy is above 0′, and to extend even further, whether we can

construct a robber-win graph such that a winning strategy is arbitrarily complex. To

that end, we introduce the hyperarithmetical hierarchy.

2.2 Robber-Win Strategies of Arbitrary Complex-

ity

In Section 1.2, we defined the jump of a set by A′ = {e : ΦA
e (e) ↓}. Iterating this

process beginning with the empty set gives us the arithmetical hierarchy 0 <T 0′ <T

0(2) <T · · · , and a standard fact of computability theory is that a relation is ∆0
n if

and only if it is computable relative to 0(n−1). Similarly, a relation is Σ0
n or Π0

n if

and only if it is c.e. or co-c.e. relative to 0(n−1), respectively. The hyperarithmetical

hierarchy gives us a means to transfinitely extend this arithmetical hierarchy (see [1]).

Let O be Kleene’s set of ordinal notations. For a ∈ O, we define |a| = α ∈ ON

as follows:

• |1| = 0

29

• |a| = α implies |2a| = α + 1

• |3 · 5e| = sup{|ϕe(n)| : n ∈ ω}, provided ϕe is a total computable function

satisfying ϕe(n) ∈ O for all n, and ϕe(0) <O ϕe(1) <O ϕe(2) <O · · ·

Definition 2.2.1. An ordinal α that has a notation a ∈ O is said to be a computable

ordinal. Define ωCK1 to be the least non-computable ordinal.

We use Kleene’s O to define the sets of the hyperarithmetical hierarchy by effective

transfinite recursion as follows:

• H1 = ∅

• H2a = H ′a

• H3·5e = {〈i, j〉 : i ∈ Hϕe(j)}

Note that for any finite ordinal n, there is a unique a ∈ O with |a| = n, and in this

case we have that 0(n) = Ha. For infinite computable ordinals α, while there are

multiple notations a such that |a| = α, it can be shown that if |a| = |b| = α then

Ha ≡T Hb ≡T 0(α) (see [1]).

These H-sets give us benchmarks for measuring the complexity of sets that are

more complicated than 0(n) for finite n.

Theorem 2.2.2. For each computable ordinal α, there exists a computable infinite

tree T ⊆ ω<ω such that any path P ∈ [T] computes 0(α).

Proof. We rely on known results in computability theory to construct such a tree.

Sacks shows in [5] that for each a ∈ O, Ha is a Π0
2 singleton. This is to say that for

30

each computable ordinal with notation a, there is a Π0
2 formula ϕ(Y) such that Ha is

the unique set such that ϕ(Ha) holds. Thus for each α < ωCK1 , we have that 0(α) is a

Π0
2 singleton with an associated Π0

2 formula that we will denote ψα. Then there is a

computable relation Rα such that ∀n ∃mRα(n,m, 0(α)), and such that no other set

satisfies this relation. For each computable ordinal α, we will show that there exists

a computable infinite tree T ⊆ ω<ω such that any path in T computes 0(α).

We can write Rα as a predicate on finite strings Rα(n,m, σ, τ) so that

X = 0(α) ⇔ ∀n ∃m > n Rα(n,m,X � n,X � m)

We say that a triple (m,σ, τ) is an n-triple if and only if the following holds:

1. n < m and σ ⊆ τ

2. |σ| ≥ n and |τ | ≥ m, and

3. Rα(n,m, σ � n, τ � m) holds.

Note that since σ and τ are coded as natural numbers, the n-triple (m,σ, τ) is also

coded as a natural number.

We define Tα ⊆ ω<ω as follows: for |δ| = k, we let δ ∈ Tα if and only if δ =

〈(m0, σ0, τ0), . . . , (mk−1, σk−1, τk−1)〉 where each (mn, σn, τn) for n < k is an n-triple,

and for each n < k − 1, τn ⊆ σn+1. Since Tα is closed under initial segments, it is

in fact a tree. Furthermore, since Rα(n,m, σ, τ) is a computable relation, Tα is a

computable tree.

We claim that Tα has an infinite path. For each n ∈ ω, let γk = (mn, 0
(α) � n, 0(α) �

mn) where mn > n is such that Rα(n,mn, 0
(α) � n, 0(α) � mn) holds. Then for each k,

〈γ0, γ1, . . . , γk−1〉 ∈ Tα. Thus Tα has an infinite path.

31

Next we show that if P is an infinite path in Tα, then P ≥T 0(α). We write P as a

sequence δ0 ⊆ δ1 ⊆ δ2 ⊆ · · · , where |δk| = k and δk = 〈(m0, σ0, τ0), . . . , (mk−1, σk−1, τk−1)〉.

Let X =
⋃
k∈ω σk. Then we have that X ≤T P , and since σ0 ⊆ τ0 ⊆ σ1 ⊆ τ1 ⊆ · · · ,

we have that X =
⋃
k∈ω τk also.

We claim that ∀n ∃m Rα(n,m,X � n,X � m). To show this, fix n. We have that

δn+1 ends with (mn, σn, τn). Since (mn, σn, τn) is an n-triple, Rα(n,mn, σn � n, τn �

mn) holds. But σn ⊆ X and τn ⊆ X, so σ � n = X � n, and τ � mn = X � mn. Thus

Rα(n,m,X � n,X � m) holds. Then we conclude that X = 0(α). Thus any path P in

Tα computes 0(α).

This result allows us to answer the question at the end of section 2.1 in the

affirmative.

Corollary 2.2.3. For each computable ordinal α, there exists a computable robber-

win graph G such that any winning robber strategy fR ≥T 0(α).

2.3 Reverse Math Results for Infinite Trees

The statement that trees are cop-win if and only if they contain no infinite path

has relatively weak proof-theoretic strength, as it is provable over the base axiomatic

system RCA0. However, just as viewing trees from a lens of local-finiteness allows for

an examination of computability-theoretic strength of strategies, we can also see that

these results are stronger in an axiomatic sense.

Note that in the context of reverse math, we have an alternate definition for highly

locally finite graphs.

32

Definition 2.3.1. Over RCA0, we say G is highly locally finite if there is a function

f such that for all v, w ∈ V , if E(v, w) then w ≤ f(v).

Observe that such a function f need not be computable; we need only to prove that

such a function exists. Note that in the following proof, and in reverse math results

to follow, we use N rather than ω to denote the (possibly non-standard) domain of

the model of second order arithmetic.

Theorem 2.3.2. (1) Over RCA0, Theorem 2.1.3 is equivalent to ACA0.

(2) Over RCA0, Theorem 2.1.8 (1) is equivalent to WKL0.

Proof. (1) (⇐) Assuming ACA0, we wish to show that a locally finite tree graph is

cop-win if and only if it is finite. Let G be a locally finite tree. If G is finite, it is

immediate that G is cop-win. Suppose instead that G is infinite with vertex set N.

We use the equivalence of ACA0 to König’s Lemma, which states that if T ⊆ N<N

is infinite and finitely branching, it has a path. We view G as a finitely branching

subtree of N<N by choosing some node, say 0 ∈ G, to be the root of the tree. Then

by König’s Lemma G has an infinite path. Thus G is robber-win.

(⇒) Assuming that a locally finite tree graph is cop-win if and only if it is finite

over the base field RCA0, we wish to prove arithmetic comprehension. It suffices to

show König’s Lemma. Let T ⊆ N<N be an infinite finitely branching tree. Then as

an infinite and locally finite tree graph, it is robber-win. This implies that T has an

infinite path, as the cop can use a distance-minimizing strategy and catch the robber

unless the robber finds a path as in Lemma 2.1.4.

(2) (⇐) Assuming WKL0, we wish to show that a highly locally finite tree graph

is cop-win if and only if it is finite. Let G be a highly locally finite tree graph. If G

is finite, then it is immediate that G is cop-win. Suppose instead G is infinite with

33

vertex set N. We make use of the equivalence of WKL0 to Bounded König’s Lemma

([6]), which states that, over RCA0, every infinite highly locally finite tree T ⊆ N<N

has a path. By choosing an arbitrary vertex, say 0 ∈ G, to be the root node of the

tree, we can view G as an infinite subtree T of N<N with the property that there is

a function g : N → N such that if τ ∈ T and m < |τ |, then τ(m) < g(m). Such

a function g comes from the definition of the function f in Definition 2.3.1. Since

WKL0 is equivalent to the statement that such bounded trees contain infinite paths

([6]), we conclude that G has an infinite path. Thus G is robber-win.

(⇒) Now suppose over RCA0 that a highly locally finite tree graph is cop-win if

and only if it is finite. Let T ⊆ 2<N be infinite. Then T is highly locally finite, and

thus T is robber-win. As in the converse proof of 2.6.1, this implies that T has an

infinite path.

These results follow easily from equivalences to König’s Lemma and to Bounded

König’s Lemma because we can view tree graphs as subsets of N<N. In the next

chapter, however, we will see a generalization of these results to locally finite graphs,

which are in some sense more interesting.

Chapter 3

Locally Finite Infinite Graphs

In the last chapter, we saw that if an infinite tree is locally finite, it has an infinite

path and is therefore robber-win. In this chapter, we explore the more general case

of locally finite infinite graphs.

3.1 Results for Locally Finite Infinite Graphs

Notice that in general, it is not enough to show that a graph has an infinite path in

order for the graph to be classified as robber-win. In the example that follows, we

see that a general graph with an infinite path need not be robber-win.

