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 Phonetic Adaptation to Foreign-Accented Speech 

Xin Xie, PhD 

University of Connecticut, 2015 

 

Over the past few decades, there has been considerable effort to find the mechanisms through 

which adult listeners can accommodate the rampant phonetic variation in natural speech. My 

dissertation concerns one source of variability: phonetic variation in speech produced by 

individuals with foreign accents. Mounting evidence shows that listeners not only adapt to 

specific speakers by adjusting acoustic-phonetic mappings, they also sometimes generalize the 

remapping to novel talkers. In this dissertation, I present a series of experiments examining the 

mechanism of rapid phonetic adaptation and its generalization across talkers. I tested native-

English listeners’ adaptation to Mandarin-accented English words, focusing on /d/ in word-final 

position. The first set of experiments (Experiments 1-3) investigated talker-specific adaptation. I 

found that perceptual learning for speech was not just a matter of adjusting phonetic boundaries 

in face of noncanonical tokens; it also promoted a reorganization of the internal category 

structure. The learning resulted in changes in cue-weighting functions that may prepare listeners 

for adapting to similar variation in other acoustic environments. The second set of experiments 

(Experiments 4, 5A and 5B) examined generalization of learning across talkers following single-

talker exposure or multiple-talker exposure. Single-talker exposure failed to produce 

generalization to a novel talker. Following multiple-talker exposure, cross-talker generalization 

was evident only when the test talker (a novel talker) was acoustically similar to (one or more of) 

the exposure talkers. Lastly, Experiments 6 and 7 present case studies of talker-specific 

adaptation to foreign-accented speakers, showing a role of speaker intelligibility and within- 
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talker variability in phonetic adaptation. In summary, the results of these experiments 

demonstrate that the lexically-guided phonetic reorganization mechanism that substantiates the 

adaptation to idiolect differences of native speakers also supports adaptation to natural foreign 

accents. In addition, bottom-up similarity at the acoustic-phonetic level explains a range of 

situations in which adaptation effects may or may not generalize to novel talkers. Taken together, 

the findings advance our understanding of the reorganization of the perceptual architecture that 

listeners experience when they adjust to unfamiliar speech.  
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CHAPTER 1 GENERAL INTRODUCTION 

Natural speech exhibits substantial acoustic-phonetic variation such that, as speech 

context varies, different acoustic patterns may denote the same linguistic information, leading to 

the “Lack of Invariance” problem (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). 

Primary among many sources of variability is talker differences. Each speaker represents a 

unique combination of age, gender, vocal tract anatomy, idiosyncratic speaking style, and long-

term language experience (e.g., regional dialect, native or non-native, bilingual or monolingual). 

Talker variability is manifested as a very wide variety of audible acoustic-phonetic variation in 

speech production, which further leads to differences in perceptual tasks (e.g., Peterson & 

Barney, 1952; Strand & Johnson, 1996; Allen & Miller, 2004; Theodore, Miller, & DeSteno, 

2009). Despite this variation, listeners readily identify spoken words across novel talkers. 

Extensive research has investigated the perceptual operations that underlie listeners’ 

ability to accommodate talker variability in speech perception. Early studies focused on how 

listeners resolve talker differences in perceiving typical native speech. A persistent debate 

originating from this body of research concerns the role of talker information in linguistic 

representations. Abstractionist approaches assume that lexical entries take abstract forms in the 

mental lexicon and word recognition is mediated by pre-lexical representations (McClelland & 

Elman, 1986; Norris, McQueen, & Cutler, 2000; Marslen-Wilson & Warren, 1994; Gaskell & 

Marslen-Wilson, 2002). Speech perception involves mapping a set of acoustic properties onto 

canonical representations of linguistic categories; information about individual talkers is not 

intrinsic to the abstract representations. Talker variability is considered a kind of noise that is 

eliminated by normalization processes which rescale acoustic parameters (Mann & Repp, 1980; 

Nearey, 1989; McGowan & Cushing, 1999). At another extreme, episodic approaches 
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(Goldinger, 1996, 1998; Johnson, 1997; 2006) postulate no abstract pre-lexical representations. 

Rather, talker detail of spoken words is integrally stored as part of a word’s representation in 

memory. Empirical evidence has challenged both approaches. Most notably, problematic for 

abstractionist theories, talker characteristics are used in lexical retrieval (Nygaard, Sommers, & 

Pisoni, 1995; Bradlow, Nygaard, & Pisoni, 1999). Meanwhile, the human speech perceptual 

system is more robust than predicted by episodic theories: listeners readily generalize what they 

learn from specific spoken instances to novel words (Nygaard, Sommers, & Pisoni, 1994), novel 

phonetic contexts (Theodore & Miller, 2010), and in some cases, novel talkers (Bradlow & Bent, 

2008).  

The recent literature on “perceptual learning for speech” sheds new light on talker 

accommodation by highlighting the plasticity of perceptual processes: as native listeners 

encounter unfamiliar pronunciations that cause perceptual ambiguity, they use top-down 

information (e.g., lexical knowledge or visual information) to constrain the interpretation of the 

ambiguous sound and alter the sound-to-category mapping accordingly (Norris, McQueen, & 

Cutler, 2003). For example, if listeners hear a speaker pronouncing a sound ambiguous between 

/s/ and /f/ (denoted here as /?/), then hearing the sound in a carrier word such as ‘belie?’ (‘belief’) 

would bias the interpretation of it as /f/. This exposure also affects subsequent interpretation of 

other similar ambiguous sounds in a way consistent with prior exposure. This kind of lexically-

guided phonetic retuning requires very brief exposure (as few as ten critical items, see Kraljic & 

Samuel, 2007). Further, the altered mapping is maintained for a given talker (e.g., Kraljic & 

Samuel, 2005; Eisner & McQueen, 2006) and readily generalizes across the lexicon (e.g., 

McQueen, Cutler, & Norris, 2006; Sjerps & McQueen, 2010).  
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Beyond this empirical literature on adaptation to artificially-altered native phonemic 

productions, other research has examined adaptation to natural foreign-accented speech, which 

is often conceived as an extreme case of ‘unfamiliar pronunciation’. Non-native accented-speech 

can be substantially different from native speech. This deviation is manifested as differences in 

the acoustic distributions of speech tokens along multiple dimensions for multiple categories 

(e.g., Flege, MacKay, & Meador, 1999; Flege, Munro, & Skelton, 1992), making recognition of 

non-native speech effortful and often times, inaccurate (e.g., Munro & Derwing, 1995). For 

instance, listeners might have to overcome multiple acoustic mismatches to correctly hear a 

‘thick pad’ instead of a ‘sick pet’ in an unfamiliar foreign accent. A number of studies on second 

language (L2) speech intelligibility show that as listeners gain experience with a foreign-

accented speaker, recognition of words and sentences produced by that speaker becomes more 

accurate (Gass & Varonis, 1984; Weil, 2001; Clarke & Garrett, 2004). This line of research has 

explored a range of situations in which listeners adapt to speakers of foreign accents and 

generalize across talkers (Bradlow & Bent, 2008; Wade, Jongman, & Sereno, 2007). However, 

since accuracy in sentence or word transcription tasks is taken as the measure of adaptation in 

these studies, much less is known about perceptual or representational changes that occur at the 

phonemic or subphonemic level. 

Emerging evidence has begun to show that a mechanism of lexically-guided phonetic 

retuning, which helps listeners with idiosyncratic pronunciations in native speech, also supports 

adaptation to foreign-accented speakers (e.g., Sumner, 2011; Eisner, Melinger, & Weber, 2013). 

The findings on recalibration of phonetic categories as a way to accommodate talker-specific 

pronunciations (in native- and foreign-accented speech) add a new twist to the debate on the 

“degree of abstraction” in lexical representations. On the one hand, the adaptation happens pre-
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lexically: improvement in word recognition does not require exposure to specific spoken 

instances; rather, learning is more rapidly generalized to novel words than predicted by episodic 

theories. On the other hand, a number of studies suggest that learning does not necessarily 

transfer to new talkers (e.g., Kraljic & Samuel, 2005; Eisner & McQueen, 2005). This suggests 

that listeners are able to maintain multiple pre-lexical representations (or multiple talker-specific 

acoustic-to-phoneme mapping algorithms), either at the phonemic level or sub-phonemic level. 

A single canonical representation as conceived in abstractionist theories apparently does not 

account for the data. 

Given the growing evidence on perceptual adaptation, the right question to ask is perhaps 

not whether linguistic representations are abstract or episodic, but rather, how more and less 

abstract representations coexist and collectively affect speech processing. Perceptual 

reorganization of phonetic categories offers a special window for examining how listeners may 

incorporate novel instances into existing representations and potentially form new abstract 

representations as they gain more experience with previously unfamiliar pronunciations. A 

number of important questions about the dynamic adaptation processes remain unanswered. First, 

what is the scope of phonetic reorganization? Much of existing research on phonetic adaptation 

has focused on changes in category boundary locations as listeners categorize tokens from two 

phonetic categories. It is an open question whether perceptual learning produces a pervasive 

reorganization of the phonetic category structure beyond the boundary region. Second, what is 

the mechanism by which an altered sound-to-category mapping generalizes to novel talkers? 

There is insufficient research into cross-talker generalization of phonetic adaptation to draw any 

firm conclusions. Of note, the aforementioned two lines of research (studies of phonetic 

recalibration of specific categories and foreign accent intelligibility studies) have both explored 
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various conditions for talker generalization (e.g., Kraljic & Samuel, 2007; Bradlow & Bent, 

2008). However, the use of different paradigms makes it difficult to interpret discrepant 

generalization patterns. Third, what are the limits of phonetic reorganization, specifically what 

type of speech input is required for rapid phonetic adaptation? Notably, only very brief exposure 

is needed for native listeners to adapt to idiosyncratic native speakers, in contrast with reports of 

more effortful adaptation to foreign-accented speech, which usually takes multiple training 

sessions (Wade et al., 2007; Bradlow & Bent, 2008). Are there speaker-related factors that slow 

down adaptation? Answers to these questions are of significance for theoretical advances on the 

nature of sub-lexical representations; they are also important for a practical understanding of 

speech plasticity. 

My dissertation addresses these three questions via a series of experiments examining 

how phonetic adaptation and generalization to novel talkers might occur in the context of rich 

within- and inter-talker variability in a foreign accent. These experiments are intended to 

facilitate a unification of findings originating from different lines of research and, in this way, 

provide an integrated account of how listeners represent and adapt to unfamiliar pronunciations 

in speech. Chapter 2 reviews existing empirical work on talker-specific adaptation and 

generalization across talkers, focusing on work that investigates phonetic recalibration of specific 

segments in native-accented speech (e.g., Norris et al., 2003; Kraljic & Samuel, 2005, 2006, 

2007) and studies of intelligibility in non-native accents that emphasize natural variability (e.g., 

Bradlow & Bent, 2008). I then identify a few remaining questions, discuss why answering them 

has important theoretical implications, and briefly introduce the set of experiments designed to 

address each question. Chapter 3-5 presents the experiments in detail. Chapter 3 presents 

experiments exploring listeners’ adaptation to phonetic variation in foreign-accented words, 
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asking whether the natural variation in these tokens produces pervasive reorganization of the 

phonetic category structure, and whether this information is used to map to the lexicon. Chapter 

4 details experiments on cross-talker generalization of accent learning in two exposure 

conditions: single-talker exposure and multiple-talker exposure, aiming to pinpoint the 

mechanism that subserves talker generalization of phonetic reorganization. Chapter 5 further 

presents two case studies of talker-specific adaptation to foreign-accented speakers, investigating 

the role of speaker intelligibility and within-talker variability in phonetic adaptation. Finally, 

Chapter 6 presents a general discussion of findings from Chapters 3, 4 and 5 and their 

implications for theories of speech perception and adaptation.  
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CHAPTER 2 PERCEPTUAL ADAPTATION TO ACCOMMODATE TALKER VARIATION 

It has been long observed that speakers demonstrate distinctive acoustic patterns in the 

realizations of phonemes and words (e.g., Peterson & Barney, 1952; Dorman, Studdert-Kennedy, 

& Raphael, 1977; Newman, Clouse, & Burnham, 2001), making the mapping from sound signal 

to linguistic representations a talker-contingent process (e.g., Johnson, 1990; Nygaard et al., 

1994; Allen & Miller, 2004; Theodore & Miller, 2010). Theories debate the nature of stored 

representations, whether they are talker-specific (episodic theories: Goldinger, 1996, 1998; John, 

1997; 2006) or abstract and talker-independent (abstract theories: e.g., McClelland & Elman, 

1986; Norris & McQueen, 2008; Norris et al., 2000).  

Despite the fundamental differences between the abstract and episodic theories, both 

approaches assume that speech recognition is a pattern matching process that passively maps 

sounds onto existing representations, either via a single fixed mapping, or via potentially 

unlimited numbers of mappings. Nusbaum and colleagues (Nusbaum & Morin, 1992; Nusbaum 

& Henly, 1992; Nusbaum & Magnuson, 1997; Magnuson & Nusbaum, 2007) proposed a 

contextual tuning theory which views speech recognition as an adaptive process: listeners tune 

acoustic-phonetic mappings using a talker’s acoustic-phonetic space as the context for tuning. 