Example 3.1.1. The graph G consists of vertices {vi, xj : i ∈ ω, 1 ≤ j ∈ ω} with the

following edge relations:

N [v0] = {v0} ∪ {v1} ∪ {xj : 1 ≤ j ∈ ω},

34

35

for i > 0

N [vi] = {vi−1, vi, vi+1} ∪ {xj : j ≥ i},

and for all j ≥ 1,

N [xi] = {vj : j ≤ i} ∪ {xj : 1 ≤ j ∈ ω}.

Notice that G has an infinite path v0, v1, v2, · · · . However, G is cop-win. Suppose

the cop begins at v0. Then if the robber begins on xi for any i, the cop will win in the

next round. If instead the robber starts of vi for any i, then the cop can move to xi+1

on her first turn. Since N [vi] = {vi−1, vi, vi+1}∪ {xj : j ≥ i} ⊆ {vj : j ≤ i+ 1}∪ {xj :

1 ≤ j ∈ ω} = N [xi+1], the cop will win in the next round.

Intuitively, we can see the issue in the preceding example is the fact that the cop,

in a sense, has a shortcut to get to the robber. Since v0 has infinitely many neighbors,

no matter how far along the path the robber starts, the cop has a way to reach him.

Thus we might hypothesize that if a graph contains an infinite path without infinitely

36

many “shortcuts,” the robber may have a strategy to win. One way to make this idea

rigorous is with the concept of local finiteness.

Definition 3.1.2. A graph is locally finite if for every v ∈ G, N [v] is finite.

We will show that infinite locally finite graphs are robber-win through the use of

a distance function on the vertices of G. Let G = (V,E) be a connected graph. For

v, w ∈ V , a path from v to w is a sequence of nodes v0, . . . , vn such that v = v0,

w = vn, and for all i < n we have E(vi, vi+1) holds. We say this path has length n.

Then define the distance from v to w denoted d(v, w) = least n such that there is a

path of length n from v to w in G.

Observe that d is well-defined as long as G is connected. Furthermore d satisfies

• d(v, w) = 0 ⇔ v = w

• d(v, w) = d(w, v)

• d(v, w) ≤ d(v, u) + d(u,w) for any v, u, w ∈ V .

Theorem 3.1.3. If G is an infinite locally finite graph, then G is robber-win.

Proof. Let c0 be the cop’s starting vertex. Define D1 = {v ∈ G : d(c0, v) = 1}.

Similarly, define Dn = {v ∈ G : d(c0, v) = n}. Note that since G is connected, for

every vertex v ∈ G we have v ∈ Dn for some n, and for all n, Dn is a finite set

because G is locally finite. Furthermore, Dn is non-empty for all n, since otherwise,

the largest non-empty index n, we would have the vertex set of G = ∪m≤nDm is finite.

We claim that we can find an infinite path v0, v1, v2, · · · in G such that d(v0, vi) = i

for all i. To find such a path, fix c0, and define a tree TG ⊆ V <ω as follows: let σ ∈ TG

if and only if

37

1. for all i < |σ|, σ(i) ∈ Di, and

2. for all i < |σ|−1, E(σ(i), σ(i+ 1)) and σ(i) is the ≤N-least element of Di which

is connected to σ(i+ 1).

We claim that TG is infinite and finitely branching. To see this, note that since

each Di is finite, TG is clearly finitely branching. To show TG is infinite, let vn ∈ Dn.

We show there is some σ ∈ TG such that |σ| = n + 1 and σ(n) = vn. Define σ(i) for

i ≤ n by downward induction on i, maintaining that σ(i) ∈ Di.

For i = n: Set σ(n) = vn. Assume σ(i+ 1) is defined. By construction, σ(i+ 1) ∈

Di+1. Therefore there are nodes v ∈ Di such that E(v, σ(i + 1)). Let σ(i) be the

≤N-least such node v. This completes the definition of σ.

By construction and definition of TG, σ ∈ TG with |σ| = n + 1. Therefore TG

is infinite. Now since T is infinite and finitely branching, it has an infinite path

v0, v1, v2, These nodes form a path in G and satisfy d(c0, vn) = n for all n.

We claim that this path gives the robber a winning strategy. Let the robber

start on v2. Then on the cop’s first move, the cop must remain at v0, or move to

some w1 ∈ D1. The robber can now move to v3. We claim that the cop can move

to a vertex which is distance 2 or less from v0; in particular, the cop cannot move

to any vertex distance greater than 2 from v0. Thus, the cop cannot win on this

turn, as d(v0, v3) = 3. The robber on his turn will move to v4. Now proceeding by

induction, assume that after n rounds the cop has moved to some vertex wn so that

d(v0, wn) ≤ n, and the robber has moved to vn+2. On her next turn, the cop can

move to some wn+1 that is distance at most n + 1 from v0, and thus will not catch

the robber in this round.

Thus the cop will never be able to occupy the same vertex as the robber and we

38

conclude G is robber-win.

With this in mind, we can explore winning strategies for locally finite graphs from

a recursion theoretic viewpoint.

3.2 Computability Results for Infinite Locally Fi-

nite Graphs

We saw in the preceding chapter that paths may be arbitrarily complex for infinite

trees; in particular, for a fixed computable α ∈ ON, there is a tree T such that any

winning robber strategy computes 0(α). We see that this is not the case for locally

finite infinite graphs.

Theorem 3.2.1. For an infinite computable locally finite graph G, 0′′ can compute a

robber-win strategy.

Proof. Let G = (V,E) be a computable locally finite graph. Notice that if G is

computable, then the distance function d : V 2 → N is computable from 0′, because

0′ computes the neighbor set N [v] fore each v ∈ V . Thus the Dn sets are uniformly

0′-computable for all n as well.

From G, we construct the finitely-branching infinite tree TG as in the proof of

Theorem 3.1.3. Since the construction of TG relies on G and the distance function, we

have TG ≤T 0′. Thus TG is a 0′-computable tree which has 0′-computable branching,

and it therefore has a path P computable from 0′′.

We claim P computes a winning strategy for G. Notice that for each i, vP (i) is a

vertex distance i from v0. If the cop begins at v0, the robber can start at vP (2) and

will be distance 2 from the cop in G. The cop must choose to move to some vertex

39

c1 distance at most 1 from v0, at which point the robber can move to vP (3) which is

distance 3 from v0 and thus distance at least 2 from c1. By an inductive argument,

we see that after n rounds, the cop will be distance at most n from v0 and the robber

will be able to move to vP (n+2) which will be distance 2 from the cop, so the robber

has a winning strategy computable from P ≤T 0′′.

Analogous to Theorem 2.1.9, we use the construction of T in the previous proof

to prove the following result.

Theorem 3.2.2. For an infinite computable highly locally finite graph G, there is a

low robber-win strategy.

Proof. For an infinite computable highly locally finite graph G = (V,E), we define

TG as in the proof of Theorem 3.1.3. We claim that since G is computable and highly

locally finite, the distance function is computable and the Dn sets are uniformly

computable. Thus TG is a computable infinite finitely-branching tree. If f : G → N

is a function that bounds the indices of the neighbors of vertices in G, and σ ∈ TG

of length n, then f̂ : TG → N defined by f̂(σ) = f(σ(n − 1)) places a bound on the

possible successors of σ in TG. Thus since TG is a computable infinite highly locally

finite tree, it has a low path P . An argument analogous to the proof of the last

theorem shows that P computes a winning strategy for G.

Furthermore, we can generalize the reverse math results for infinite locally finite

trees to infinite locally finite graphs.

40

3.3 Reverse Math Results for Locally Finite Graphs

Recall that over the base system of RCA0, arithmetic comprehension is equivalent to

the result that a locally finite tree is cop win if and only if it is finite. We see the

following analogous result for locally finite general graphs.

Theorem 3.3.1. The following are equivalent over RCA0:

(1) ACA0

(2) If G is an infinite locally finite graph, G is robber-win.

Proof. ⇒ Assume arithmetic comprehension, and let G be an infinite locally finite

graph. The distance function d : V 2 → N is arithmetically definable as follows:

d(v, w) = n⇔ ∃σ(|σ| = n ∧ σ is a path from v to w)

∧ ¬∃σ(|σ| < n ∧ σ is a path from v to w).

Thus ACA0 proves that the distance function d exists, and thus that the Dn sets exist.

Then we can define a tree TG as in the proof of Theorem 3.1.3 and we can prove in

RCA0 that this tree is infinite and finitely branching. Then by the equivalence of

ACA0 and König’s Lemma, TG has an infinite path P . This path computes a winning

strategy for the robber in G.

⇐ In order to show arithmetic comprehension, it suffices to show König’s Lemma.

Let T ⊆ N<N be an infinite finitely branching tree. Then as a graph, T is infinite and

locally finite, and thus is robber-win. Then T must have a path, as in the proof of

Theorem 2.3.2 (1).

41

Similarly, we have the following analogous result to Theorem 2.3.2 (2).

Theorem 3.3.2. The following are equivalent over RCA0:

(1) WKL0

(2) If G is an infinite highly locally finite graph, then it is robber win.