Two important aspects of this theory are noteworthy: first, it acknowledges that the mapping 

from acoustic cues to categories (phonemes or words) is nondeterministic. For instance, 

individual talkers may use different cues to denote phonemes (e.g., Dorman et al., 1977). Support 

for the theory comes from evidence showing that listeners selectively attend to different cues in 

the presence of talker variability (i.e., a single talker vs. multiple talkers, Johnson, 1991; 

Nusbaum & Morin, 1992; Wong, Nusbaum, & Small, 2004). Second, it suggests that talker 

tuning is a time-consuming and cognitively demanding process and is modulated by listeners’ 
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attention and expectations. Recognition of phonemes and syllables is slower or more errorful as 

listeners encounter a new talker or have to switch between talkers (Kakehi, 1992; Nusbaum & 

Morin, 1992). When there is minimal talker variability, the switching cost between talkers is 

modulated by listeners’ expectation of talker changes (Magnuson & Nusbaum, 2007). It is 

suggested that context tuning occurs only in cases where talker changes result in perceptual 

uncertainty. In other words, listeners do not have to retune the acoustic-phonetic mapping for 

each talker and once retuned, the mapping is retained till further talker changes require another 

round of tuning. In order to account for the findings that talker-specific information has long-

term effects (e.g., Nygaard et al., 1994), the authors suggested that talker detail may be stored 

separately from abstract representations of linguistic categories in memory. One shortcoming of 

this theory is the lack of clarity in specifying how perceptual processes could be tailored to 

accommodate talker-related phonetic variation. Recent research on perceptual learning for 

speech takes an important step toward finding a clear mechanism of how talker-specific 

adaptation might be achieved. Moreover, it poses problems for the context tuning theory in that 

results of talker-specific adaptation are maintained and applied to contextually impoverished 

instances (e.g., nonwords). 

Talker-Specific Adaptation: What do Listeners Adapt to? 

Accommodating Idiosyncratic Pronunciations in Native-Accented Speech 

The literature on perceptual learning of native phoneme contrasts shows that listeners 

recalibrate phonetic boundaries under the guidance of top-down knowledge (e.g., Norris et al., 

2003; Kraljic & Samuel, 2005, 2006, 2007). In a typical version of perceptual learning for 

speech paradigm, native listeners hear artificially-created ambiguous tokens (e.g., midway 

between /s/ and /f/) presented in lexically-biased contexts. For example, the ambiguous sound 
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(“?”) is embedded either in /f/-biased words (e.g., belie?) or, for different participants, in /s/-

biased words (e.g., Pari?). The critical manipulation of lexically-biased contexts enables 

listeners to resolve acoustic ambiguity using their lexical knowledge. After this initial exposure, 

listeners then identify consonant tokens along an acoustic continuum (e.g., /ɛf/ -/ɛs/). The 

perceptual learning is manifested as a between-group difference in the phonetic boundary in a 

direction specified by the lexical context during exposure such that the ambiguous sound is 

incorporated into the recalibrated phonetic category. Similar findings are replicated in perceptual 

learning for stop consonants (Kraljic & Samuel, 2006, 2007) and vowels (Maye, Aslin, & 

Tanenhaus, 2008). Segmental adjustments linked to a specific talker facilitate subsequent 

recognition of spoken words, generalizing to untrained words containing the critical segment 

(McQueen et al., 2006; Sjerps & McQueen, 2010), to the same segment across word positions 

(Jesse & McQueen, 2011) and to other segments across place of articulation (for stops, Kraljic & 

Samuel, 2006). Further, once adjusted, the new acoustic-to-phoneme mapping is maintained for a 

given speaker (e.g., Kraljic & Samuel, 2005; Eisner & McQueen, 2006). 

Accommodating Non-Native Talker Variation in Foreign-Accented Speech 

In general, these phonetic adjustments are taken to reflect the mechanism by which 

listeners handle acoustic signals that deviate from canonical pronunciations, such as idiosyncratic 

pronunciations or foreign accents (see Samuel, 2011 for a review). A number of studies have 

adapted the perceptual learning paradigm (Norris et al., 2003) and show that phonetic retuning 

contributes to accent adaptation, at least in part. When acoustic-phonetic variation of accented 

words mismatches existing words, listeners use lexical knowledge to retune the mapping from 

the acoustic signal to native phonetic categories (Sumner, 2011; Reinisch & Holt, 2014). For 

instance, a French-accented /p/ sound is acoustically more similar to a /b/ (than a /p/) when 
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mapped onto distributions of native English. However, when French-accented /p/ tokens are 

heard in real English-words like “paint”, native-English listeners recalibrate the category 

boundary between /b/ and /p/ (Sumner, 2011). Thus, listeners show great flexibility in 

adaptation to foreign-accented speech, despite its considerable acoustic-phonetic deviation from 

native norms.  

Importantly, phonetic remapping further facilitates word recognition in foreign-accented 

speech (e.g., Eisner, Melinger, & Weber, 2013; Witteman, Weber, & McQueen, 2013). Eisner et 

al. (2013) examined the process by which native English listeners adapted to Dutch-accented 

English in which, as in Dutch itself, final obstruents were devoiced. For instance, the devoicing 

rule will make word-final /d/s acoustically and perceptually similar to members of the 

unintended category /t/ (Warner, Jongman, Sereno, & Kemps, 2004) such that a word like ‘seed’ 

will be produced similar to the word ‘seat.’ In this study, exposure to multisyllabic words (e.g., 

overload) containing devoiced /d/ in word-final position produced changes in the priming of /d/-

final words. Specifically, the accented production of seed, sounding like [si:th], primed the 

written form, “SEED” to a greater extent in listeners who had heard /d/-final words during 

exposure than in listeners who did not have this exposure (no significant identity seed ([si:th])-

SEED priming for control listeners). This suggests that listeners accepted a Dutch-accented /d/ as 

a production of /d/ category following exposure.  

Remaining Questions about Talker-Specific Adaptation 

Despite ample evidence that phonetic retuning bolsters rapid adaptation to unfamiliar 

pronunciations (native and foreign-accented), there are a few reasons why existing research has 

not provided a complete picture of how listeners adapt to unfamiliar pronunciations. One 

limitation is that investigations have almost exclusively measured phonetic retuning in terms of a 
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recalibration of phonetic category boundaries (Norris et al., 2003; Kraljic & Samuel, 2005, 2006, 

2007; Reinisch & Holt, 2014). It is well established that phonetic categories have a graded 

internal structure such that some members of the category may be represented as better 

exemplars than others, as revealed by overt judgment and covert psychological responses (e.g., 

Miller & Volaitis, 1989; Kuhl, 1991; Samuel, 1982). This sensitivity to sub-phonemic variation 

cascades to lexical processing and has a gradient effect on lexical activation (Warren & Marslen-

Wilson, 1987, 1988; Marslen-Wilson, Moss, & van Halen, 1996). A wide body of research 

suggests that the “goodness of fit” between incoming speech and lexical representations 

influences the activation of a lexical entry and its acoustic-phonetic competitors (Andruski, 

Blumstein, & Burton, 1994; Utman, Blumstein & Burton, 2000).  

Could a reorganization of internal category structure drive the improved recognition of 

foreign-accented words without a shift of phonetic category boundary? Of note, naturally-

produced foreign-accented tokens are not always as ambiguous as categories are in the research 

on experimentally-controlled speech sounds (e.g., Norris et al., 2003; Reinisch & Holt, 2014). 

Instead, they may have well-defined category membership but still exhibit salient acoustic-

phonetic deviation from native speech. For example, the Spanish vowel /u/ tends to have a lower 

F2 frequency than English /u/ (Bradlow, 1995). Despite this variation, productions of this 

particular non-native phoneme rarely cause confusion regarding phoneme identity when 

perceived by native-English listeners (e.g., Wade et al., 2007). Moreover, highly intelligible non-

native speakers may produce clear (in terms of phoneme identity), albeit atypical, speech tokens. 

Some adaptation may be required to process these kinds of deviations efficiently. Given the 

gradient effect of acoustic-phonetic variation on lexical activation, even adaptation within a 

category may substantially improve word recognition. 
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Early work demonstrates that the representation of phonetic structure is malleable. 

Listeners readily adjust both phonetic boundaries and best exemplars of a phonetic category 

(Miller & Volaitis, 1989; Volaitis & Miller, 1992) in the face of acoustic variation arising from 

contextual variables, such as speaking rate or place of articulation. In addition, while some 

contextual factors have effects on both boundary location and internal category structure, lexical 

status, for instance, affects only the location of between-category boundaries (Ganong, 1980) but 

does not change the location of best-exemplar region within a category (Allen & Miller, 2001). 

Such a dissociation marks the importance of considering both the internal structure of categories 

and phonetic boundaries in understanding the plasticity of phonetic representation. In addition, 

listeners are known to track sub-phonemic detail in a talker-specific manner, for example, 

linking talker identity with talkers’ tendency to produce word-initial stops with short versus long 

voice onset time (Allen & Miller, 2004; Theodore & Miller, 2010). In theory, this ability to store 

talker-specific experience can prepare listeners to use it in guiding perceptual adaptation. It is an 

open issue whether the lexically-guided phonetic adjustments as observed in perceptual learning 

of accented speakers entail changes beyond the phonetic boundary region to also change 

perceived goodness of tokens throughout the phonetic category.  

A second limitation of research on foreign accents concerns effects of perceptual 

adaptation in lexical access. Foreign-accented sounds of different categories may fall into a 

single category to native listeners. For example, both a devoiced /d/ and a normal /t/ in Dutch-

accented English sound like /t/ to English listeners, as shown in Eisner et al. (2013). What 

remains unclear is the effect of adaptation on lexical competition; that is, whether an accented 

seed would activate not only ‘seed’ (the intended target) but also ‘seat’ (the most surface-similar 

form) in the mental lexicon. It is long observed that word recognition depends not only on the 
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degree of fit between the speech signal and the stored representation of a lexical candidate, but 

also on the competition between multiple simultaneously activated lexical representations (the 

intended candidate and other phonetically similar competitors which partially match the sound 

signal, e.g., “seat” for “seed”; Marslen-Wilson, Nix, & Gaskell, 1987; Luce, Pisoni, & 

Goldinger, 1990). Indeed, an entirely ambiguous token (e.g., midway between /d/ and /t/) can 

activate both alternative interpretations of the sound significantly (e.g., Connine, Blasko, & 

Wang, 1994). In Eisner et al. (2013), devoiced /d/-final words primed the printed identical words 

(e.g., auditory “seed” – visual “SEED”) to a greater extent after adaptation; however, the 

increase in identity priming for devoiced /d/ words in itself does not inform the extent of 

completeness of learning: it may be that native listeners still face quite an amount of lexical 

competition upon hearing accented variants of devoiced /d/ words, despite an increase of lexical 

activation over baseline for the intended candidate. That is, accented ‘seed’ may continue to 

robustly prime ‘seat’, even though listeners have learned that this pronunciation maps to ‘seed’.  

A few studies investigating adaptation to ambiguous sounds in native speech have found 

a complete elimination of lexical competitors following perceptual learning (e.g., McQueen et 

al., 2006; Sjerps & McQueen, 2010). Yet it is unknown whether such complete learning can be 

obtained for foreign-accented phonetic variation, given other evidence that adapting to a foreign 

accent is much harder than adapting to a native accent (compare Trude & Brown-Schmidt, 2012 

to Trude, Tremblay, & Brown-Schmidt, 2013). Experiments 1-3 (presented in Chapter 3) are 

designed to overcome the two limitations noted above by examining a) whether perceptual 

adaptation to a foreign-accented speaker instigates a more pervasive effect both within and 

between phonetic categories than has been previously investigated, and b) whether these changes 

help attenuate lexical competition.  
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Generalization of Adaptation: When do Listeners Generalize to Novel Talkers? 

Cross-Talker Generalization of Phonetic Retuning in Native-Accented Speech 

As reviewed above, exposure to unfamiliar pronunciations may fundamentally change the 

phonetic analysis of the speech signal for a specific talker. An important question is whether 

listeners maintain the altered mapping just for the specific talker or whether they generalize 

across talkers. The answer to this question is central to the debate on the nature of pre-lexical 

representations. Empirical investigations of phonetic retuning for ambiguous phoneme contrasts 

in native-accented speech have yielded mixed results. On the one hand, listeners adapt in a 

talker-specific manner for fricatives. After adapting to a speaker’s productions of ambiguous 

fricatives, they do not apply the adjusted “phonemic representation” in the perception of a 

different talker when tested immediately after the initial exposure (Kraljic & Samuel, 2005). An 

altered mapping for a specific talker is maintained over a 12-hour interval, despite intervening 

speech stimuli from other talkers (Eisner & McQueen, 2006). Furthermore, once a sound-to-

category mapping is adjusted, hearing conflicting tokens from a different talker does not 

undermine previous perceptual learning results but hearing them from the same speaker does, 

suggesting listeners keep person-specific representations separate (Kraljic & Samuel, 2007). On 

the other hand, adaptation for stop consonants has been shown to be talker-independent. Kraljic 

and Samuel (2006) exposed listeners to a male speaker’s ambiguous productions (midway 

between /d/ and /t/) in /d/-biased words (e.g., kingdom). Following this exposure, there was an 

increase of /d/ reports in categorizing ambiguous sounds along a nonword-nonword (e.g., /ada/-

/ata/) continuum, indicating a shift of the category boundary location between /d/ and /t/. 

Importantly, the boundary shift was evident regardless of who was speaking (the exposure male 

speaker or another unfamiliar female speaker). In Kraljic and Samuel (2007), listeners adjusted 
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their representation for /d-/t/ phoneme contrast in the same way following exposure to a male 

speaker. However, adjustments were reset to baseline when listeners later heard the same 

ambiguous sounds embedded in /t/-biased words (e.g., cafeteria, which conflicted with prior 

experience), even though the new sounds were embedded in a female voice. Taken together, 

talker generalization pattern seems to differ between phoneme classes within this literature.  

Cross-Talker Generalization of Adaptation to Foreign-accented Speech 

Another line of research has investigated whether adaptation to a foreign-accented 

speaker generalizes to a novel talker of the same accent, using a paradigm very different than 

those for the “perceptual learning for speech” studies. In this line of work, non-native accents are 

assessed using intelligibility measures; reports have consistently shown that single-talker training 

does not enhance speech intelligibility of a different talker with the same accent (Jongman, 

Wade, & Sereno, 2003; Bradlow & Bent, 2008). However, exposure to multiple talkers who 

share a foreign accent appears to enhance intelligibility of other talkers with the same accent in 

some cases (Bradlow & Bent, 2008; Sidaras, Alexander, & Nygaard, 2009; but see Clarke, 2000; 

Wade et al., 2007 for negative evidence). Bradlow and Bent (2008) trained native-English 

listeners to recognize sentences in Mandarin-accented English. They found that having heard 

sentences produced by multiple Mandarin-accented talkers, listeners showed an improvement in 

recognizing untrained sentences from a novel Mandarin-accented talker. Such facilitation of 

sentence recognition was equivalent to facilitation effects elicited by training on the same talker 

that was used at test. Similar findings were reported by Sidaras et al. (2009) who trained listeners 

to transcribe words from a group of Spanish-accented speakers. Following multiple-talker 

training, listeners transcribed untrained words spoken by a new group of Spanish-accented 

speakers. Their performance was as good as participants who were previously trained with the 



16 

 

 

test speakers and was better than control participants who had no pre-test exposure to the 

particular accent.  

The question is: what is afforded by multiple-talker exposure, but not by single talker 

exposure, that allows generalization to a novel talker? It was suggested by authors of these two 

studies that exposure to multiple talkers with the same accent enabled listeners to learn the 

acoustic-phonetic regularities in the accent which helped them to tag certain types of acoustic 

variability as characteristic of a language community rather than characteristic of a specific 

talker (see also the discussion of Baese-Berk, Bradlow, & Wright 2013). However, in these 

studies, adaptation has been exclusively measured by an increase of word recognition accuracy 

in transcription tasks, which cannot in and of itself unequivocally support the hypothesis. For 

instance, it is possible that the increased variability in the form of multiple talkers causes a 

general relaxation of the mapping from nonstandard speech tokens to word forms (since all 

speech tokens have to be real words in a transcription task), allowing many possible acoustic 

tokens to map to a phoneme, without instigating any changes in specific segmental 

representations (e.g., Brouwer, Mitterer, & Huettig, 2012; McQueen & Huettig, 2012). Similarly, 

the null effects of single talker exposure could indicate a lack of generalization of phonetic 

adjustments, or alternatively, it could be that the test measures of global intelligibility are not 

sensitive enough to detect talker-independent generalization for specific phoneme contrasts. 

To our knowledge, only two studies on foreign-accented speech have examined cross-

talker generalization at the phoneme level (Witteman et al., 2013; Reinisch & Holt, 2014). 

Reinisch and Holt (2014) adopted the paradigm of Norris et al. (2003) and examined native-

English listeners’ adaptation to artificially-created ambiguous sounds (midway between /s/ and 

/f/) embedded in Dutch-accented English. A separate /f/-/s/ continuum was constructed for each 
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speaker (a female exposure speaker and two test speakers, one female and one male), by 

morphing clear tokens of /s/ and /f/ by different proportions. Results from a pre-test 

categorization task showed that the male test speaker’s ambiguous productions were perceived to 

be more /s/-like than those of the female exposure speaker, whereas overall perceptual responses 

for the two female speakers were similar. As a result, listeners generalized the adjusted 

representation of the fricatives from the female exposure speaker to the female test speaker, but 

not to the male test speaker, although all three speakers had perceptibly distinctive voices. In 

addition, when only a subset of ambiguous fricatives of the male test speaker were presented in 

the test stimuli such that the exposure and test stimuli were perceived to be equally /s/-like, 

learning of the exposure female talker generalized to the male test speaker. Results from this 

study indicate a role of bottom-up similarity (in terms of the extent of ambiguity, i.e., the degree 

of /s/-likeness) in guiding generalization in that generalization between two speakers was turned 

on and off by experimentally manipulating the sample perceptual space of the test speaker.  

In another study, the generalization effect was tested on the perception of words (instead 

of a nonword-nonword continuum) produced by a novel talker (Witteman et al., 2013). Native-

Dutch listeners who had limited prior experience with German-accented Dutch were briefly 

exposed to a German-accented speaker producing critical words with Dutch vowel /æy/ 

(pronounced as /ɔɪ/) in them. A post-exposure cross-modal priming task revealed that auditory 

primes with accented /æy/ productions facilitated recognition of identical visual targets, 

suggesting adaptation to the specific talker. However, when tested with a different speaker who 

had similar pronunciations of the vowel, prior exposure did not immediately facilitate word 

recognition, although it appeared to expedite the adaptation process.  

In sum, research on cross-talker generalization is limited and has not revealed consistent 
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results with some showing adaptation restricted to specific speakers (e.g., Eisner & McQueen, 

2005; Kraljic & Samuel, 2005; Jongman et al., 2003) and other showing adaptation effects 

readily transferred to other speakers (e.g., Kraljic & Samuel, 2006). The mechanism by which 

listeners generalize their prior experience with foreign-accented speakers to novel speakers 

remains poorly understood, although a few general suggestions have been made. Specifically, 

Kraljic and Samuel (2007) emphasized the patterning of talker information with phonetically-

relevant acoustic cues. For instance, spectral cues that distinguish a /s/ from a /ʃ/ also reveals 

important information about talker (e.g., gender) and are more diagnostic of talker identity than 

temporal cues used for stops; thus, listeners tend to adapt in a talker-specific manner for 

fricatives but not stops. Reinisch and Holt (2014) provided evidence in support of perceptual 

similarity of talkers in constraining talker generalization. Bradlow and Bent (2008) suggested 

that systematic commonalities shared among a group of talkers evoke talker-independent 

adaptation, although they did not have confirmatory evidence to pinpoint the ‘systematicity’ at 

the acoustic-phonetic level (see also Sidaras et al., 2009). In Chapter 4, I first refine these general 

suggestions into testable working hypotheses. In particular, I make a distinction between the role 

of top-down influences (such as expectations for talker accent) and bottom-up input in 

constraining generalization. Then I present Experiments 4 and 5 which examine talker 

generalization of phonetic adaptation in two conditions: a) generalizing from a single foreign-

accented talker to another talker with the same accent; and b) generalizing from a group of 

talkers who share an accent to a novel talker with the same accent.  

Limits of Phonetic Adaptation: What Kind of Speech Input is Required? 

Apparently, for non-native speakers, a major source of acoustic variability comes from 

the instability of L2 phonetic categories, of which productions are inevitably subject to 
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influences from native language (L1) phonology. Differences in phonetic inventories and in the 

specific realization of same phonemes across languages are known to challenge the phonetic 

learning of a foreign language and its production (e.g., Best & Tyler, 2007). Despite ample 

evidence of rapid phonetic adaptation to unfamiliar pronunciations, surprisingly little research 

has investigated how speaker-related factors, such as intelligibility, the degree of accentedness, 

and acoustic variation, may affect the adaptation process. These speaker-factors tend to vary 

substantially across foreign-accented speakers (e.g., Munro & Derwing, 1995) and will likely 

have direct influences on listeners’ adaptation to the accent. 

A Role of Speaker Intelligibility 

In a foreign accent listening study, Bradlow and Bent (2008) compared native English 

listeners’ speed of adaptation to Mandarin-accented speakers as a function of individual 

speakers’ baseline intelligibility in English. Evidence indicates that while sentence transcription 

training improves recognition of accented sentences for all speakers, it takes a longer time for 

listeners to adapt to speakers of relatively low intelligibility, hypothetically due to weaker 

support for lexical-to-phonetic feedback in less intelligible speech. Indeed, past research shows 

that high-level linguistic information guides phonetic retuning of specific phonemes (e.g., Norris 

et al., 2003; Eisner et al., 2013). If an accumulation of retuned representations for several 

phonetic categories together improves sentence-level recognition for accented speech, a logical 

result of less intelligible speech is that more training sentences are required for adaptation, given 

fewer speech instances with clear lexical information in each sentence. However, other acoustic-

phonetic level factors, such as larger within-talker variability in production, or more deviation 

from the acoustics of native tokens, may slow down adaptation processes and are more likely to 

occur in low intelligible speakers.  
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A Role of Within-Talker Variability 

A number of studies that investigate native phonetic perception show that large within-

talker variability, which increases the likelihood of acoustic overlap between categories, leads to 

slower responses in phoneme categorization and increased competition between phonetically-

similar competitors in word recognition (Newman et al., 2001; Clayards, Tanenhaus, Aslin, & 

Jacobs, 2008;Toscano & McMurray, 2010). In addition, Hazan, Romeo, and Pettinato (2013) 

found that even after controlling for categorical overlap, within-category dispersion itself 

positively correlates with response speed in category identification. Few studies have explored 

the role of within-talker variation in foreign-accented speech and its influence on speech 

perception, which occurs above and beyond deviations from native acoustic distributions. Wade 

et al. (2007) reported poorer training effects in the recognition of foreign-accented spoken words, 

partially attributable to larger within-talker variability in non-native speech compared to native 

speech. However, in this study, because listeners were trained in a high-variability paradigm and 

were exposed to multiple speakers producing hundreds of words, it is hard to determine to what 

extent the adaptation was hindered by within- versus inter-talker variability independently, and 

whether listeners were puzzled by the overall stimulus variability across categories or by within-

category variability of specific phonemes.  

Studies of phonetic adaptation in foreign accents often do not report speaker intelligibility 

or within-talker variability of their productions, leaving open the question whether these factors 

have consequences on phonetic adaptation. One exception is Sumner (2011), which showed that 

some variability is better than none in eliciting phoneme-level retuning. Specifically, invariant 

tokens of French-accented /p/ (tokens with constant VOTs across phonetic contexts), which 

sounded like /b/ in English, did not generate typical recalibration of /b/-/p/ phonetic boundary , 
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whereas exposure to an acoustically variable set of accented /p/ tokens did produce recalibration. 

Taken together with findings of Wade et al. (2007), these results suggest that adaptation to 

foreign-accented speech requires some, but not excessive, acoustic variability. In Chapter 5, I 

present Experiment 6 and 7 as case studies of talker-specific phonetic adaptation as an attempt to 

characterize the type of speech input that limits fast perceptual learning. Specifically, the role of 

speaker intelligibility and within-talker variability (of specific phonemes) is examined.  

Characteristics of Mandarin-Accented English 

As reviewed above, there is mounting evidence showing that listeners not only adapt to 

specific speakers by adjusting acoustic-phonetic mappings, they also sometimes generalize the 

remapping to novel talkers. The advance of theories lies in constructing a framework that 

captures the flexibility in the speech perceptual system and also specifies how the right degree of 

abstraction is achieved. Foreign-accented speech, with its noticeable deviation from native norms 

and its regularities across talkers who share an accent, provides an ideal test case to address 

questions about the mechanism of rapid phonetic adaptation and its generalization. In all of the 

experiments, I tested native-English listeners’ adaptation to Mandarin-accented English, focusing 

on /d/ productions in word-final position. 

In Mandarin, all stops are phonetically voiceless (no /b/, /d/, /g/ are found in Mandarin) 

and are distinguished by aspiration, instead of voicing. That is, the two tokens [th] and [t] are 

contrastive in Mandarin, but are allophones of the same category /t/ in English (Rochet & Fei, 

1991). Moreover, Mandarin does not permit any stops in word-final position. Due to this L1 

influence, voiced word-final stops (e.g., /d/ as in ‘seed’) are often devoiced (pronounced similar 

to [th]) in Mandarin-accented English and are perceptually confusable with voiceless tokens 

when judged by English listeners (e.g., Flege et al., 1992). Mandarin-accented English further 
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differs from native-accented English at the level of acoustic cues. In general, word-final voicing 

can be signaled by multiple acoustic cues: for instance, voiced stops tend to have longer 

preceding vowels, shorter closures and shorter bursts than unvoiced stops (e.g., Denes, 1955; 

Lisker, 1957; Hillenbrand et al., 1957). Native American-English speakers show salient and 

reliable vowel lengthening before voiced tokens across different phonetic contexts (Luce & 

Charles-Luce, 1985), but typically do not produce audible release of the final stop (Crystal & 

House, 1988). In contrast, Mandarin-accented speech demonstrates reduced or absent differences 

in vowel and closure durations, but usually keeps clear distinctions in burst durations (e.g., Bent, 

Bradlow, & Smith, 2008; Flege et al., 1992). Consistent with their differences in production of 

the voicing of stops, English and Mandarin listeners differ in their use of temporal cues to 

identify voicing in stop consonants (e.g., Crowther & Mann, 1992). The appropriate use of 

informative cues has been linked to enhanced intelligibility of foreign-accented speakers (Xie & 

Fowler, 2013).  

Across all experiments, I combined acoustic analysis with behavioral responses in order 

to have a full understanding of adaptation to accents. Attending to acoustic detail might help to 

explain why in some situations listeners adapt and sometimes they do not; and why they 

generalize to some talkers but not others. In the studies reported in this thesis, all Mandarin-

accented speakers were recruited from University of Connecticut. Speaker intelligibility was 

assessed by a pilot intelligibility study. Detailed information for the pilot study and demographic 

information of all speakers are presented in Appendix A. Following the perceptual learning 

paradigm, each experiment included an exposure phase and a test phase. Novel items and/or 

novel talkers were used at test to examine generalization of perceptual adaptation. Table 1 
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presents talker conditions across all experiments, which used cross-modal priming as the test 

task. Experiment 2 and 3 used different tasks and are not included in the table.  

Table 1. Talker conditions across experiments. 