Proof. ⇒We work in WKL0, and assume G = (V,E) is an infinite highly locally finite

graph. Since RCA0 proves that the distance function d exists for a highly locally finite

graph, it also proves that the Di sets exist. As we saw in the proof of Theorem 3.2.2,

the associated tree TG is an infinite highly locally finite tree. Then by the equivalence

of WKL0 and Bounded König’s Lemma, TG has a path. This path yields a winning

robber strategy.

⇐ Assume that any infinite highly locally finite graph G is robber-win. Let

T ⊆ 2<N be infinite. Then T is highly locally finite, and thus robber-win. This can

only be true if T has a path, since otherwise a distance-minimizing strategy for the

cop will be a winning one. Thus we have the result of WKL0.

Having studied the class of locally finite graphs at length, we have only investigated

robber-win graphs. We now proceed to the more general class of infinite graphs.

Chapter 4

Cop-Win Strategies for Infinite
Graphs

By studying the general class of infinite (non-locally finite) graphs, we are able to

see examples of infinite cop-win graphs. Notice that since Theorem 3.1.3 is not a

biconditional statement, it is not the case that every infinite, non-locally finite graph

is cop-win, as we see in the example below.

Example 4.0.3. In the graph G below, N [x0] = {x0, x1, x3} ∪ {vi : i ∈ ω}. While G

is not locally finite, it is also robber win, as the robber can move opposite the cop in

the 4-cycle indefinitely.

42

43

However, we do know that every infinite cop-win graph is not locally finite. Recall

that by Theorem 1.1.11 from [4] we have a characterization of cop-win graphs. This is

a natural result to investigate from a recursion theoretic perspective, and we will show

there is a graph G such that the relation � is trivial but such that no computable cop-

strategy is a winning one. We will also see that, unlike the case of winning robber

strategies, it is difficult to code non-computable information into cop strategies in

cop-win graphs.

4.1 Computability Results for Cop-Win Infinite

Graphs

Recall that a graph G is cop-win if and only if the relation �, defined as in Section

1.1, is trivial on the vertices of G; i.e., for all v, w ∈ G, v � w. We saw in Theorem

2.1.6 that this characterization fails for computable graphs if we require strategies

to be computable, since there is a robber-win graph, in particular an infinite binary

tree, with no computable path and thus no computable robber-win strategy. We now

see a parallel result for cop-win trees using a common tool in computability theory

44

of diagonalizing against all possible strategies.

Theorem 4.1.1. There exists a computable cop-win graph G such that no winning

cop-strategy is computable.

Proof. We build G computably in stages in order to diagonalize against every possible

computable strategy ϕe.

Stage 0: We define G0 to be an infinitely branching tree with countably many

paths of length three branching from a root λ.

We let Gs denote the graph at stage s and for a node x ∈ Gs, we let Ns[x] denote

the set of neighbors of x in Gs.

At any subsequent stage s + 1 > 0 with e < s we may or may not modify the

path including vertices ce, xe, and re in order to diagonalize against ϕe. As noted in

Chapter 1, we can assume without loss of generality that ϕe starts with initial cop

position λ.

Stage s: For each e < s, we act to diagonalize against ϕe as follows:

Initial Module: We consider ϕe acting on the initial cop position λ and initial

45

robber position re. We want to check if ϕe describes a cop stratgy which eventually

moves the cop to xe while the robber remains at re. Formally, we check whether

there is a sequence of stages s0 ≤ s1 ≤ · · · ≤ sk < s and a sequence of nodes

w0 ≤ w1 ≤ · · · ≤ wk such that

ϕe,s0(〈λ, re〉) ↓= w0,

and for i < k,

ϕe,si(〈λ, re, w0, re, w1, re, · · · , wi, re〉) ↓= wi+1

and E(λ,w0), and E(wi, wi+1) for i < k, and wk = xe. If not, we take no action for

ϕe at this stage. If so, then we say ϕe,s has executed a sequence of cop moves ending

in xe while the robber remains fixed at re. In this case, we add in vertices a0e and b0e

as seen below.

Note that Ns[a
0
e] = {a0e, b0e, re} and Ns[b

0
e] = {b0e, a0e, ce, xe, re}. These are the only

new vertices we add on this particular path at this stage. In this case, the robber

may move to node a0e and remain distance 2 from the current cop position.

Induction Module: Assume we have added neighbors b0e, b
1
e, . . . , b

i
e to re as well

as auxiliary nodes a0e, a
1
e, . . . , a

i
e. When this module starts, in order to beat ϕe, the

robber is currently at aie and the cop is distance 2 from aie. We check if ϕe,s executes

46

a sequence of cop moves ending in ai−1e or bi−1e , the only nodes currently at distance

1 from aie, while the robber remains fixed at aie as in the Initial Module. If not, then

we do nothing for ϕe at this stage. If so, then we include extra vertices ai+1
e and bi+1

e

with neighbor sets as follows:

Ns[a
i+1
e] = {ai+1

e , aie, b
i+1
e }

and

Ns[b
i+1
e] = {xe, re, ce} ∪ {bje : j ≤ i+ 1} ∪ {aje : j ≤ i+ 1}.

As an example, if i = 0, we would include a1e and b1e as follows.

Note that the robber can move to ai+1
e to remain at distance 2 from the cop.

End construction.

We claim that G =
⋃
s∈ω Gs is a cop-win graph with the property that no com-

putable cop strategy is a winning strategy.

First we show that G is cop-win. Assume the cop begins on λ. For each initial

path ce, xe, re, we either added finitely many aie and bie vertices, or infinitely many.

First suppose the robber begins on some vertex in a path indexed e with only finitely

many aie vertices. Let i be the largest index such that aie ∈ G. The cop moves to ce.

47

Now regardless of the robber’s move, the cop can move on her next turn to bie. Now

since N [y] ⊆ N [bie] for all y ∈ {ce, xe, re, bje, aje : j ≤ i}, the cop will win on her next

turn.

If on the other hand the robber begins on some vertex in a path indexed by e with

infinitely many aie vertices, the cop first moves to ce. If the robber then occupies either

xe or any bje vertex, he will lose in the next round as ce is adjacent to xe and every bje.

If instead the robber occupies aje for some j, then we claim that the cop should move

to bj+1
e to win in the next round. This is because, since there are infinitely many aie

and bie vertices in G, then we have

N [aje] = {aje, aj−1e , aj+1
e } ∪ {bke : k ≥ j}

⊆ {xe, re, ce} ∪ {bie : i ∈ ω} ∪ {aie : i ≤ j + 1}

= N [bj+1
e].

Note that if the robber had chosen to occupy re, then the cop could move to b0e to

win in the next round.

Thus G is cop-win. However, we claim that no computable function will be a

winning strategy for the cop. To prove this, suppose by way of contradiction that the

cop had some computable winning strategy f . Then f = ϕe for some e. As before,

this path ce, xe, re has either finitely many aie vertices, or infinitely many.

In the first case, suppose i is the largest index such that aie ∈ G. Since we never

added any more ai+1
e vertices to G, we know that for every stage s, ϕse did not move

the cop within distance 1 of aie. Therefore, by staying on aie, the robber has a winning

strategy to beat ϕe.

In the second case, suppose the cop is on ce and the robber on re. We know that

48

when following ϕe, the cop must eventually move to xe since we only include a0e if

ϕe,s executed a sequence of cop moves ending in xe while the robber remains fixed at

re. Then the robber can move to a1e, and remain there until the cop moves to either

re or b0e. We know the cop must do that, as we would only add in vertices a1e and b1e

after the cop moves to re or b0e while the robber remains fixed at a0e.

Now we claim that by induction, the robber will always have a way to evade

capture for another round from the cop using ϕe. Suppose after some rounds the

robber has just moved to ai+1
e at stage s. Because we added ai+1

e and moved the

robber to this node at stage s, the cop is currently at ai−1e or bie and the nodes in

the current part of the graph dedicated to e are {xe, re, bje, aje : j < i + 1}. The

cop may move around these nodes (or nodes dedicated to other strategies), but must

eventually move to aie or bi+1
e (because by assumption we eventually add ai+2

e) before

moving to ai+1
e (since aie and bi+1

e are the only current nodes within distance 1 of ai+1
e).

At this point, we add ai+2
e and bi+2

e and move robber to ai+2
e to increase the distance

from cop to robber back to 2. Thus the cop will not win before the robber can move

to ai+2
e and by induction the robber can evade capture against ϕe indefinitely.

This result is the cop-win analogue of Theorem 2.1.6, as it shows the existence of a

cop-win graph with no computable cop-win strategy. We further showed that for any

computable ordinal α, there is a robber-win graph with the property that any winning

strategy computes 0(α), which indicates that it is possible to code complex information

into a robber-win strategy. Thus a natural follow-up question is to investigate whether

there are cop-win graphs such that any winning cop strategy is arbitrarily complex.

However, the following result suggests that this is not the case, by showing that for a

cop-win graph and some fixed non-computable set, there is a cop strategy which can

49

win against countably many robber strategies, and which does not compute A. This

suggests that it is difficult to code any non-computable information into a cop-win

strategy, and illustrates a lack of symmetry in the complexity of winning strategies

for cop-win graphs when compared with winning strategies for robber-win graphs.

Theorem 4.1.2. Suppose G is an infinite cop-win graph, and A is a fixed non-

computable set. If {fi : i ∈ ω} is a countable set of robber strategies, then there is a

cop strategy fC which beats each fi strategy, and such that fC 6≥T A.