Experiment Condition Exposure speaker(s) Test speaker 

Experiment 1-3 
Talker-specific 

learning 
Speaker 1 Speaker 1 

Experiment 4 
Generalization from a 

single talker  

Speaker 1 Speaker 2 

Speaker 2 Speaker 1 

Experiment 5A 
Generalization from 

multiple talkers 

Multi 1 

(speaker 2,3,4,5,6) 
Speaker 1 

Multi 2  

(speaker 1,3,4,5,6) 
Speaker 2 

Experiment 5B1 
Generalization from 

multiple talkers 

Multi 1 

(speaker 2,3,4,5,6) 
Speaker 1 

Experiment 6 
Talker-specific 

learning 
Speaker 2 Speaker 2 

Experiment 7 
Talker-specific 

learning 
Speaker 3 Speaker 3 

 

                                                 

1 Experiment 5B was conducted due to different generalization patterns in Experiment 5A. Details are presented in 

Chapter 4. 
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CHAPTER 3 THE SCOPE OF PHONETIC REORGANIZATION: 

ADAPTATION RESHAPES INTERNAL STRUCURE OF PHONETIC CATEGORIES 

Classic findings on categorical perception have revealed that while the acoustic signal is 

continuous, listeners efficiently map speech sounds onto phonetic categories that help to 

distinguish one word from another (Liberman et al., 1967). Though findings from categorical 

perception experiments suggest that listeners are not sensitive to variation within a phonetic 

category, findings from other paradigms suggest that members of the same phonetic category are 

not perceptually equivalent (e.g., Pisoni & Tash, 1974). As noted in Chapter 2, phonetic 

categories have a rich internal structure: both category membership and typicality of speech 

instances matter in speech perception (e.g., Andruski et al., 1994).  

The literature on perceptual learning for speech shows that listeners use lexical 

information to disambiguate phonetically ambiguous speech sounds, and maintain this new 

mapping for later recognition of ambiguous sounds for a given talker. Evidence for this kind of 

perceptual reorganization has focused on phonetic boundary shifts. Here I present three 

experiments examining whether listeners adjust both category boundaries and internal category 

structure in rapid adaptation to foreign accents, and whether these phonetic adjustments, if any, 

help to alleviate lexical competition between phonetically-similar competitors. 

Experiment 1 examined the effect of perceptual learning on spoken word recognition. 

Generalization of learning across the lexicon was examined by exposing participants to one set 

of words and testing them on a novel set. This study replicated the methods of Eisner et al. 

(2013) and extended this design to also ask whether perceptual adaptation results in changes in 

lexical competition. With a successful replication in Experiment 1, Experiments 2 and 3 were 
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designed to provide a precise examination of perceptual changes throughout the phonetic 

category that lead to improved word recognition. Experiment 2 examined changes in the 

phonetic category boundary using a category identification task. Experiment 3 examined 

influences of learning on the internal structure within the phonetic category by assessing 

listeners’ goodness ratings of speech tokens as exemplars of each phonetic category (/d/ or /t/).  

Lastly, behavioral data were pooled across experiments and analyzed in combination with 

acoustic patterns of accented tokens in order to determine whether the re-weighting of acoustic 

cues contributed to rapid perceptual adaptation to the foreign accent.  

Experiment 1 

In Experiment 1, I investigated whether native listeners can rapidly adapt to Mandarin-

accented word-final /d/ pronunciations. Two groups of native-English listeners were exposed to 

naturally-produced Mandarin-accented speech in an auditory lexical decision task during 

exposure. The experimental group heard a set of critical /d/-final words that were devoiced in the 

Mandarin-accented speech, but the control group heard only replacement words that did not 

contain any example of /d/. During test, all listeners completed a cross-modal priming task. The 

current design was modeled after Eisner et al. (2013) with one modification: we examined not 

only how auditory /d/-final words primed visual targets in an identity priming procedure (e.g., 

seed –SEED; visual targets are presented in capital letters), but also how they primed 

phonological competitors of the intended targets (e.g., seed –SEAT). I hypothesized that exposure 

to a novel accent would increase the match between accented input and lexical forms, resulting 

in larger identity priming effect for Mandarin-accented /d/-final words by the experimental group 

compared to the control group; in addition, following learning, intended targets would have 
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greater lexical activation than unintended competitors. Thus, the priming effect served as a 

measure of accent adaptation.  

Methods  

Participants. Forty-eight monolingual English speakers with no hearing or visual 

problems (according to self-report) were recruited from the University of Connecticut 

community. All participants were undergraduate students who were naïve to the Mandarin 

language and had no or minimal previous exposure to Mandarin-accented English. Participants 

were randomly assigned to one of the two exposure groups (experimental vs. control), with 24 

participants in each condition. In this study, as in all subsequent experiments, participants 

received course credit or monetary reward for their participation, and gave informed consent 

according to the guidelines of the University of Connecticut Institutional Review Board. 

Speech materials. One male native-Mandarin speaker with medium intelligibility (as 

determined by an intelligibility pilot study) was selected as the exposure and test speaker 

(Speaker 1; see Appendix A for demographic and intelligibility information). All words were 

produced naturally by this speaker. Recordings were made in a sound-proof room using a 

microphone onto a digital recorder, digitally sampled at 44.1 kHz and normalized for root mean 

square (RMS) amplitude to 70 dB SPL.  

Exposure. For the experimental group, the exposure list consisted of 30 critical /d/-final 

words (e.g., overload), 60 filler words, and 90 nonwords. The list was identical for the control 

group except for the critical words. Instead of /d/-final words, there were 30 replacement words 

for the control group. The replacement words (e.g., animal) were matched to the critical -/d/ 

words in syllabic length and mean lemma frequency in CELEX (Baayen, Piepenbrock, & 

Gulikers, 1995). All words or nonwords were multisyllabic and contained three to four syllables. 
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In both conditions, auditory words were selected to meet the following criteria: 1) /d/ appeared 

only in word-final position, and only in critical words; 2) no other alveolar stops, no other voiced 

stops or dental fricatives, and no post-alveolar affricates occurred; 3) no voiceless stops (/p/ or 

/k/) occurred in word-final position. The same criteria were used in the selection of test stimuli. 

Test. The test list was identical for both exposure groups. There were 60 monosyllabic 

/d/-final words (taken from /d/-/t/ minimal pairs such as “seed-seat”) and 180 monosyllabic filler 

words. Mean lemma frequencies in CELEX of the /d/- and /t/-final items were 83 (SD = 186) and 

87 (SD = 126) per million, respectively, t(59) = .159, p = .88.  

Procedure. Each participant completed an auditory lexical decision task during exposure, 

which was immediately followed by a cross-modal priming task. A between-subjects design was 

used such that, during the exposure phase, the experimental group and the control group heard 

items from the experimental list and the control list, respectively. Items were presented in a 

random order. For the auditory lexical decision task, participants were instructed to decide 

whether each auditory stimulus was a real English word and to press a corresponding button as 

quickly and accurately as possible. 

The test phase was identical for both groups. Participants were told that they would 

continue to hear auditory words (primes) but immediately after that they would see visual letter 

strings (targets) presented on the screen. The task was to decide with a yes/no button press 

whether the visual stimuli were real English words or not. On critical trials, 60 words from /d/-

and /t/-final minimal pairs appeared as visual targets, in four different prime –target pairing 

types: /d/-final words as visual targets preceded by an identity prime (e.g., seed –SEED) or an 

unrelated prime (e.g., fair –SEED); /t/-final visual targets preceded by a minimal pair contrast 

(e.g., seed –SEAT) or an unrelated prime (e.g., fair –SEAT). Successful encoding of the accented 
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/d/ variant should be manifested as a greater magnitude of priming for identity priming ([seed –

SEED] – [fair –SEED]) in participants who heard /d/-final words than for those who listened to 

the accented talker but heard no /d/-final tokens.  

Words in each set of minimal pair items were rotated over four counterbalanced lists and 

within each list, they appeared in only one of the four prime –target pairing type. Each 

counterbalanced list had equal proportions in the four pairing types. Non-critical trials were 

identical across counterbalanced lists: 30 filler words were paired with an identical prime (e.g., 

foam –FOAM) or an unrelated prime (e.g., male –HORN), and another 90 auditory filler words 

were paired with visual nonwords (e.g., ring –WELF). Thus, among the 180 trials in each list, 

half the targets were nonwords. The test lists were pseudo-randomly ordered such that no more 

than four words or nonwords appeared in a row, and the critical trials were evenly spaced. For 

each list, there were two test orders in which trials were in reverse order. Example stimuli across 

counterbalances lists are presented in Table B1 (Appendix B).  

Stimuli were presented using Eprime 2.0.8 running on a desktop computer. Audio stimuli 

were delivered via Sennheiser HD280 headphones at a comfortable listening level constant 

across participants; visual targets were shown in white Helvetica font in lower case on a black 

background in the center of the computer screen. During exposure, ten practice trials were given 

to the participants before the actual task to familiarize them with the task procedure. Practice 

items were similar to filler words and did not appear in the exposure stimuli. Exposure auditory 

items were presented with an inter-onset interval of 3000 ms. During test, ten practice trials of 

the cross-modal priming task were given to participants, followed by the actual test. The inter-

trial interval was 1400 ms, timed from the button press response to the onset of the next auditory 

prime. Visual targets were presented immediately at the offset of the auditory prime and stayed 
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on the screen for 2 s unless terminated by a response. Reaction times (RT) were measured from 

visual target onset. During both phases, participants were told to respond as fast as possible 

without sacrificing accuracy. Responses were made via keyboard with two buttons labeled ‘yes’ 

and ‘no’. Assignment of the ‘yes’ button to the right or left hand was counterbalanced across 

participants. 

Results  

Exposure. Response accuracy is presented in Table C1. Of interest, critical /d/-final 

words were largely judged to be real words by the experimental group (M = .81, SD = .09).  

Test. Table C2 shows mean error rates and reaction times (RT) in the test phase. Analysis 

of error rates did not reveal any group differences and were omitted from discussion here. RTs 

for correct responses were analyzed. Items were discarded from the statistical analysis if the rate 

of correct identification across all participants was less than 41% accurate (three standard 

deviations (SD = 16%) below the mean (89%) across all items). By this criterion, three words 

(plod, moot, spate) were discarded in this experiment and in all experiments presented in 

Chapters 3 -5. In addition, a preliminary inspection revealed that extreme outliers in the RTs 

caused a violation of the normality assumption of the RT data. Responses above or below 2 SDs 

from the mean of each prime type in each group were excluded from the RT analysis (4.5% of 

correct trials). Fig.1 shows the RT priming magnitude (unrelated minus related) as a function of 

exposure group and target type.  
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Fig.1. Experiment 1 test results: Priming of /d/-final words (RT in fair-SEED trials minus RT in seed-SEED trials) 

and /t/-final words (RT in fair-SEAT trials minus RT in seed-SEAT trials) for participants exposed to critical words 

(Experimental group) or replacement words (Control group). Error bars represent standard errors of the mean. 

I report the RT results analyzed in a linear mixed-effects model. The model included 

exposure group (experimental vs. control), target type (/d/-final vs. /t/-final words), prime type 

(related vs. unrelated primes) and their interactions as fixed effects. Random effects included by-

subject intercepts and by-item intercepts and slopes for priming type, which had the maximal 

random effect structure justified by the data2 (Baayen, Davidson, & Bates, 2008; Barr, Levy, 

Scheepers, & Tily, 2013). All the independent variables were contrast coded (contrast coding is 

the default coding in ANOVA; the interpretation of coefficients are comparable to main effects 

in ANOVA) as follows: exposure group: experimental = 1, control = -1; target type: /d/-final 

targets = 1, /t/-final targets = -1; prime type: related = 1, unrelated = -1. The coefficients reflect 

the distance of each level of the variable from the overall mean of the variable. As expected, 

related primes elicited faster responses than unrelated primes (β = -23.23, SE = 2.48, p < .0001). 

                                                 

2 The random effects in all models reported in the dissertation were determined by a stepwise variable selection 

procedure. The reported model always contained the maximal random effect structures justified by the data. I used 

the lme4 package in R (Bates, Maechler, Bolker & Walker, 2014) to conduct the analysis. 
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Meanwhile, /d/-final targets elicited slower responses than /t/-final targets (β = 13.57, SE = 4.88, 

p < .01). Of interest, there was a significant three-way exposure group × target type × prime type 

interaction (β = -4.11, SE = 2.11, p < .05). No other effects were significant at the .05 level.  

Given the interaction, we further analyzed the data by fitting mixed-effects models for 

/d/-final targets and /t/-final targets separately, with exposure group, prime type, and their 

interaction as fixed effects. For /d/-final targets, there was a significant priming effect (β = -

27.44, SE = 3.27, p < .0001); crucially, the priming effect was significantly larger in the 

experimental group than the control group, as revealed by the interaction effect (β = -7.58, SE = 

3.24, p < .05). Thus, relative to control participants, participants in the experimental group who 

had been exposed to /d/-final words showed larger identity priming (e.g., “seed-SEED”) during 

test. Notably, critical test words were not heard during the exposure phase. Therefore, gains in 

identity priming likely reflect increased compatibility between accented tokens and phonetic 

representations, which generalized across the lexicon and facilitated subsequent word 

recognition. This result replicated findings of Eisner et al. (2013); they found an increase of 

identity priming as native-English listeners adapted to final-devoiced /d/ in Dutch-accented 

English. We added two novel types of critical trials (e.g., “seed-SEAT” and “fair-SEAT “) to 

Eisner et al.’s design to examine to what extent accented /d/ tokens activate the representation of 

/t/. For /t/-final targets, there was a priming effect (β = -19.31, SE = 3.84, p < .0001), suggesting 

that responses made to /t/-final words (e.g., “SEAT”) were faster following an auditory /d/-final 

word (e.g., “seed”) than following a phonologically unrelated word (e.g., “fair”). Importantly, 

there was no exposure group-by-prime type interaction (β = .46, SE = 2.73, p = .87), suggesting 

that there was no group difference in terms of the absolute priming magnitude for /t/-final targets. 
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Thus, exposure to critical /d/-final words increased priming for /d/-final targets in the 

experimental group, without decreasing priming for the voiceless competitor, /t/-final targets. 