Proof. We index the vertex set of G by {v0, v1, . . . }. Recall that an allowable R-play

sequence for G was defined to be a finite sequence of vertices 〈c0, r0, c1, r1, . . . , rn〉 such

that ci+1 ∈ N [ci] and ri+1 ∈ N [ri] for 0 < i < n which describes a finite sequence

of moves in the game, ending in a robber move. Analogously an allowable C-play

sequence ends with a cop move.

We build a tree T ⊆ G<ω which describes all possible moves of the game. Assume

the cop starts at v0. Then we say a non-empty string σ ∈ T if and only if the following

conditions hold:

1. σ(0) = v0

2. ∀ i < |σ| − 2 (σ(i+ 2) ∈ N [σ(i)])

3. if σ(i) = σ(i+ 1) then |σ| = i+ 1

Note that this tree consists of all allowable R- and C-play sequences that begin with

v0. In particular, if a path on T is finite, this implies that in some play sequence the

cop has won the game.

In order to find a cop-win strategy to beat each fi, we wish to build a subtree F

of T which describes a full strategy for the cop, and such that if a robber follows fi,

50

the result is a finite path σ ∈ F with σ = 〈v0, x1, . . . , xk, xk+1〉 where fi(〈v0〉) = x1,

and fi(〈v0, fi(〈v0〉), x2〉) = x3, and in general, x2j+1 is the output of fi on the input

〈v0, x1, . . . , x2j〉, and ending in xk = xk+1.

To find such an F , we will define a sequence of subtrees F−1 ⊆ F0 ⊆ F1 ⊆ · · ·

such that F =
⋃
i≥−1 Fi to satisfy requirement Re and Pe for all e, with priority order

R0 < P0 < R1 < P1 < . . . , with requirements defined as follows:

Re : ΦF
e 6= A

and

Pe : F yields a cop strategy that beats fe.

Note that in order to satisfy Re at stage 2e, we will choose F2e so that F2e forces

that ΦF2e
e is partial for all cop strategies F extending F2e, or there is an x such that

ΦF2e
e (x) ↓6= A(x).

In order to build these subtrees, we define our forcing conditions to be finite

approximations of a cop-win strategy as follows. A finite subtree F ⊆ T is a forcing

condition if

• For each σ ∈ F with |σ| even, if σ ∗ vk ∈ F , then for every j < k such that

σ ∗ vj ∈ T we also have σ ∗ vj ∈ F .

• For each σ ∈ F with |σ| odd, there is exactly one vk such that σ ∗ vk ∈ F .

The first bullet point will ensure that F takes into account every possible choice of

move for a robber. The second will ensure that F gives a well-defined cop strategy

in the end, as it gives only one possible move for the cop at any stage of the game.

Note that since G is computable, the set of forcing conditions is also computable.

51

For a forcing condition F , we assume without loss of generality that if ΦF (x) ↓,

then

1. if F queries the oracle about an odd length string and σ /∈ F , then σ /∈ T , and

2. if F queries the oracle about an even length string σ and σ /∈ F , then either

σ /∈ T , or σ has the form τ ∗ vi and for some vj 6= vi we have τ ∗ vj ∈ F .

We claim that these two conditions will require that no extension of F could contain

σ. If some extension F ′ of F did contain σ, then σ ∈ T so we would be in case 2.

However, then we have for odd length τ ∈ F , we have both τ ∗vi ∈ F ′ and τ ∗vj ∈ F ′,

a contradiction since strings of length 2k + 1 in a forcing condition have exactly one

extension of length 2k + 2.

We now construct our forcing conditions. Let F−1 = {〈v0〉}.

To satisfy Re for e ≥ 0: Assume F2e−1 has been defined to be a forcing condition.

We will define F2e to be a forcing condition extending F2e−1 in order to satisfy Re.

Case 1: If there is any x such that for every forcing condition F ∗ extending F2e−1

we have ΦF ∗
e (x) ↑, then define F ′2e := F2e−1. In this case, Re is satisfied, as F = ∪Fe

will be an extension of F2e−1 and thus will not compute A(x).

Case 2: If there is some x such that for some forcing condition F ∗ extending F2e−1,

we have ΦF ∗
e (x) ↓6= A(x), then define F ′2e := F ∗. In this case, Re will be satisfied, as

F = ∪Fe will be an extension of F ∗, and thus ΦF ∗
e (x) = ΦF

e (x) 6= A(x) so F does not

compute A.

We claim that we must be in one of these two cases; otherwise, A would in fact

be computable. If neither case 1 nor case 2 held, we would have

1. for every x, there is some forcing condition F ∗ extending F2e−1 such that

ΦF ∗
e (x) ↓, and

52

2. for every x, there is no forcing condition F ∗ extending F2e−1 such that ΦF ∗
e (x) ↓6=

A(x).

But if this is the case, then A is in fact computable by the following algorithm: search

for a forcing condition F ∗ extending F2e−1 such that ΦF ∗
e (x) ↓. We know from (1) that

this search will terminate at some finite stage. When it does, we know by (2) that for

this F ∗ we have ΦF ∗
e (x) ↓= A(x). Since A is not computable, this is a contradiction

and thus either case 1 or case 2 must hold.

Now having defined F ′2e to satisfy Re, we define F2e to be a forcing condition

extending F ′2e in order to ensure in the end that F is a full cop strategy. To that

end, for every σ ∈ F2e−1 of even length which does not yet indicate a cop win, we

check to see if the least-indexed 2e-many successors σ′ ∈ T of σ are in F ′2e. If so we

do nothing. If not, we add in any missing successors to F2e. Then, for each σ′, we

choose exactly one successor σ′′ ∈ T of σ′ to include in F2e. Notice that this will still

be a forcing condition, and since it extends F ′2e, it will also satisfy Re.

To satisfy Pe for e ≥ 0: Assume F2e is a forcing condition. We will define F2e+1

to be a forcing condition extending F2e that satisfies Pe.

Recall the Play function defined in Section 1.1. Since F2e is a finite partial strategy

for the cop, and fe is a full robber strategy, we have σ :=Play(F2e, fe, v0) is a finite

string representing game play when the cop follows F2e as long as possible and the

robber follows fe. Thus σ ∈ T . Let n = |σ|.

If σ(n− 1) = σ(n), then F2e is already defined enough to win against fe, and thus

Pe will be satisfied. In this case, we define F ′2e+1 = F2e. Otherwise, |σ| is even, since

the cop plays last in F2e, and then fe, which is a full robber strategy, makes one more

robber move.

53

Let τ be the longest initial segment of σ = Play(F2e, fe, v0) such that τ ∈ F2e.

Then the length of τ is odd and the last bit of τ represents a cop move to some vertex

xk. Define τ ′ = Play(f�, fe, xk) where f� is as winning cop strategy as described

at the end of Section 1.1. Since f� is a cop-win strategy and fe is a full robber

strategy, τ ′ is guaranteed to be a finite string that ends in a win for the cop, say

τ ′ = 〈xk, y1, y2, . . . , yj, yj〉. Then we add the string τ ∗ 〈y1, y2, . . . , yj, yj〉 to F ′2e+1.

In order to make F ′2e+1 a forcing condition, we further require that if we add

σ ∗xk+1 to F ′2e+1, and there is some xj whose index in G is less than xk+1’s index in G

such that σ ∗ xj ∈ T , we also include σ ∗ xj ∈ F2e+1, as well as exactly one successor,

say σ ∗ xjxj+1 for some xj+1.

Similarly, for any odd string σ ∗ xk+1xk+2 · · ·xk+2i+1 we include in F ′2e+1 \ F2e, we

also include σ ∗ xk+1xk+2 · · ·xk+2ixl for any xl who has a smaller index in G and such

that σ ∗ xk+1xk+2 · · ·xk+2ixl ∈ T . Then we choose an appropriate successor in order

to satisfy the second forcing requirement. This will yield an F ′2e+1 that is a forcing

condition and satisfies Pe.

Now finally we will again extend F ′2e+1 to a forcing condition F2e+1 in order to

ensure F yields a full strategy, as we did for the even stages. For every σ ∈ F2e of

even length which is not yet cop win, we check to see if the first (2e + 1)-indexed

successors σ′ of σ are in F ′2e+1. If so, we do nothing. If not, then we add in any missing

successors to F2e+1. Then, for each σ′, we choose exactly one successor σ′′ ∈ TG of

σ′ to include in F2e. Notice that this will still be a forcing condition, and since it

extends F ′2e+1, it will also satisfy Pe, since we will have defined the strategy enough

for the cop to beat fe.

Now we define F =
⋃
i Fi. We claim that F defines a full cop strategy fC which

does not compute A, and which beats any robber strategy ϕi. By our forcing con-

54

ditions, every leaf node in F ends at a cop’s position. It is a full strategy: once the

cop chooses v0 to begin the game, the robber can choose any vertex vi; we know that

〈v0, vi〉 ∈ Fi ⊆ F ; if v0 6= vi, then there is a unique successor 〈v0, vi, x1〉 ∈ Fi ⊆ F also,

by the second forcing requirement. Thus c(v0, vi) = x1. Following this argument, any

possible robber move will be included in some Fs by our first forcing requirement,

and since there will be either a unique successor for every string of even length, or

no successors (indicating a leaf node ending with the cop’s move), we can use F to

determine the cop’s next move.

Now since F satisfies requirement Re for all e, we know that F 6≥T A. Then since

fC is computable from F , it follows that fC 6≥T A.

Finally if fe is a robber strategy, F satisfies requirement Pe, thus F contains a

string which codes a cop’s moves against a robber using fe that ends in a win for the

cop. Then fC will defeat a robber playing this strategy.

Through a standard technique in computability theory, we can easily extend the

proof of the previous theorem in order to diagonalize against countably many non-

computable sets {Ai : i ∈ ω}, which yields the following corollary.

Corollary 4.1.3. For a countable set {Ai} of non-computable sets, and a countable

set of robber strategies {fj}, if G is an infinite cop-win graph, there is a strategy fC

for the cop such that fC defeats a robber playing fj for all j, and fC 6≥T Ai for all i.

The theorems in this section show that although we can build a cop-win graph with

no computable winning cop strategy, it is difficult to code non-computable information

into winning cop strategies in general. However, if we relax our definition of what

it means for a graph to be cop-win, we may be able to code more information into

winning strategies.

55

We call a graph G cop-win from (c0, r0) if there is a strategy fC that wins against

every possible robber strategy when we require the cop begins on c0 and the robber

begins on r0; in other words, G is cop-win from (c0, r0) if r0 � c0. In this scenario,

we are able to code non-computable information into a winning cop strategy in the

form of separating sets, a common object of study in computability theory.

4.2 Separating Sets

Definition 4.2.1. Let A and B be disjoint subsets of ω. Then D ⊆ ω is a separating

set for A and B if A ⊆ D and B ∩D = ∅. If no computable separating set exists for

a pair A and B, we call the pair recursively inseparable.

The existence of a separating sets for a pair of set A and B is a rich field of study in

computability. It is easy to show that there exist disjoint c.e. sets A and B such that

there is no computable separating set D; i.e., A and B are recursively inseparable.

However, given any pair of disjoint c.e. sets A and B, we can build a graph which

is cop-win from a specified starting position (c0, r0), for which any winning strategy

from (c0, r0) computes a separating set.

Theorem 4.2.2. For a fixed pair of disjoint c.e. sets A, B, there exists a computable

graph G such that is cop-win from (c0, r0), and any cop-win strategy from this starting

position computes a separating set D.

Proof. We construct the computable graph G as follows. At stage 0, define G0 with

finite path c0, c1, r0. Additionally, r0 has countably many neighbors {ze : e ∈ ω},

{a′e : e ∈ ω}, and {b′e : e ∈ ω}. We further have E(c1, a
′
e) and E(c1, b

′
e) for all e, and

E(a′e, b
′
e) for all e. Finally for each e we have ae with neighbors {ae, ze, a′e} and be

56

with neighbors {be, ze, b′e}. See the graph below for one of infinitely many sections of

the graph.

At each subsequent stage s > 0, for each e < s we see if e ∈ Ase \ As−1e . If so,

we include the following infinite path from ae. After this stage, we do not add any

further vertices to this part of the graph.

If on the other hand we see e ∈ Bs
e \ Bs−1

e , we include the following infinite path

from be. After this stage, we do not add any further vertices to this part of the graph.

57

Note that since A and B are disjoint, we will never have infinite paths from both

ae and be. It is also possible that neither ae nor be will have infinite paths, if e /∈ A∪B.

We let G =
⋃
s∈ω Gs, and observe that G is a computable graph.

We claim that the cop has a winning strategy from starting positions (c0, r0). First

the cop can move to c1. If the robber remains at r0, or moves to c1, a
′
e, or b′e for any

e, the cop will win in the next round. So assume the robber moves to ze for some e.

The cop can then move to either a′e or b′e, depending on whether there is an infinite

path {aie} or {bie}. In the first case, the cop should move to aie. Then the robber must

move to be or b′e to evade capture in the next round. But the cop can then win within

two rounds by moving to r0 and ze if necessary.

If there is no infinite path {aie}, the cop can win by moving to bie and using an

analogous strategy. Thus the graph is cop-win from (c0, r0).

Now let fC be any winning cop strategy from (c0, r0), and define the set

D := {e : fC(〈c0, r0, c1, ze〉) = a′e}.

Then D is clearly computable from fC . We claim that D is a separating set for A

and B; that is, A ⊆ D and B ∩D = ∅.

58

First we show that A ⊆ D. If e ∈ A, we have an infinite path {aie}. If

fC(〈c0, r0, c1, ze〉) 6= a′e, then on his next turn the robber can move to ae. Since

the cop will still be distance at least 2 from ae, the robber reaches the infinite path

and will win. Thus in order for fC to be a winning strategy, we must have e ∈ D.

Now we show B ∩ D = ∅. If not, say e ∈ B ∩ D, then since e ∈ B we have the

infinite path {bie}. But if fC(〈c0, r0, c1, ze〉) = a′e, then the robber will move to be on

his next turn. Once again, the cop is still distance 2 from be, so the robber can reach

the path before the cop and win. Thus in order for fC to be a winning strategy, we

cannot have e ∈ B ∩ D. So D is in fact a separating set, and any winning strategy

from (c0, r0) computes D, a separating set for A and B.

Notice that Theorem 4.2.2 suggests the existence of a graph G which is cop-win

from (c0, r0), with no computable winning strategy for the cop from (c0, r0). Given

c.e. disjoint recursively inseparable sets A and B, we build a graph G as in the proof of

Theorem 4.2.2. If fC is a computable winning cop strategy from (c0, r0), this implies

a computable separating set, a contradiction.

Recall that a graph G cop-win from (c0, r0) implies that r0 � c0. Then this

computability result for computing a separating set suggests to us that the we can

code non-computable information into this relation �. In the following chapter, we

investigate computability theoretic and reverse math properties of �, and ≤α in

general, at length.

Chapter 5

Properties of the Binary Relation
�

Recall from Chapter 1 that Nowakowski and Winkler give a characterization of infinite

cop-win graphs in general which relies on a relation � on pairs of vertices. This

relation is defined recursively on ordinals, with v1 ≤0 v2 if v1 = v2, and v1 ≤α v2

if for every neighbor w1 of v1 there is a neighbor w2 of v2 such that w1 ≤β w2 for

some β < α. The intuition behind this relation is that v1 ≤α v2 if, when the robber

occupies v1 and the cop occupies v2, the cop is able to win the game in at most

α-many rounds. Since β < α implies ≤β⊆≤α as sets of pairs of vertices, we have that

for some ordinal ρ these relations will stabilize, with ≤ρ=≤ρ+1. Then � is defined to

be this ≤ρ, and Theoreom 1.1.11 shows G is cop win if and only for every v, w ∈ G

v � w.

At the end of the last chapter, we saw that it is possible to construct graphs in a

way that codes non-computable information into �. We will extend this idea to the

relations ≤α in this chapter, as well as explore reverse math results for �. Further-

59

60

more, we will investigate the least ρ such that �=≤ρ and see that we can construct

graphs such that � stabilizes at the level arbitrarily large computable ordinals ρ.

5.1 Computability results for ≤α

Theorem 1.1.11 provides a complete characterization of cop-win infinite graphs, and a

natural question to ask from a computability theoretic standpoint is how complicated

it is to determine whether a (computable) graph is cop-win using this criteria. That

is, we wish to consider the computability theoretic properties of the sets ≤α for

computable infinite graphs G = (V,E). The answers to these questions can depend

on graph-theoretic properties. In particular, we see that the set ≤0 is a computable

set for any graph G, as the vertex set V is computable and v1 ≤0 v2 if and only if

v1 = v2. However, ≤1 is only computable for some classes of graphs.

Consider the case of computable highly locally finite graphs. Since the set {(v, w) ∈

V × V : v ≤1 w} is equal to the set of {(v, w) ∈ V × V : N [v] ⊆ N [w]}, we conclude

that for highly computable graphs G, the set ≤1 is computable. However, we also

have v ≤1 w if and only if ∀x(E(v, x) → E(w, x)), which is a Π0
1 statement. Thus

when G is not highly computable, ≤1 may not be computable, as the result below

shows.

Theorem 5.1.1. There is a computable graph G such that {(v, w) : v ≤1 w} is

non-computable, and in fact is Π0
1-complete.

Proof. Let R(e, i) be a computable relation. We will build a computable graph G

with distinguished computable sets of nodes {xe : e ∈ ω} and {ye : e ∈ ω} which

61

satisfies the following property for each e ∈ ω:

ye ≤1 x
e ⇔ ∀i(R(i, e)).

Observe that if this property holds, then for any computable relation R(e, i) there

is a computable graph for which the set {e : ∀iR(i, e)} is 1-reducible to the set

{(v, w) : v ≤1 w}. Letting R(e, i) be such that {e : ∀iR(e, i)} is Π0
1-complete will

prove the theorem.

We construct G = (V,E) with vertex set V = {λ} ∪ {xe : e ∈ ω} ∪ {ye : e ∈

ω} ∪ {yei : i ∈ ω}. The edge relation is the reflexive and symmetric closure of the

following conditions:

• For e ∈ ω, E(λ, xe) and E(xe, ye) hold

• For e, i ∈ ω, E(ye, yei) holds

• For e, i ∈ ω, E(xe, yei) holds ⇔ R(e, i) holds.