We further asked whether within each exposure group (experimental vs. control), 

auditory /d/-final words elicited larger priming for the intended item (e.g., “seed-SEED”) than for 

the phonological competitor (e.g., “seed-SEAT”). Starting with the control group, there was a 

significant priming effect (β = -18.79, SE = 2.87, p < .0001) but no prime type-by-target type 

interaction (β = -0.19, SE = 2.87, p = .95). The absence of an interaction effect indicated that 

these listeners, who had not heard any examples of /d/ during exposure, activated the lexical 

representation of both the intended words (e.g., “seed”) and their phonological competitors (e.g., 

“seat”) almost equally. Thus, as predicted, Mandarin-accented /d/-final words were overall 

somewhat ambiguous for untrained native-English listeners. In contrast, in the experimental 

group, the main priming effect (β = -26.98, SE = 3.65, p < .0001) was modulated by a prime 

type-by-target type interaction (β = -8.28, SE = 3.65, p < .05), reflecting larger priming for the 

intended item (e.g., “seed-SEED”) than for the phonological competitor (e.g., “seed-SEAT”). 

Discussion 

In summary, two important results emerged from this experiment. On the one hand, in the 

experimental group, perceptual learning did enhance lexical activation of the intended target 

(“seed-SEED”) such that intended lexical items received higher levels of activation than their 

competitors that differed by a voicing feature. On the other hand, the lack of group effect for /t/-

final targets indicated that the experimental group (as well as the control group) exhibited 

significant priming from -/d/ primes on -/t/ targets (e.g., “seed—SEAT”). Thus, among 

experimental participants who had exposure to critical -/d/ words before test, even though /d/-

final words were more strongly activated (e.g., “seed—SEED”), this increased activation was not 
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at the expense of activation of /t/-final words (e.g., “seed—SEAT”). The influence of perceptual 

learning on the competing lexical target (e.g., “seed—SEAT”) was not assessed in Eisner et al. 

(2013) or other studies that showed successful adaptation to natural foreign accents (e.g., 

Witteman et al., 2013). I now compare the current results to previous studies that investigated 

perceptual learning of atypical pronunciations in one’s native accent. 

McQueen et al., (2006) showed a complete elimination of priming effect on phonological 

competitors (e.g., “doos-DOOF”, both are words in Dutch) after listeners adapted to the 

ambiguous fricatives (midway between /s/ and /f/) embedded in a native Dutch accent. Similar 

results were obtained by Sjerps & McQueen (2010), who investigated the perception of a single 

non-native sound embedded in native speech. In this study, Dutch listeners adapted to a 

noncanonical /f/ or /s/ sound (actually replaced by the English /θ/ sound, as in “bath”). 

Importantly, the /θ/ sound elicited an identity priming effect of the same magnitude as that 

elicited by an unambiguous native sound, whereas no significant priming on phonological 

competitors were found. The results were taken as evidence of thorough learning of non-native 

sounds. However, our data indicated that the Mandarin-accented -/d/s did not fully function like 

native phonemes even after critical exposure.  

The discrepancy between the current data and previous studies might arise for a number 

of reasons. First of all, in both McQueen et al. (2006) and Sjerps and McQueen (2010), the 

manipulated sound was the only unfamiliar sound that needed to be adapted to; the rest of stimuli 

were normal, clear native speech. In the current study, natural phonetic variation that deviates 

from the native norm was pervasive in the stimuli, in the sense that many other segments (e.g., 

vowels and other consonants) also bore traces of the non-native accent. Although perceptual 

learning has been shown to be largely automatic (Witteman, Bardhan, & Weber, 2014; but see 
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Zhang & Samuel, 2013), the requirement of simultaneous adjustment to multiple phonetic 

categories may change the time course of complete learning. Second, the differences in results 

might be due to the specific phoneme class being tested. Notably, fricatives (Kraljic & Samuel, 

2005) elicit larger adaptation effects (as shown by a larger shift in the location of phonetic 

boundaries) than stop consonants do (Kraljic & Samuel, 2006). Lastly, the natural variation in -

/d/ tokens (i.e., variation within the intended category) used in our study might also have made 

the task more demanding. Future work is needed to tease apart these possibilities. It is also 

important to test whether constraining the range of acoustic variation among exposure and test 

items (cf. Sumner, 2011) would help listeners to achieve complete learning of a foreign accent 

faster, or if complete learning is achievable at all during brief exposure. Such tests will help us to 

establish the limits of perceptual learning. In Experiments 2 and 3, I sought to provide a more 

precise indication of pre-lexical changes, by examining changes in the location of phonetic 

boundary between categories and in the internal structure within the categories.  

Experiment 2 

Previous studies of perceptual learning have measured the learning result in terms of 

shifts in phonetic category boundaries (e.g., Norris et al., 2003; Kraljic & Samuel, 2005). At test, 

listeners were generally asked to identify tokens that varied along an acoustic continuum. The 

test sounds were artificially created by mixing two clear sounds (e.g., /s/ and /f/) in different 

proportions. In natural speech, category membership is often determined not by a single acoustic 

dimension, but by the combination of multiple acoustic cues. Each acoustic dimension has its 

own distributional characteristics and is differentially informative about phonetic segment 

identity. These cues and their informativeness in foreign-accented speech can be quite distinct 

from those in the native speech (Flege et al., 1992); on the other hand, due to influences of L1 
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phonology, they usually vary systematically across talkers from the same language community 

(e.g., Bent et al., 2008). Hence, in order to capture in full scope any potential acoustic-phonetic 

level adaptation to rich variation in the accented speech, I used naturally-produced /d/-final and 

/t/-final words as test stimuli in Experiment 2, instead of mixing pairs of tokens in predefined 

proportions to create a continuum. Following an exposure phase that was identical to that in 

Experiment 1, I assessed potential changes in the phonetic category boundary using a two-

alternative, forced-choice (2AFC) category identification task during test. A phonetic boundary 

shift would be indicated by an increase in /d/ responses for /d/-final words.  

Methods 

Participants. Forty-eight monolingual English speakers with no hearing or visual 

problems were recruited from the University of Connecticut community. Participants were naïve 

to the Mandarin language and had no or minimal previous exposure to Mandarin-accented 

English. Participants were randomly assigned to one of the two exposure groups (experimental 

vs. control) with 24 participants in each condition. 

Speech materials. The exposure stimuli were identical to those used in Experiment 1. 

The test list included 60 monosyllabic minimal pairs ending in /d/ or /t/ (e.g., seed –seat; 

identical to the /d/-final words that appeared in Experiment 1 during test as auditory primes). The 

test stimuli were organized into two blocks such that for each participant, members of the same 

minimal pair did not appear in the same block. For example, if seed appeared in block 1, seat 

appeared in block 2. The order of blocks was counterbalanced across participants. Each block 

consisted of 30 /d/-final words and 30 /t/-final words; items were presented in random order 

within each block. 
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Procedure. Stimuli were presented using the same equipment as in Experiment 1. During 

both phases, participants were told to respond as fast as possible without sacrificing accuracy. 

The exposure phase was identical to that used in Experiment 1. During the test phase, test items 

were presented via headphones with an inter-trial interval of 2000 ms. Listeners were asked to 

identify the final consonant of each item as either /d/ or /t/ by pressing an appropriately labeled 

button. No feedback was provided.  

Results 

The categorization results showed that there was large variability (percent /d/ responses 

ranged from 0 to 100 for both /d/-final and /t/-final words) across items in terms of their 

ambiguity, as expected for naturally-produced non-native accented speech. A mixed-effects logit 

model was used to analyze the category identification data (Fig.2). Mixed logit models predict 

the probability of a particular response (here, a /d/ response; Agresti, 2002; Jaeger, 2008). In 

analyzing the current data, main effects of exposure group (experimental vs. control) and word 

type (/d/-final vs. /t/-final) as well as their interaction were included in the model. By-item 

intercepts and by-subject intercepts and slopes for word type were included as random effects, 

which had the maximal random effects structure justified by the data. The independent variables 

were contrast coded as follows: exposure group: experimental = 1, control = -1; word type: /d/-

final = 1, /t/-final = -1. For the dependent measures, /d/ responses were coded as 1 and /t/ 

responses were coded as 0. Positive log coefficients indicate a log odds ratio greater than 0 

(corresponding odds ratio is greater than 1), which means that the level coded as 1 has greater 

probabilities of /d/ responses than the level coded as -1. Overall, /d/-final words (64%) elicited 

significantly more /d/ responses than /t/-final words (32%) across the two groups (log coefficient 

β = 1.00, SE = .16, p < .0001). Crucially, there was a significant group effect (β = .22, SE = .09, 
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p < .05): The experimental group reported significantly more /d/ responses (51%) than the 

control group (45%) overall. There was no exposure group-by-word type interaction (β = .08, SE 

= .08, p = .28). The category identification results taken as a whole indicate that the experimental 

group tended to interpret more words (both /d/-final and /t/-final) as ending in /d/ than the control 

group, suggesting a boundary shift towards the /t/-end along a /d/-/t/ continuum.  

 

Fig.2. Mean percent /d/ responses for the 2AFC category identification task in Experiment 2 as a function 

of exposure group and word type. Error bars indicate standard errors of the mean. 

 

Discussion 

Experiment 2 replicated previous findings on rapid perceptual learning of ambiguous 

sounds (Norris et al., 2003; Kraljic & Samuel, 2005; Reinsich & Holt, 2014): there was an 

increase in identification of noncanoncial sounds as members of the trained category. We did not 

observe any group-by-word type interaction, suggesting that the learning is likely driven by the 

absorption of ambiguous tokens near the boundary into the /d/ category, rather than by enhanced 

discrimination between /d/ and /t/. This pattern did not emerge in previous studies due to the fact 

that when listeners were exposed to the ambiguous sounds, they were also hearing clear tokens 
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from the contrastive category (see also Sumner, 2011). In that type of acoustic environment, 

broadening of one category does not compromise the identification accuracy of words containing 

tokens from another category since there is no acoustic overlap between categories. In natural 

foreign accents, however, between-category acoustic overlap is often observed for both vowels 

(e.g., Wade et al., 2007; Sidaras et al., 2009) and consonants (e.g., Warner et al., 2004). If all 

perceptual learning does is to incorporate ambiguous sounds into one category without 

instigating changes with respect to perceived goodness of the accented tokens in general, then a 

great amount of difficulty may persist with native listeners when they encounter tokens of 

confusable categories. In Experiment 3, I address this issue directly by asking whether foreign-

accented tokens become better instances of the intended category following perceptual learning.  

Experiment 3 

The objective of Experiment 3 was to investigate potential learning consequences on the 

internal structure of phonetic categories. Perceived goodness of accented tokens was assessed by 

a goodness rating task, which tapped into listeners’ sensitivity to phonetic detail in a more graded 

way than categorical membership. Even for unambiguous tokens, the perceived goodness can be 

adjusted due to contextual influences such as speaking rate (Volaitis & Miller, 1992; Allen & 

Miller, 2001). I asked if perceptual learning of a non-native accent would have similar influences 

on the phonetic structure by changing the way in which fine-grained phonetic variation in 

foreign-accented tokens are perceived by native listeners. If so, I expected to see group 

differences with respect to goodness ratings of accented tokens as exemplars of the intended 

phonetic categories. 

Methods 
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Participants. Forty-eight monolingual English speakers with no hearing or visual 

problems were recruited from the University of Connecticut community. Participants were naïve 

to the Mandarin language and had no or minimal previous exposure to Mandarin-accented 

English. Twenty-four participants appeared in the experimental and the control conditions, 

respectively.   

Speech materials. The exposure and test stimuli were identical to those used in 

Experiment 2.  

Procedure. The exposure phase was identical to that used in Experiments 1 and 2.  

Following the exposure phase, ten practice trials were given to each participant before the start of 

the test phase. The practice helped to ensure that listeners were rating goodness of the final 

consonant of each item, not the degree of accentedness of the whole word. During the practice, 

ten monosyllabic words ending in /m/ were randomly presented3 and listeners were asked to 

focus on the final sound of each auditory item and rated its goodness as /m/. They were asked to 

rate each item on a scale from 1 to 7, with 7 being a very good exemplar of the category and 1 

being a very poor exemplar. We reasoned that despite of the strong accent in all words, if a 

participant gave high ratings for words ending in clear /m/ but low rating for words which were 

perceived to end in /n/, then he/she understood the task. An experimenter was present during this 

practice phase to make sure that participants followed the procedure. 

During the test phase, the test stimuli were divided into two sets and were administered in 

two blocks. The words from a minimal pair did not occur within the same block. In order to 

examine how exposure to /d/-final words influenced perceived goodness of /d/ tokens as 

                                                 

3 The words were recorded by the test speaker and administered to a separate group of native-English listeners in a 

word transcription task. Results from the transcription task indicated that the coda consonant ranged from being a 

very clear /m/ (good examples of /m/) to a clear /n/ (bad examples of /m/); all words were also strongly-accented as 

a whole (i.e., contained strongly-accented vowels or word-initial consonants).  
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members of the /d/ category, participants were asked to rate the final consonant of each item in 

terms of how good it was as an exemplar of a /d/ by pressing an appropriately labeled button. In 

order to examine potential influences from the critical exposure on the representation of phonetic 

category on the other end of the voicing continuum, we also asked listeners to rate each item for 

goodness as /t/. Goodness as /d/ served as the primary dependent measure, we consider results 

from goodness as /t/ a source to provide complementary information about the perceptual 

changes along the entire voicing continuum. Participants rated goodness as /d/ in one block and 

goodness as /t/ in another block. The allocation of test sets and the order of blocks were 

counterbalanced across participants, such that half the participants rated goodness as /d/ first. 