Thus for each e, we have the following subgraph in which a dashed line between

xe and yei indicates an edge if and only if R(e, i):

62

We see then that for each e, N [ye] = {ye} ∪ {xe} ∪ {yei : i ∈ ω} and N [xe] =

{λ} ∪ {ye} ∪ {xe} ∪ {yei : R(e, i)}.

Since by definition ye ≤1 x
e if and only if N [ye] ⊆ N [xe], it follows immediately

that ye ≤1 x
e ⇔ ∀i R(e, i).

Building from here, we see that v ≤2 w if and only if

∀x∃y(E(x, v)→ (E(y, w) ∧ x ≤1 y)),

which is a Π0
3 statement. We can extend this to an analogous result for Π0

3-complete

sets.

Theorem 5.1.2. There is a computable graph G such that {(v, w) : v ≤2 w} is

Π0
3-complete.

63

Proof. Let R(i, j, k, e) be a computable relation. We will build G computably with

distinguished nodes {xe : e ∈ ω} and {ye : e ∈ ω} such that for all e ∈ ω

ye ≤2 x
e ⇔ ∀i∃j∀k(R(i, j, k, e)).

Observe that if this property holds, then considering a relation R(i, j, k, e) such that

{e : ∀i ∃j ∀k R(i, j, k, e)} is Π0
3-complete will prove the theorem, as in Theorem 5.1.1.

To build such a G = (V,E), we begin with the following vertex set V which

includes vertices:

• λ

• xe and ye for all e ∈ ω

• yei for all e, i ∈ ω

• yei,j and xei,j for all e, i, j ∈ ω

Then we define the edge relation E to be the reflexive, symmetric closure of the

following conditions:

1. For each e ∈ ω,

• E(λ, xe)

• E(xe, ye)

• E(ye, yei) for all i ∈ ω

• E(xe, xei,j) for all i, j ∈ ω

• E(ye, xei,j) for all i, j ∈ ω

64

2. For each e, i ∈ ω,

• E(ye, yei,j) for all j ∈ ω

• E(yei , x
e
i,j) for all j ∈ ω

• E(xei,j, x
e
i,k) for all j, k ∈ ω

3. For each e, i, j, k ∈ ω,

• E(xei,j, y
e
i,k) if and only if R(i, j, k, e)

Then for each e, we will have the following subgraph:

Note that the dashed lines indicate that xei,j is adjacent to yei,k if and only if

R(i, j, k, e). The countable sets of vertices within a box represent a complete sub-

graph; that is, for all e, i, j, k ∈ ω we have E(xei,j, x
e
i,k). Furthermore, an edge con-

65

necting a vertex to a box represents edges from that vertex to each of the countably

many vertices within the box. We can summarize these edge relations by describing

the neighbors of each vertex type as follows:

N [xe] = {λ, xe, ye} ∪ {xei,j : i, j ∈ ω}

N [ye] = {ye, xe} ∪ {xei,j : i, j ∈ ω} ∪ {yei : i ∈ ω}

N [xei,j] = {xe, ye} ∪ {xei,k : k ∈ ω} ∪ {yei } ∪ {yei,k : R(i, j, k, e)}

N [yei] = {ye, yei } ∪ {yei,k : k ∈ ω} ∪ {xei,j : j ∈ ω}

N [yei,k] = {yei , yei,k} ∪ {xei,j : R(i, j, k, e)}.

We will show that ye ≤2 x
e if and only if ∀i ∃j ∀k (R(i, j, k, e)). Observe that for

fixed e, i, j ∈ ω, yei ≤1 x
e
i,j if and only if N [yei] ⊆ N [xei,j] by definition, which is true if

and only if ∀k R(i, j, k, e).

Fix e ∈ ω. Note that ye ≤2 x
e if and only if for every neighbor a of ye there exists

a neighbor b of xe such that a ≤1 b. We claim that this is true if and only if, for each

i, we have there is some neighbor b of xe such that yei ≤1 b. The reason for this is that

the other neighbors of ye are ye, xe and xei,k for i, k ∈ ω, and these are also elements

of N [xe].

Now for neighbor a = yei of ye, the only possible candidate for such a neighbor b

of xe with a ≤1 b is b = xem,j for some m and j. By definition of the edge relation, the

only index m for which this is possible is m = i, and so we have ye ≤2 x
e if and only

if for all i there exists j such that yei ≤1 x
e
i,j. Thus, ye ≤2 x

e ⇔ ∀i ∃j ∀k (R(i, j, k, e)).

This proves the theorem.

66

Given the fact that we can express v ≤2 w as a Π0
3 statement, it follows by

induction on n that v ≤n w can be expressed as a Π0
2n−1 statement. While we might

expect to be able to show for each n the existence of a graph G with the property

that {(v, w) : v ≤n w} is a Π0
2n−1-complete set, this is still currently an open question.

We may also consider a result about the complexity of the index set {e : Ge is a

cop-win graph}; that is, the set of indices e such that the partial computable function

ϕe describes the edge-relation of a cop-win graph with vertex set N.

Theorem 5.1.3. The set {e : Ge is a cop-win graph} is Π1
1-complete.

Proof. We rely upon the fact that there is a computable sequence {Te : e ∈ ω} of

trees Te ⊆ ω<ω such that {e : Te has an infinite path} is a Σ1
1-complete set ([6]).

Since trees with no infinite paths are cop-win graphs, it follows that the index set

{e : Ge is a cop-win graph } must be at least Π1
1. We can show that the index set is

no more than Π1
1 by noting that

Ge is a cop-win graph ⇔ � is trivial for G

⇔ for every relation R(x, y) such that

(∀wR(w,w) holds) and(
∀w∀z

[
(∀x ∈ N [w]∃y ∈ N [z](R(x, y)))→ R(w, z)

])
,

we have ∀x∀yR(x, y).

To prove this equivalence, let G = (V,E). We first assume for all u, v ∈ V that

u � v, and assume that α is least such that �=≤α. Let R be such that ∀wR(w,w),

and for all w and z, if ∀x ∈ N [w]∃y ∈ N [z] such that R(x, y), we have R(w, z). We

wish to show that for all x, y ∈ V , R(x, y).

We claim that for any β ≤ α and any u, v ∈ G, if u ≤β v then R(u, v). We proceed

67

by induction on β.

For β = 0, u ≤0 v implies u = v so R(u, v).

Assume for all x, y ∈ G that x ≤β y implies R(x, y). Suppose u ≤β+1 v. Then

for all x ∈ N [u] there exists y ∈ N [v] such that x ≤β y, which implies by induction

R(x, y). Then by our second assumption for R we conclude R(u, v).

Finally assume for any γ less than a limit β, x ≤γ y implies R(x, y). Assume

u ≤β v. Then ∀x ∈ N [u] there exists y ∈ N [v] such that u ≤γ v for some γ < β. So

by induction R(x, y). Then by our second assumption for ≤ we have R(u, v). Then

since for every u, v ∈ V there is some β ≤ α such that u ≤β v, we have R(u, v) for

every u, v ∈ V .

To prove the other direction, assume that every binary relation R satisfying

∀wR(w,w) and ∀w∀z(∀x ∈ N [w]∃y ∈ N [z]R(x, y) → R(w, z)) also satisfies ∀u∀v

R(u, v). The relation � satisfies ∀w(w � w) since ∀w(w ≤0 w). Furthermore, assume

∀x ∈ N [w] ∃y ∈ N [z] (x � y), and we show w � z. Let �=≤ρ and fix α ≤ ρ such

that ∀x ∈ N [w] ∃y ∈ N [z] (x ≤α y). By definition, w ≤α+1 z and we have w � z.

Since � satisfies both specified conditions on R, we conclude ∀u∀v (u � v), so � is

trivial.

Now we have shown that the statement that � is trivial can be expressed as a

Π1
1 statement. Thus {e : Ge is cop-win} is at most Π1

1 and we conclude that it is

Π1
1-complete.

This result yields the following corollary.

Corollary 5.1.4. The set {e : Ge is a robber-win graph} is Σ1
1-complete.

We have seen that the relation� allows us to fully characterize cop-win graphs and

that this relation is not necessarily computable. However, if we restrict to computable

68

locally finite graphs, we will see that we can put bounds on the complexity of �. To

prove this, we first give the following lemma regarding the stabilizing point for � in

locally finite graphs.

Lemma 5.1.5. If G is a locally finite graph, then the least α such that ≤α=≤α+1 is

at most ω.

Proof. We will show that for every x, y ∈ G such that x � y, we have x ≤n y for

some n < ω. If this were not the case, then there is some pair x, y ∈ G with x ≤ω y

but for all n < ω it is not the case that x ≤n y.

Since x ≤ω y, then for all neighbors xi ∈ N [x] for 1 ≤ i ≤ n for some n, there

is some yi ∈ N [y] for 1 ≤ i ≤ m such that xi ≤ki yj for some ki < ω. But since

x has only finitely many neighbors, there is some maximum ki. Then we must have

x ≤ki+1 y, a contradiction.

Thus if x ≤ω+1 y, then for all xi ∈ N [x] there exists yj ∈ N [y] such that xi ≤ω yj.

But we have seen that this means that xi ≤k yj for some k. Thus x ≤ω y, and so

≤ω=≤ω+1 and so �=≤α for some α ≤ ω.

Theorem 5.1.6. There exists a computable highly locally finite graph such for which

� ≥T 0′. Furthermore, if G is a computable locally finite graph, then 0′′ ≥T �.

Proof. In this proof we use the definition of � as �=≤α for the least α such that

≤α=≤α+1. By Lemma 5.1.5, we know that α ≤ ω.

We first assume that for every (highly) locally finite graph G, the set �= {(a, b) :

a � b} exists, and show the existence of computable highly locally finite G for which

� ≥T 0′. Let G be the graph defined as follows: at stage 0, let G0 consists of an

69

infinite path v0, v1, v2, . . . with E(vi, vi+1) for all i. Additionally, we add a single leaf

xi,0 adjacent to each vi. Now at stage s > 0, for each e < s, we see if ϕe,s(e) ↓. If

so, we do nothing. If ϕe,s(e) ↑, we extend the path ve, xe,0, . . . , xe,s−1 by adding in a

vertex xe,s and edge E(xe,s−1, xe,s). Define this new graph to be Gs.

Note that G = ∪s∈ωGs. The result will be a graph G such that if e ∈ 0′, the path

xe,i will be finite, while if e /∈ 0′, the path will be infinite. It is clear that G is locally

finite. Thus we have that �= {(a, b) : a � b}. We claim that for all e, (xe,0, ve) ∈� if

and only if e ∈ 0′. If xe,0 � ve, then we know that if the cop occupies ve, the robber

occupies xe,0, and it is the robber’s turn, the cop will win in finitely many rounds.

This is true if and only if the path ve, xe,0, . . . is finite. That is, there must be some

stage s such that we stop extending the path. Then for this s we have ϕe,s(e) ↓. Thus

e ∈ 0′. If xe,0 6� ve, then the robber is able to evade capture indefinitely. This will

occur only if there is an infinite path ve, xe,0, xe,1, Thus there is no stage s such

that ϕe,s(e) ↓ so e /∈ 0′. Thus the set � ∩{(xe,0, ve) : e ∈ ω} = 0′.

Now we show that if G is computable and locally finite graph, then 0′′ ≥T �.

Suppose first that T is a (highly) locally finite tree, and x, y ∈ V . We will show

that 0′′ can determine whether x � y. We can consider T to be a finitely branching

subset of ω<ω with root node y. Suppose we have x = v0, v1 · · · , vk = y is the unique

path from x to y in T . Let i = dk/2e − 1. Then we claim that x � y if and only if

the tree above vi is finite.

Note that if the robber occupies x and the cop occupies y, if the cop utilizes a

distance-minimizing strategy, the robber can only win by reaching a path before the

cop does. The robber can only reach xi before the cop reaches him, and so the robber

can win if and only if the tree above xi is infinite. Since 0′′ can determine whether

the tree above xi is finite or infinite, we have that 0′′ ≥T {(x, y) : x � y}.

70

Now suppose G is a (highly) locally finite graph. For a given c0, r0 ∈ G we wish

to determine whether r0 � c0 using 0′′. Define a finitely-branching tree T ⊆ ω<ω

with root node λc0,r0 which simulates possible game plays from these initial positions.

The strings of length 1 are exactly the (finitely many) neighbors of r0, which we will

denote r01, r
1
1, r

2
1, . . . , r

n
1 . Now the strings of length 2 will be all nodes σ ∗ ci1 � σ ∈ T

such that ci1 is a neighbor of c0. We stop extending any string if the final two bits

of the string represent the same vertex in G; that is, if the cop and robber occupy

the same vertex. In the interest of making sure that leaves have even length, if we

have a leaf of odd length 〈ri11 , c
j1
1 , . . . , r

ik
k , c

jk
k , r

ik+1

k+1 〉 where r
ik+1

k+1 = cjkk , then we have

exactly one extension by adding c
jk+1

k+1 = cjkk . Note that in the end T will be an infinite,

finitely-branching tree as G is locally finite. Any leaf of G will have even length and

will represent a play history that results in a cop win.

We now define a function f used to mark certain strings in T . Define f(∗, s) :

T2n × ω → {0, 1}, where T2n denotes the strings σ ∈ T of even length, as follows:

f(σ, 0) =

 1 σ is a leaf

0 otherwise

Then we define f(σ, s) by

f(σ, s+ 1) =

1 f(σ, s) = 1 or ∀σ ∗ n ∈ T∃m

(σ ∗ n ∗m ∈ T ∧ f(σ ∗ n ∗m, s) = 1)

0 otherwise

We will prove by induction that for each σ = ri11 c
j1
1 · · · r

ik
k c

jk
k ∈ T, f(σ, s) = 1 if

and only if rikk ≤s c
jk
k . Notice that f(σ, 0) = 1 if and only if the last two bits of σ

71

correspond to the same vertices in G, i.e., rikk = cjkk . Suppose now by induction that for

all σ, f(σ, s) = 1 if and only if rikk ≤s c
jk
k . If f(σ, s + 1) = 1, then either f(σ, s) = 1,

which would imply either rikk ≤s c
jk
k by induction, or ∀σ ∗ n ∈ T∃m(σ ∗ n ∗ m ∈

T ∧ f(σ ∗ n ∗m, s) = 1), that is for every neighbor rtk+1 of rikk there exists a neighbor

crk+1 of cjkk such that f(σ ∗ rtk+1 ∗ crk+1, s) = 1 and thus rtk+1 ≤s crk+1. This is true if

and only if rikk ≤s+1 c
jk
k .

By Lemma 5.1.5, � stabilizes by ω, so for all u, v ∈ G, u � v if and only if there

is some s < ω such that u ≤s v. Thus rikk � cjkk if and only if f(σ, s) = 1 for some s.

Then we claim lims f(σ, s) ≤T 0′′. Note that f(σ, 0) ≤T 0′, since f(σ, 0) = 1 if and

only if σ has no extension in T . Now since f(σ, 1) = 1 if and only if f(σ, 0) = 1 ∨

∀σ ∗m ∈ T ∃ σ ∗m∗n ∈ T (f(σ ∗m∗n, 0) = 1), we have that f(σ, 1) ≤T 0′, as 0′ can

compute the neighbor set of each v ∈ G and thus we have only bounded quantifiers.

By induction, for each s, we have f(σ, s) ≤T 0′.

Now since f(σ, s) ≤T 0′ for all s, and because the limit over s exists by Lemma

5.1.5, the limit lemma relative to 0′ allows us to conclude that lims f(σ, s) ≤T 0′′.

Finally, notice that r0 � c0 if and only if the root node λ of this tree satisfies

f(λ) = 1. This is because f(λ) = 1 if and only if for every neighbor r′ of r0 there

exists a neighbor c′ of c0 such that f(λ∗r′∗c′) = 1. This implies ∀r′ ∈ N [r0] ∃c′ ∈ N [c]

(r′ � c′). Thus r0 � c0.

Thus for any pair of vertices u, v ∈ G for computable locally finite G, we are able

to determine from 0′′ whether u � v.

72

5.2 Rank Functions and the Binary Relation ≤α

Definition 5.2.1. If α is the least ordinal such that ≤α=≤α+1=�, we say that �

stabilizes at α.

Given the intuition that in a cop-win graph if � stabilizes at a finite n, the cop

will win in at most n rounds, we may wish to investigate possible ordinals at which

� can stabilize. In fact, for any finite n it is easy to construct graphs such that �

stabilizes at n. For infinite ordinals, however, it is less obvious. One way to study

this is to consider rank functions for well-founded trees.

Definition 5.2.2. A tree T ⊆ ω<ω is well-founded if it has no infinite path.

Note that we can take any cop-win infinite tree graph T , designate some vertex

λ as the root, and view the tree graph as a well-founded tree. In this context we

visualize the root λ as the top of the tree and view the tree as growing downward.

We call this well-founded tree Tλ, and define the rank function as follows.

Definition 5.2.3. In a well-founded tree Tλ, we say u is below v in Tλ if v is on

the unique path from u to λ. We say u is immediately below v if u 6= v, u is below

v, and u ∈ N [v]. A vertex u is a leaf of Tλ if it has nothing below it. Then for each

leaf u, we define rankλ(u) = rλ(u) = 0, and in general, rankλ(v) = rλ(v) = sup{

rankλ(u) + 1 : u is below v in Tλ}.

Notice then that if u is below v in Tλ, then v has greater rank than u and so λ is

the element of Tλ with greatest rank.

Since our well-founded trees are countable, if rλ(u) = α ∈ ON, then α < ω1. That

is, the rank of each element must be a countable ordinal. For computable trees, if

73

rank(u) = α, then we have α < ωCK1 ; that is, each element of a well-founded tree has

computable ordinal rank. We will show a connection between the rank function and

the relation ≤α.

Theorem 5.2.4. Let x ∈ N [y] such that x is strictly below y in Tλ.

(a) If rλ(x) is finite, then x ≤rλ(x)+1 y and for all β ≤ rλ(x), x 6≤β y.

(b) If rλ(x) is infinite, then x ≤rλ(x) y and for all β < rλ(x), x 6≤β y.

Proof. First, we prove (a) by induction on rλ(x).

Base Case: Assume rλ(x) = 0. In this case, x is a leaf, so N [x] = {x, y}. Since

N [x] ⊆ N [y] we have x ≤1 y. Since x is strictly below y, we have x 6= y so x 6≤0 y.