Each block consisted of 30 /d/-final words and 30 /t/-final words; within each block, items were 

presented in a random order. Participants were asked to rate each item on a scale from 1 to 7, 

with 7 being a very good example of the category and 1 being a very poor example. Auditory 

items were presented with an inter-trial interval of 2000 ms. No feedback was provided. 

Results 

To accommodate individual variability and potential rating bias (Schütze & Sprouse, 

2011) and to understand the relative rating of each item, participants’ raw ratings were 

transformed into standardized z-scores that were used in subsequent analyses. Fig.3 presents the 

mean standardized ratings for each task as a function of exposure condition. Note that for each 

rating task (goodness as /d/ and goodness as /t/, separately), this within-subjects standardization 

procedure makes each participant’s mean rating across all test items zero; the mean rating for /t/-

final words is necessarily the additive inverse of that for /d/-final words. Thus, I only present the 

mean rating for /d/-final words in the goodness-as-/d/ task and mean rating for /t/-final words in 

the goodness-as-/t/ task. However, in the statistical analysis as reported below, both /d/-final 
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words and /t/-final words were included for each task because all the reported effects were taken 

as random at the item level.  

Goodness as /d/. A linear mixed-effects model was fitted with exposure group, word 

type and group-by-word type interaction as fixed effects. By-item intercepts were included as 

random effects. A contrast coding scheme was used for independent variables as in Experiment 

2. Goodness ratings as /d/ revealed a main effect of word type (β = .42, SE = .04, p < .0001), 

indicating that /d/-final words received higher ratings than /t/-final words. There was no effect of 

exposure group (p = .99). The learning effect took the form of an interaction between exposure 

group and word type (β = .05, SE = .01, p < .001): relative to the control group, the experimental 

group rated /d/-final words as better examples of /d/ and rated /t/-final words as poorer examples 

of /d/. 

Goodness as /t/. A similar linear mixed-effects model was fitted to analyze goodness 

ratings as /t/. /t/-final words received higher ratings than /d/-final words (β = -.48, SE = .05, p < 

.0001). There was no group effect (p = .99). Again, the learning effect was revealed in the group-

by-word type interaction (β = -.04, SE = .01, p = .005): relative to the control group, the 

experimental group rated /t/-final words as better examples of /t/ and rated /d/-final words as 

poorer examples of /t/.  
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Fig.3. Mean goodness ratings (z-transformed) of each word type (/d/-final words and /t/-final words) as 

exemplars of (a) /d/ category and (b) /t/category as a function of each exposure group in Experiment 3. Error bars 

indicate standard errors of the mean.  

 

Discussion 

In both goodness rating tasks, the experimental group (relative to the control group) 

assigned higher ratings to words in accordance with the intended word type. Crucially, although 

the experimental group was exposed to /d/-final words only, the exposure affected their judgment 

of speech tokens as exemplars of the /t/ category: /t/-final words were perceived to be better /t/s 

among trained participants than untrained control participants. Note that the categorization 

results from the control group in Experiment 2 showed that our test stimuli varied over a wide 

range in their ambiguity. Some items fell unambiguously into the unintended category; some fell 

into the ambiguous niche; others were clear, albeit non-native, tokens of the intended category. If 

whatever perceptual changes following exposure were limited to the boundary region, we would 

not be likely to observe a global improvement in the perceived goodness of speech tokens as 

members of the intended category (/d/ or /t/). In fact, in Experiment 2, exposure to /d/ 

productions led to more /d/ responses to both /d/-final and /t/-final words in categorization. If 

those ambiguous tokens near the boundary that drove the change in the boundary location also 
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drove the group difference in the perceived goodness, we would observe /t/-final words would be 

rated as ‘better’ as members of the /d/ category. In contrast, in Experiment 3, the experimental 

group gave higher goodness as /t/ to /t/-final words than the control group. Consider this 

seemingly inconsistent pattern, it is possible that the /d/-tokens that drove up the report of /d/ 

responses in the identification task were those closer to the boundary region, whereas the /d/-

tokens that led to higher goodness ratings were those closer to prototypical variants of the 

phonetic category. The fact that an overall improvement of perceived goodness was found in 

aggregate across the /d/ category and that the learning effect extended to untrained phonetic 

category (/t/) suggests that listeners were not merely incorporating /d/ tokens into the intended 

segmental category (e.g., Norris et al., 2003). But rather, in concert with a phonetic boundary 

shift, listeners also adjusted the internal structure within each phonetic category for the /d/-/t/ 

contrast. 

Phonetic Adjustment: a Re-Weighting of Acoustic Cues 

Experiment 1 showed that native-English listeners adapted to Mandarin-accented /d/-final 

words. Perceptual learning effects generalized across the lexicon: novel accented words elicited 

larger lexical activation among listeners who were previously exposed to the specific phoneme 

than among control listeners. Experiment 2 and 3 together revealed that perceptual adaptation to 

the Mandarin-accented speaker had consequences for the global phonetic structure of the 

alveolar stop contrast in word-final position: it did not only lead to a broadened /d/ category 

among the experimental group, compared to control participants (Experiment 2), but also 

affected the perceived goodness of these tokens as an exemplar of relevant phonetic categories 

(/d/ and /t/; Experiment 3). Previous studies of talker-specific perceptual learning have 

emphasized that listeners alter the location of between-category boundary as a result of 
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experience with the productions of a particular speaker (e.g., Norris et al., 2003; Reinisch & Holt, 

2014). Experiment 2 replicated this finding. Note that a shift in the phonetic category boundary 

itself does not entail changes in perceived goodness of within-category tokens (Allen & Miller, 

2001). Listeners adjust the internal structure of a phonetic category only when they detect 

systematic changes in how a segment is uttered, for example, in the case of changing speaking 

rate (Miller & Volaitis, 1989), or place of articulation (Volaitis & Miller, 1992). In Experiment 3, 

I provided the first evidence that listeners do so during rapid perceptual learning of a specific 

talker’s accent.  

One interesting but somewhat unexpected result was that exposure to /d/ tokens affected 

the phonetic representation of the /t/ category. Presumably, representations of internal structure 

of the two categories could be independent from each other. Then why is there a “carryover” 

effect? To answer the question, we need to find out what perceptual dimensions are involved in 

such adjustments. Most theories of speech recognition assume that multiple cues are involved in 

speech categorization: either they are stored in fine-grained detail in memory and compared to 

incoming speech during recognition (e.g., Goldinger, 1998; Johnson, 1997; Pierrehumbert, 

2006); or alternatively, they are integrated in a multi-dimensional space into an abstract form to 

inform phoneme categorization (e.g., McClelland & Elman, 1986; Norris et al., 2000). Although 

it is implied in perceptual learning studies that listeners are sensitive to talker-specific 

distribution of acoustic cues (e.g., Kraljic & Samuel, 2006, 2007), few studies have investigated 

the specific acoustic-phonetic properties associated with learning, other than implying that 

listeners learned general information such as “this speaker produces odd /d/ tokens” (Kraljic & 

Samuel, 2006) or “lowered vowels” (Maye et al., 2008). Thus, relatively little is known about the 

exact informational source of the sound-to-category remapping process (see Reinisch, Wozny, 
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Mitterer, & Holt, 2014 for an examination of specific acoustic cues in visually-cued phonetic 

recalibration). Outside the domain of talker-related perceptual learning, studies of speech 

categorization suggest that listeners are generally sensitive to the statistical values of critical 

acoustic properties in the speech input (e.g., Clayards et al., 2008) and weight cues differentially 

as a function of their informativeness in distinguishing phonetic categories (Toscano & 

McMurray, 2010). More importantly, training with category-level feedback can shift listeners’ 

attention to more informative acoustic cues over less informative ones as they learn non-native 

phonetic contrasts (Francis, Baldwin, & Nusbaum, 2000; Francis & Nusbaum, 2002). Here I 

consider a similar mechanism that may underlie listeners’ reorganization of phonetic structure of 

/d/ and /t/ in adapting to the Mandarin-accented speaker.  

As described in Chapter 2, Mandarin-accented English differs from native accents at the 

level of acoustic cues. These characteristics were well-manifested in the current test stimuli. 

Fig.4 presents the distributional pattern of the acoustic cues: Durational differences in vowel and 

closure durations were uninformative in cueing voicing, whereas the difference in the burst 

release was striking. Not only was the final stop released for every token (both /d/ and /t/), but 

also bursts contained durational information that could be used to reliably differentiate voiceless 

from voiced tokens, with only very small overlap between the two categories. I thus 

hypothesized that adaptation to the accent, and in particular, the adjustment of internal structures 

of /d/ and /t/ categories, is achieved via an adjustment in the weighting of various acoustic cues 

for the accent. To test this hypothesis, I assessed behavioral responses in the experimental and 

control groups of Experiments 2 and 3 as a function of the acoustic properties of the speech 

materials. 
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Fig.4. Density plots of acoustic measures (preceding vowel duration, closure duration and the length of burst and 

aspiration, respectively) across all 60 minimal pairs (/d/-final vs. /t/-final words) used in the test phase of 

Experiment 2 and 3. Vertical lines show the mean value for each word type. 

Mixed-effects regression models were fitted to predict the categorization and goodness 

judgment responses by including exposure group and the three temporal measures (duration of 

vowel, closure and burst) as well as their interactions (between exposure group and each acoustic 

measure) as predictors. Subjects and items were considered random effects. Predictors were 

standardized before they were entered into the regression model. The predictive power of the 

acoustic cues reveals how informative they are (i.e., the perceptual weighting) in determining 

phonetic membership and category typicality; the interaction with exposure group reveals 

changes, if any, in the relative weighting as a result of exposure to critical words. I present the 

regression results for the category identification and goodness ratings separately (Table 2).  

Category Identification (Experiment 2) 

There was a main effect of exposure group, with the experimental group reporting more 

/d/s throughout the acoustic continuum (p < .05). The main effects of all three measures were 

significant: vowel duration, p < .05; closure, p < .001; burst, p <.0001. Although none of the 

interaction terms were statistically significant, there was a trend (p = .10) for the experimental 

group to rely more on the burst in making categorization decisions than the control group.  
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Table 2. Results across Experiments 2 and 3: estimated probability of /d/ responses (Experiment 2) and 

goodness of /d/ and /t/ tokens (Experiment 3) as a function of temporal acoustic cues. Numbers in 

parentheses represent standard errors. 

 
Experiment 2 Experiment 3 

 

Probability of /d/ 

responses 
Goodness as /d/ Goodness as /t/ 

Predictor 
Log 

Coefficient 
p value Coefficient p value Coefficient p value 

Intercept - 0.08 (0.16) .63 -0.002 (0.04) .96 -0.002 (0.05) .97 

Group 0.21 (0.09) .02* -5E05 (0.01) .99 -1E04 (0.01) .99 

Vowel 0.29 (0.14) .03* 0.09 (0.04) <.05* -0.05 (0.05) .35 

Closure -0.54 (0.14) <.001** -0.20 (0.04) <.0001** 0.18 (0.05) <.001** 

Burst -0.93 (0.14) <.0001** -0.42 (0.04) <.0001** 0.43 (0.05) <.0001** 

G × Vowel -0.05 (0.03) .15 -0.01 (0.02) .50 -1E04 (0.01) .99 

G × Closure -0.04 (0.04) .25 -0.01 (0.02) .52 -0.008 (0.01) .59 

G × Burst -0.06 (0.04) .10 -0.03 (0.01) .05* 0.03 (0.01) .01* 

 

Goodness Rating (Experiment 3) 

Goodness as /d/. Both closure and burst information predicted goodness rating as /d/ (ps 

< .0001); the main effect of vowel duration was also significant (p < .05). Interestingly, there 

was a significant group-by-burst interaction (p = .05); the signs of coefficients suggest that the 

experimental group relied on this acoustic property more heavily than the control group. No 

other effects were significant. 

Goodness as /t/. Both closure (p < .001) and burst information (p < .0001) predicted 

goodness rating as /t/, but the main effect of vowel duration was not significant (p = .35). As in 

the preceding analysis, there was again a significant group-by-burst interaction (p = .01), 
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indicating a heavier weighting of this acoustic dimension by the experimental group relative to 

the control group. No other effects were significant.  