Inductive Case: Assume rλ(x) = n + 1. Note that for each w immediately below

x, we have rλ(w) ≤ n and thus by induction we have w ≤n+1 x. This gives x ≤n+2 y

as required.

To prove (b), we split into limit and successor steps, with the base case being

rλ(x) = ω.

Base Case: Assume rλ(x) = ω. Let w0, w1, . . . be the nodes immediately below x

and assume rλ(wi) = ni, with sup{ni} = ω. Then we claim x ≤ω y, since for each

wi ∈ N [x], we have x ∈ N [y] with wi ≤ni+1 x as a result of part (a). Since ni + 1 < ω

for all i, this yields the result.

It is clear in this case that x 6≤n y for any n, by wi ∈ N [x] such that rλ(wi) =

ni > n.

Successor Case: Let rλ(x) = α+ 1 for α ≥ ω. Let w0, w1, . . . be nodes immediately

below x and assume without loss of generality that rλ(w0) = α. We claim that

x ≤α+1 y, since for each wi ∈ N [x], we have either wi ≤n+1 x (if rλ(wi) = n < ω), or

wi ≤βi x (if rλ(x) = βi ≥ ω). In either case, wi ≤α x as required. Thus x ≤α+1 y.

74

Furthermore we show x 6≤α y. Choose wi ∈ N [x] strictly below x. By the

induction hypothesis, w0 ≤α x and w0 6≤β x for β < α. Therefore, we cannot have

x ≤α y, since this would force w0 ≤β x for some β < α.

Limit Case: Let rλ(x) = α > ω, a limit ordinal. Again we let w0, w1, . . . be the

nodes immediately below x and assume rλ(wi) = βi, with sup{βi} = α. By induction,

we have either wi ≤βi+1 x or wi ≤βi x for all i, depending on whether βi is finite or

infinite. In any case, since βi < βi + 1 < α for all i, this implies x ≤α y.

For β < α, we do not have x ≤β y since taking wi such that β < βi < α gives us

wi ≤βi x. This proves the theorem.

This result now allows us to show that for a well founded tree Tλ, every element of

the tree is at most ≤rλ(λ) λ. This, together with the fact that in a computable well-

founded tree, all elements have computable ordinal rank, will allow us to conclude

that in a computable well-founded tree, � must stabilize at some computable ordinal.

Theorem 5.2.5. In Tλ, for every x ∈ T , x ≤rλ(λ) λ.

Proof. We proceed by induction on rλ(λ).

Base case: rλ(λ) = 0. In this case, λ is a leaf so Tλ = {λ} has only one node.

Therefore, if x ∈ T we have x = λ and so x ≤0 λ.

Induction case: Assume rλ(λ) > 0.

Subcase 1: Suppose x = λ. Then x ≤0 λ so x ≤rλ(λ) λ.

Subcase 2: Suppose x is immediately below λ. By Theorem 5.2.4, x ≤rλ(x)+1 λ.

But rλ(x) + 1 ≤ rλ(λ). Thus x ≤rλ(λ) λ.

75

Subcase 3: Suppose x 6= λ and x is not immediately below λ. Let λ′ be the node

immediately below λ on Tλ which is on the unique path from λ to x. Let Tλ′ be the

tree with root λ′ consisting of λ′ and the nodes below λ′ in Tλ.

By definition, rλ′(λ
′) < rλ(λ) and N [x] ⊆ Tλ′ . By induction hypothesis, for all

w ∈ N [x] we have w ≤rλ′ (λ′) λ
′. Therefore, we have

∀w ∈ N [x]∃y ∈ N [λ](w ≤rλ′ (λ′) y)

by choosing y = λ′. This means x ≤rλ′ (λ′)+1 λ. But rλ′(λ
′) + 1 ≤ rλ(λ), so x ≤rλ(λ)

λ.

Note that to be precise, when we write w ≤rλ′ (λ′) λ
′, we are calculating within the

game on Tλ′ and not the game on Tλ. But, on a tree, the optimal cop strategy is to

move on the unique path towards the robber. Therefore, by following this strategy,

the robber cannot exit Tλ′ without meeting the cop (who starts at λ′), so w ≤rλ′ (λ′) λ
′

in Tλ′ implies w ≤rλ′ (λ′) λ
′ in Tλ for each w below λ′.

Lemma 5.2.6. In Tλ, if rλ(λ) = α is a limit ordinal, then for all δ < α, there is a

node x immediately below λ such that x 6≤δ λ.

Proof. Suppose this property fails. Fix δ < α such that x ≤δ λ for all x immediately

below λ. By Theorem 5.2.4, we know that for all β < rλ(x), x 6≤β λ. Therefore,

we must have δ ≥ sup{rλ(x) : x is immediately below λ}. However, this implies

rλ(λ) ≤ δ + 1 < α because α is a limit. This is a contradiciton.

The preceding results allow us to make the following assertion about the level at

which � stabilizes.

76

Theorem 5.2.7. If T is a well-founded tree, then � stabilizes by rλ(λ) +ω. Further-

more, if rλ(λ) is a limit ordinal, this is the best possible bound.

Proof. Fix x, y ∈ T . We will show that x ≤rλ(λ)+ω y.

Consider a robber at x and a cop at y. The cop takes n moves to reach λ, for

some n ∈ ω. No matter where the robber moves during these n rounds, say to x′, we

have x′ ≤rλ(λ) λ by Theorem 5.2.5.

To see that rλ(λ) + ω is the best possible bound when rλ(λ) is a limit ordinal,

suppose the robber starts at λ and the cop starts at some y such that d(y, λ) = n+ 1.

Claim: If x is immediately below λ, then λ ≤rλ(λ) x but for all β < rλ(λ), λ 6≤β x.

To see that λ ≤rλ(λ) x, we check

∀w ∈ N [λ]∃u ∈ N [x]∃β < rλ(λ)(w ≤β u).

For any w ∈ N [λ], choose u = λ and we know w ≤rλ(w)+1 λ. Since rλ(w) + 1 < rλ(λ)

as λ is a limit ordinal, we are done.

To see the second part of the claim, fix β < rλ(λ). By Lemma 5.2.6, we can choose

w such that w 6≤β λ, which suffices to prove our claim.

Now we use this claim to show rλ(λ) + ω is the optimal bound. Let x be imme-

diately below λ on the path to y. In n rounds, the cop moves to x and the robber

stays at λ. At this point, the robber begins to move. Since this is the optimal strat-

egy for the cop on a tree, this implies that for any α, if λ ≤α+n y, then λ ≤α x.

Therefore, λ ≤rλ(λ)+n y is the best bound. It follows that � cannot stabilize before

sup{rλ(λ) + n : n ∈ ω} = rλ(λ) + ω.

This theorem yields the following results given the fact that for limit ordinals, we

77

have optimal bounds.

Theorem 5.2.8. If T is a computable well-founded tree, then � stabilizes at some

ordinal α < ωCK1 .

Proof. For a computable well-founded tree T , rλ(λ) < ωCK1 , and so rλ(λ) + ω <

ωCK1 because computable ordinals are closed under addition. By Theorem 5.2.7, �

stabilizes before rλ(λ) + ω < ωCK1 .

On the other hand, we also know that for each computable ordinal α, there is a

computable well-founded tree with root λ such that rankλ(λ) = α. Then we have the

following result for ≤α

Theorem 5.2.9. Let α ∈ ON be a computable ordinal. Then there exists a tree T

such that � stabilizes at some β ≥ α.

Proof. First suppose α is a limit ordinal, and let Tλ be a well-founded tree such that

rankλ(λ) = α. Then by Theorem 5.2.7, � does not stabilize until α + ω > α.

If α is not a limit, we can consider α+ω, which is a limit. Then if rλ(λ) = α+ω,

we know that � stabilizes at α + ω + ω.

This tells us that there exist computable trees such that � stabilizes at an arbi-

trarily large computable ordinal level.

Bibliography

[1] Chris J. Ash and Julia Knight, Computable structures and the hyperarithmetical

hierarchy, vol. 144, Newnes, 2000.

[2] Anthony Bonato and Richard J. Nowakowski, The game of cops and robbers on

graphs, vol. 61, American Mathematical Society Providence, 2011.

[3] Florian Lehner, Pursuit evasion on infinite graphs, Theoretical Computer Science

655 (2016), 30–40.

[4] Richard Nowakowski and Peter Winkler, Vertex-to-vertex pursuit in a graph, Dis-

crete Mathematics 43 (1983), no. 2-3, 235–239.

[5] Gerald E. Sacks, Higher recursion theory, Springer Publishing Company, Incor-

porated, 2010.

[6] Stephen George Simpson, Subsystems of second order arithmetic, vol. 1, Cam-

bridge University Press, 2009.

[7] Robert I. Soare, Recursively enumerable sets and degrees: A study of computable

functions and computably generated sets, Springer Science & Business Media, 1999.

[8] , Turing computability: Theory and applications, Springer, 2016.

78

	University of Connecticut
	OpenCommons@UConn
	5-4-2017

	Computability Theoretic Results for the Game of Cops and Robbers on Infinite Graphs
	Rachel D. Stahl
	Recommended Citation

	tmp.1493897456.pdf.Rg0Vb