Together, evidence suggested a heavier weighting of burst information by the experiment 

group across all three tasks, although goodness ratings were more sensitive than categorization 

responses in detecting changes in the cue-weighting functions. The results from the control group 

provided a gauge of initial cue use without exposure to the critical words: listeners were 

generally sensitive to multiple cues, even the ones that were not typically used for native 

contrasts (i.e., burst length in cueing word-final voicing, Hillenbrand et al., 1957). For the 

experimental group, the variation of acoustic dimensions of critical words present during 

exposure further guided their attention to the most informative cue when tested with novel 

stimuli. The group-by-burst interaction on perceived goodness clearly suggests that the internal 

structure of the phonetic categories were reorganized as a result of a re-weighting of acoustic 

parameters. As noted above, burst length potentially provides reliable information to distinguish 

voiced tokens from voiceless ones in the productions of this particular Mandarin-accented 

speaker. Increased attention towards this acoustic dimension could explain the unexpected 

adjustment in the internal structure of the /t/ category. Evidence of a shift in cue-weighting 

strategy refines and expands our understanding of the cognitive mechanism underlying the rapid 

sound-to-category remapping process: Listeners are not only capable of tracking acoustic 

distributions of a single acoustic dimension in adapting to unfamiliar pronunciations (e.g., voice 

onset time, see Sumner, 2011) but also readily re-weight their reliance on different acoustic cues 

in making phonetic decisions. This result parallels findings of cue-weighting changes in second 

language acquisition, although learning of non-native phonetic contrasts requires more training 

and occurs over longer time scale (see Francis et al., 2000). Taken together, these results 
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illustrate a highly flexible perceptual system that is context-sensitive: the informational 

integration across multiple acoustic dimensions is tailored to the particular speaker (accent) or 

language. It should be noted that since we used natural speech tokens, we did not have rigorous 

control over the acoustic cues, nor was the current study designed to warrant a precise 

calculation of cue weights. Future studies should use an orthogonal design to assess how 

categorization and goodness judgments change across one cue while holding the other cues 

constant (e.g., Holt & Lotto, 2006) or examine the relative cue-weighting when cues signal 

conflicting information (Francis et al., 2000). Investigations in this direction would further 

elucidate how adaptation to talker-related characteristics arises by integrating over multiple cues 

(even cross-modally, see Reinisch et al., 2014). 
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CHAPTER 4 THE MECHANISM OF CROSS-TALKER GENERALIZATION: 

ACOUSTIC SIMILARITY SUPPORTS GENERALIZATION TO NOVEL TALKERS 

Two domains of research have separately investigated whether listeners generalize the 

adaptation to a specific speaker to other speakers. The literature on phonetic recalibration of 

specific segments, with a focus on adaptation to artificially-created ambiguous sounds (e.g., 

Norris et al., 2003; Kraljic & Samuel, 2005, 2006, 2007), implicates a discrepancy for specific 

phoneme classes. Namely, spectrally-shifted fricatives tend to elicit talker-specific adaptation, 

whereas temporally-cued stops are found to elicit talker-independent adjustments. Researchers 

have noted that the spectral cues that are used to distinguish fricatives tend to vary more 

substantially across talkers (Newman et al., 2001), whereas the temporal cues that distinguish 

voicing stops from voiceless ones are less predictable by talker information (Allen et al., 2003). 

It is unclear what the discrepancy reflects: “bottom-up constraints” that are specific to the speech 

signal; or, “top-down expectations” (guided by long-term experience) to encode acoustic-

phonetic properties in a more talker-specific manner if talker-identity characteristics tend to be 

present in the altered segment itself (e.g., fricatives, vowels). For instance, do listeners generalize 

for stop consonants because the specific acoustic attributes (e.g., VOT) that cue phoneme 

identity were indeed highly similar across tested speakers (as in Kraljic & Samuel, 2006, 2007), 

or because their long-term experience with the native language enables them to infer that two 

speakers would likely have similar productions of stops and thus they readily applied the same 

sound-to-category mapping? Previous studies have not been able to dissociate these two 

possibilities (e.g., Kraljic & Samuel, 2007).  
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Reinisch and Holt (2014) provided support for the bottom-up similarity account: phonetic 

recalibration for fricatives was restricted to a specific speaker when a novel speaker was not 

perceptually similar in segmental productions, but generalized when the two speakers were 

similar. However, without corroborating evidence from stop consonants that shows a similar 

dissociation, we still do not know whether there is a general tendency for listeners to be more 

conservative for some kinds of phonetic adjustments. In addition, as noted in Chapter 2, bottom-

up similarity was measured by listeners’ responses in a categorization task (whether tokens were 

/s/-like or /f/-like) in Reinisch and Holt (2014). It remains an open question exactly at which type 

of sub-lexical level listeners were generalizing: phoneme category (e.g., ‘ambiguous sounds are 

/f/s’) or specific acoustic cues (e.g., ‘spectral centroid within this range denotes /f/’). Of note, 

Witteman et al. (2013) selected two speakers who both substituted the Dutch vowel /æy/ with 

German vowel /ɔɪ/, yet no immediate generalization was observed between the speakers. It is 

possible that more fine-grained acoustic differences between the two speakers hindered the 

generalization.  

This distinction also speaks to the findings from studies of intelligibility in non-native 

accents. This literature shows that on the one hand, listeners are unable or reluctant to generalize 

across talkers based on experience with a single speaker; on the other hand, exposure to a group 

of talkers promotes generalization (e.g., Bradlow & Bent, 2008; Sidaras et al., 2009), although 

not consistently (e.g., Wade et al., 2007; Clarke, 2000). A lack of phonemic and sub-phonemic 

measures in these studies makes it hard to accurately interpret the contributing sources of cross-

generalization when it occurs. Problematically, the use of different paradigms in the exploration 

of conditions for talker generalization makes it difficult to compare the generalization following 
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multi-talker exposure in intelligibility studies to the generalization between single talkers in 

studies tapping into phonetic recalibration of specific categories.  

In this chapter, I present a set of experiments examining cross-talker generalization. I 

have two specific goals. The first goal is to differentiate between a top-down expectation 

hypothesis vs. a bottom-up similarity hypothesis to account for the discrepant findings regarding 

generalization of phonetic retuning. To this end, I asked whether listeners would generalize in a 

talker-independent manner for stop consonants, which have been previously found to elicit 

talker-general adaptation in native accents (Kraljic & Samuel, 2005, 2007), when listeners 

perceive a natural foreign accent. In practice, listeners may ascribe perceived acoustic-phonetic 

variation to idiosyncratic or talker-general sources and demonstrate different generalization 

patterns accordingly. For instance, phonetic recalibration of category boundary is only observed 

when acoustic variation is attributed to speaker idiosyncrasies, but not when it is part of a 

context-conditioned dialectal feature (Kraljic, Brennan, & Samuel, 2008) or a consequence of 

incidental factors (e.g., a pen in the mouth, Kraljic, Samuel, & Brennan, 2008). If top-down 

expectations play a role in constraining talker generalization, they may be applied differently in 

presence of an unfamiliar foreign accent. The second goal is to validate the hypothesis that 

multiple-talker exposure benefits talker generalization by allowing talker-independent retuning 

of specific phonetic categories. Note that natural variation both within- and across- talkers serves 

a double role: as a cue to phoneme identity and as a cue to talker accent information. I have a 

particular interest in the interaction between bottom-up acoustic-phonetic structures and 

listeners’ perception of a shared accent (among multiple talkers) in constraining generalization.  

I used the paradigm of Experiment 1 to examine cross-talker generalization of accent 

learning in two exposure conditions: single-talker exposure and multiple-talker exposure. 
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Experiment 4 (single talker condition) investigated whether exposure to a talker’s non-native 

accent generalizes to the phoneme of interest (word-final /d/) for a different talker with the same 

accent. Experiment 5 (multiple talker condition) further tested whether listeners show 

generalization to a new talker following exposure to a group of talkers that share the same 

accent. In each experiment, I combined acoustic analysis with listeners’ behavioral performance 

as well as their subjective reports of talker similarity in order to pinpoint the mechanism that 

subserves talker generalization of phonetic recalibration. 

Experiment 4 

Previous research on native accents shows that phonetic retuning operates in a talker-

specific manner for fricatives but in a talker-independent manner for stop consonants. It is 

unclear whether the asymmetry in results for stops and fricatives was due to top-down 

expectations of the patterning of speaker specificity for stops versus fricatives, or bottom-up 

similarity/dissimilarity present in the specific speech signal, or even inherent processing 

differences for temporal versus spectral cues. In Experiment 4, I examined a different test case: 

adaptation to stop consonants in unfamiliar foreign accents. Due to first language (L1) 

influences, productions of L2 speakers contain noticeable acoustic deviations from native norms 

of the L2. Three alternative working hypotheses are developed. First, if there are processing 

differences for spectral vs. temporal cues such that listeners always encode temporal cues in a 

talker-independent manner regardless of who is talking, we would replicate talker-independent 

adaptation for stop consonants in a natural foreign accent. Second, if listeners use top-down 

expectations to constrain generalization, then we would not find generalization across talkers 

unless listeners’ explicit judgment of the situation warrants it. For example, even though listeners 

have a tendency to generalize atypically pronounced stop consonants across native-accented 
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talkers, they may refrain from generalizing when they do not have a good estimate of whether 

their prior experience applies (e.g., when noticing speakers are of unfamiliar non-native accents), 

unless they believe the speech input comes from the same person or same accent. Third, if talker-

generality of phonetic retuning for stops in previous studies is the consequence of acoustic 

similarity across talkers, then we would find evidence for talker generalization only when the 

exposure talker and test talker are acoustically similar in their productions of the critical segment 

(Kraljic & Samuel, 2006, 2007; Reinisch & Holt, 2014). Of note here, Reinisch and Holt (2014) 

reported generalization between talkers even when the talkers had perceptually different voices 

and were identified as different voices by listeners. 

The design of Experiment 4 followed Experiment 1, consisting of an exposure phase and 

a test phase. The only difference was that speech materials for the test phase were now produced 

by a novel Mandarin speaker. I asked if listeners’ prior experience with the exposure talker’s 

pronunciations of /d/-final words (e.g., overload) affects subsequent recognition of novel /d/-

final words (e.g., seed) and their voicing minimal pairs (e.g., seat) when produced by the test 

talker, by comparing the priming effects in the experimental group versus the control group. 

Improved spoken word recognition for the test talker in the experimental group would suggest 

cross-talker generalization of adjusted phonetic representation of /d/ category. Upon the 

completion of behavioral tasks, listeners were asked to identify whether they noticed a talker 

change between the two phases; if they did, they were further asked to rate the accent similarity 

of the two talkers. I integrated the results from these questions into the analysis of behavioral 

data.  

Methods  
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Participants. Fifty-two undergraduate or graduate students from University of 

Connecticut participated in this experiment. One early English-Spanish bilingual was excluded. 

Three additional participants were excluded for poor performance during the exposure phase 

(response accuracy below or at chance level). Forty-eight participants were included in the 

analyses, with equal numbers of participants in the experimental and the control group (n = 24 

each). All participants were monolingual English speakers with no hearing or visual problems. 

According to self-reports at the end of the experiment, all participants had no or minimal prior 

experience with Mandarin-accented English or the Mandarin language.  

Speech materials. Two male native-Mandarin speakers (Speaker 1 and Speaker 2) with 

equivalent intelligibility (as determined by a pilot intelligibility study) recorded speech stimuli 

for this experiment (See Appendix A for demographic information). We found evidence of 

talker-specific adaptation in Experiment 1 for Speaker 1. Here, with each exposure group, for 

half the participants, Speaker 1 served as the exposure talker and Speaker 2 was the test talker 

(Speaker 1  Speaker 2); another half of the participants heard Speaker 2 as the exposure talker, 

and Speaker 1 as the test talker (Speaker 2  Speaker 1). Thus, in each of two groups 

(experimental and control), twelve participants heard speaker 1 as the exposure talker. This 

design helped to control for any asymmetry in talker generalization originating from talker 

peculiarities. Materials were identical to those used in Experiment 1 and all words were recorded 

and digitally processed in the same procedure as in Experiment 1. 

Procedure. The experimental procedure of the exposure and test phase was identical to 

that in Experiment 1. After participating in the behavioral tasks, listeners were asked to indicate 

whether they noticed a talker change between phases. If their answer was “Yes” , they were 

further asked to rate the voice similarity and accent similarity of the speakers on a scale from 1 to 
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7, with 7 being identical and 1 being very different. Participants were specifically instructed to 

rate the accent similarity in terms of the type of accent (language community), rather than the 

strength of accentedness.  

Results 

Exposure. Response accuracy (collapsed across talkers) is presented in Table C1. Again, 

critical /d/ words were largely judged to be real words by the experimental group (M = .83, SD 

= .07). Accuracy for critical /d/ words did not differ between the two speakers, t(22) = 1.637, p 

=.11. Thus, for both speakers, we expected that their speech tokens during exposure should 

provide enough lexical information to elicit an adjustment in the phonetic representation of /d/. 

Test. Responses (4.9% of correct trials) above or below 2 SDs from the mean of each 

prime type in each exposure group were excluded from the RT analysis. Table C3 shows mean 

error rates and reaction times (RT) in the test phase. Of interest was the magnitude of priming 

(unrelated minus related) as a function of exposure group and target type (Fig.5). 

 

Fig.5. Experiment 4 test results: Speaker 1  Speaker 2 condition (left panel) and Speaker 2  Speaker 1 condition 

(right panel).  Priming of /d/-final words (RT in fair-SEED trials minus RT in seed-SEED trials) and /t/-final words 

(RT in fair-SEAT trials minus RT in seed-SEAT trials) for participants exposed to critical words (Experimental 

group) or replacement words (Control group). Error bars represent standard errors of the mean. 
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A mixed-effects model was fitted with RTs as the dependent measure. Both fixed effects 

and random effects were the same as in Experiment 1. There was a significant priming effect (β 

= -16.77, SE = 2.20, p < .0001). Meanwhile, /d/-final targets elicited slower responses than /t/-

final targets (β = 15.05, SE = 4.77, p < .01). There was no interaction between target type and 

prime type (β = -1.08, SE = 2.20, p = .62), suggesting that Mandarin-accented /d/-final word 

(e.g., seed) activated the intended word equivalently to the close phonological competitor (/t/-

final targets, e.g., seat). This was expected for Mandarin-accented /d/ productions which are 

often perceived as /t/ tokens by native-English listeners. Crucially, unlike in Experiment 1, there 

was no three-way exposure group × target type × prime type interaction (β = -1.17, SE = 2.17, p 

= .59). Thus, there was no influence of exposure group on the priming magnitude for either /d/-

final or /t/-final targets, suggesting that exposure to one speaker’s production of critical /d/ words 

did not improve recognition of /d/-final words produced by a different speaker; that is, cross-

talker generalization was not observed. This suggested that different generalization patterns for 

fricatives versus stops in past research were unlikely due to processing differences for spectral 

vs. temporal cues.  

Nevertheless, it is possible that generalization between talkers was not symmetrical such 

that exposure with one speaker transferred to another speaker but not vice versa. Such an 

asymmetry might obscure any evidence of an overall cross-talker generalization. Another mixed-

effects model was fitted, with talker condition (Speaker 1  Speaker 2 vs. Speaker 2  Speaker 

1) exposure group, target type and prime type as well as their interactions as fixed effects. No 

main effect of talker condition was found (β = .12, SE = 8.05, p = .99), and talker condition did 

not interact with prime type in any way (ps > .10). The results suggested the priming pattern was 

not affected by the specific exposure/test talker.  
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I further statistically assessed whether participants’ response patterns differed as a 

function of their reports of talker and/or accent similarity. 12 out of 24 participants in the 

experimental group identified the exposure talker and test talker as the same person; rated voice 

similarity of the two speakers by participants who perceived two voices was 3.82 (SD = 1.89; 

range = 1-6) on a scale of 1-7 (7 = same voice; 1 = very different voices). 12 out of 24 

participants in the control group identified the exposure talker and test talker as the same person; 

rated voice similarity by participants who perceived two voices was 4.58 (SD = .67; range = 3-5) 

on a scale of 1-7. Voice judgment (same speaker vs. different speakers) as a binomial factor 

(contrast coded as follows: same speaker = 1, different speakers = -1) was included into the 

mixed-effects model. The model included exposure group, target type, prime type, voice 

judgment and their interactions as fixed effects. Results revealed no main effect of voice 

judgment (β = -8.95, SE = 9.05, p = .33). Of particular interest, voice judgment did not interact 

significantly with other factors either (ps > .10). Thus, even when listeners believed that the test 

and exposure talkers were the same person, no generalization was observed.  

A similar analysis was conducted on the priming patterns with respect to individual 

participants’ accent judgment. In both groups (experimental and control), 13 out of 24 

participants identified the exposure talker and test talker as having the same accent. The average 

ratings of accent similarity by participants who perceived different accents was numerically 

higher in the control group (Experimental: M = 3.73, SD = 1.07, range = 2-5; Control: M = 4.75, 

SD = 1.22, range = 3-7) on a scale of 1-7 (7 = same accent; 1 = very different accents). A mixed-

effects model was fitted, including accent judgment as a binomial factor (same accent vs. 

different accents; contrast coded as follows: same accent = 1, different accents = -1). Again, 

There was no main effect of accent judgment (β = -5.05, SE = 8.98, p = .58). There was no 
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significant interaction between accent judgment and other factors (ps > .05), suggesting that the 

perception of accent similarity between the speakers did not affect the generalization pattern. 

 Given that even listeners who identified the talkers as having the same voice and 

listeners who grouped the talkers as speaking with the same accent did not show any sign of 

talker generalization, I suspect that a lack of generalization might be due to a lack of bottom-up 

support from acoustic cues. I conducted acoustic analyses on the critical-/d/ words produced by 

the two speakers, focusing on three temporal cues that were found to be diagnostic of voicing in 

English stops: preceding vowel duration, closure duration and the length of burst and aspiration 

of the stop (Table 3). I compared the exposure words (3-4 syllables) and test words 

(monosyllabic) separately, considering that word length substantially changes the duration of 

temporal acoustic cues (Klatt, 1976; Lehiste, 1972). Independent samples t-tests showed that the 

two speakers had significantly different production patterns for the exposure words: speaker 2 

had significantly longer vowels (t(58) = 4.428, p < .001), longer closures (t(58) = 6.450, p < 

.001) and longer bursts (t(58) = 6.263, p < .001) than speaker 1. Speaker 2 also produced the test 

words with significantly longer bursts than speaker 1, t(118) = 3.505, p < .001, whereas the 

acoustic realizations of vowels and closures showed the same trend but not significantly (ps > 

.10). Note that Speakers 1 and 2 were selected as test pairs because they were matched on overall 

intelligibility, and their productions of /d/-final words were of equivalent ambiguity (somewhat 

/t/-like) in a pre-test (see Appendix A for detail). For the critical test /d/-final words, 65% (SD = 

13) of speaker 1’s productions and 70% (SD = 6) of speaker 2 were identified as ending in /d/ in 

a 2AFC task (/d/ or /t/) in the intelligibility pilot study. To speculate, a trading relation among 

vowel duration, closure duration and burst duration could explain why the acoustic patterns 

differed between the speakers but the overall intelligibility was similar. Specifically, consider /d/ 
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tokens of speaker 2: while the relatively long duration of vowels might lead to the perception of 

a voiced token, long closure and long burst could be cues to a voiceless token. Since speech 

perception is the result of integration across multiple acoustic dimensions, the overall 

interpretation of these cues might have made speaker 2 as intelligible (or unintelligible) as 

speaker 1. Overall, the data suggests that listeners might be reluctant to generalize when there is 

acoustic misalignment between speakers. I now situate current finding in the context of past 

research and discuss our interpretation of the data in relation to alternative hypotheses of talker 

generalization in detail. 

Table 3. Mean (standard deviations) acoustic measures (in msec) by speaker, averaged across critical /d/-

final items.  

Phase 
 

Vowel Closure Burst 

Exposure Speaker 1 148 (34) 37 (18) 79 (12) 

 
Speaker 2 194 (46) 68 (19) 116 (30) 

     
Test Speaker 1 188 (34) 65 (16) 66 (13) 

 
Speaker 2 198 (38) 64 (16) 77 (23) 

 

Discussion 

In the current experiment, no difference was observed during the test phase between the 

experimental group and the control group. Despite prior exposure to a talker who produced /t/-

like /d/ words, the experimental group did not recognize critical test /d/-final words any better 

than the control group when the words were produced by a different talker with the same foreign 

accent. Moreover, for both groups, an auditory /d/-final word led to lexical competition between 

minimal pairs of /d/-/t/ words, without favoring either one. The results were in direct contrast 

with our previous finding of talker-specific learning. In Experiment 1, exposure to a Mandarin-

accented speaker elicited phonetic retuning of /d/ category such that listeners were more likely to 



61 

 

 

recognize an auditory /d/ token as /d/ than /t/. I took the current finding as evidence for an 

absence of generalization across talkers and ruled out the first hypothesis that listeners maintain a 

single sound-to-category mapping for stops across all talkers. 

The results were also in contrast with the findings of Kraljic and Samuel (2006, 2007), 

who showed that listeners generalized perceptual learning of stop consonant categories (e.g., /d/ -

/t/) between two native talkers (one male and one female). Of note, critical items for the two 

speakers in their study were acoustically close on a number of measures including closure and 

burst duration. In a computational model, Mirman, McClelland and Holt (2006) tested the 

hypothesis that talker generalization patterns were directly linked with inter-talker acoustic 

similarity of phonemically-distinctive features. Consistent with human data, when the acoustic 

similarity of critical cues was high across speakers (e.g., “burst” and “voiced” features for stops), 

simulation data showed cross-talker generalization; when the acoustic similarity was low along 

critical feature dimensions (for fricatives), there was no talker generalization. However, the 

difference between stops and fricatives were still confounded with the amount of inter-talker 

acoustic variability in this study. Solid support for the hypothesis requires additional evidence of 

double dissociation: talker generalization for fricatives when talkers are sufficiently similar and 

no generalization for stop consonants when exposure talker and test talker do not have bottom-up 

similarity for phonetically-distinctive acoustic cues. Reinisch and Holt (2014) showed support 

for the fricative portion of this dissociation: listeners generalized their experience of a female 

speaker’s ambiguous fricative productions (/f/ or /s/) to a male speaker only when the 

productions of the two speakers were perceived to be similar (as measured in their acoustic 

ambiguity between /f/ and /s/). The current results provided evidence for the second half of that 

dissociation: although listeners may generally tend to adapt to unfamiliar pronunciations of stop 
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consonants in a talker-independent way, they did not generalize experience from a Mandarin-

accented speaker’s stop consonants to a novel Mandarin-accented speaker when the acoustic 

patterns misaligned between talkers.  

Interestingly, in Reinisch and Holt (2014), generalization was observed despite the fact 

that listeners judged the two speakers to have different accents and there was clearly no 

confusion between voices. Similarly, Experiment 4 indicated that the lack of generalization was 

not affected by listeners’ explicit perception of talker voices or accents. The acoustic analysis of 

the Mandarin-accented speakers’ /d/-final words was consistent the notion of acoustic similarity 

as a constraint of cross-talker generalization: despite the finding that half the participants did not 

detect a talker change, the acoustic patterns of the critical words were very different between the 

two speakers and listeners did not generalize across speakers. With evidence across previous 

studies and the current work, I favor the third hypothesis (bottom-up similarity) over the second 

one (top-down expectations) as an account for talker generalization. 

The lack of cross-talker generalization in the current experiment aligned with findings 

from other paradigms on foreign-accented speech, which consistently reported that training on 

words spoken by one foreign-accented speaker did not improve intelligibility of other speakers 

(e.g., Bradlow & Bent, 2008; Jongman et al., 2003). Our analysis suggests that as foreign-

accented speakers transfer their L1 phonology to the target L2, the realization of specific 

phonemes could be inconsistent across speakers; such inconsistence might have constrained 

listeners from generalizing across talkers in previous studies. Put simply, while speakers of 

Mandarin may share the same general accent in English, the way this accent is manifested can 

vary significantly across segments. Moreover, when productions of the specific phonemes are 

acoustically dissimilar, listeners are unwilling to apply their belief that the talker is the same at 
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exposure and test, or that the talker shares the same accent to generalize what they have learned 

about /d/ to this new talker. Similarly, we can imagine that in other situations where listeners 

may have more accent knowledge (for instance, given sentence-level stimuli, Bradlow & Bent, 

2008), such knowledge itself is not sufficient to override a bottom-up mismatch. 

Based on our data, it is fair to say that the perceptual system operates conservatively to 

the extent that listeners do not generalize what they learn from one speaker to another, at least 

when the bottom-up acoustic cues do not support generalization. This leads to a question why 

multiple-talker exposure has been shown to lead to cross-talker generalization in some situations 

(e.g., Sidaras et al., 2009). Experiment 5A aims to provide some answers to this question. 

Experiment 5A 

While Experiment 4 showed a lack of generalization of phonetic learning from one talker 

to a new talker, evidence exists that listeners generalize from multiple talkers to one or more 

novel talkers (Bradlow & Bent, 2008; Sidaras et al., 2009). This evidence is taken to show that 

listeners can extract systematic information across multiple talkers to overcome talker-specific 

variation and make general adjustments transferrable to new members with the same accent. The 

presence of multiple talkers may reveal more information about a shared accent than when there 

is only a single exposure talker. I refer this as the “extraction” hypothesis. While it seems like a 

very plausible account, it is worth considering why listeners sometimes do not generalize from a 

group of talkers to new talkers. Highly comparable to the design of Sidaras et al. (2009), Wade et 

al. (2007) also trained native-English listeners with a group of Spanish-accented speakers over 

several days in word transcription tasks. Yet in this study, improvement of recognition was 

restricted to trained speakers. Acoustic analysis revealed high acoustic variability of the vowel 

inventories both within- and across-talkers. The researchers pointed out that this high variability 
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in non-native tokens was an obstacle to accent adaptation. This raises the question whether 

naturally-produced foreign accents can really provide listeners “systematic variability” that 

allows them to extract acoustic-phonetic structure at an accent (talker-independent) level.  

In Experiment 5A, I set out to provide a more rigorous test of the extraction hypothesis. 

The same exposure-test paradigm as in Experiment 1 was employed. The only change was that 

words in each exposure condition were spoken by five different Mandarin-accented talkers 

instead of a single talker. A novel Mandarin-accented talker served as the test talker. Notably, 

there are a few differences between the design of previous research and the current study. First, 

instead of a word transcription task, I used the perceptual learning paradigm to track changes in 

the representation of a single phonetic category (/d/ in word-final position). At test, the cross-

modal priming task allowed us to compare the relative activation of target words and 

phonological competitors. As noted in the introduction, in transcription tasks, listeners merely 

had to choose a word from the mental lexicon that provide the best match to the speech signal. 

For instance, if listeners heard [trIt] (“trit”, a nonword) while the intended word was “treat” 

([trit]), their lexical knowledge could help them to correct the non-native pronunciation and they 

would report the intended word. In the cross-modal priming task, however, an initial 

misperception would result in an increase of reaction time. In addition, no other phonemes 

confusable with the critical phoneme were presented in the speech stimuli throughout the 

experiment. In this way, if any generalization effects were found, we could be sure that improved 

word recognition is due to enhanced representation of the specific segment. Second, I collected 

subjective reports from participants in order to gauge whether the accents of talkers were indeed 

perceptually similar to the listeners. Both participants’ explicit ratings and acoustic patterns of 

the critical words were taken into account when discussing results on generalization patterns. 
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Third, similar to Experiment 4, I created two pairings of exposure-test talkers to make sure that if 

we observe generalization from a group of talkers to a novel talker, it is not due to factors 

incidental to the test talker.  

To make it a testable, I elaborate the extraction hypothesis into two scenarios. If cross-

talker generalization reflects active abstraction across talkers guided by top-down expectations, 

then listeners must be aware at some level of the shared accent among talkers in the multiple-

talker exposure conditions. In reality, top-down expectations could come from visual information 

of talker identity, or attention to other details that are not intrinsic to the specific segments (e.g., 

atypical stress patterns), among many others. In this case, we would see supporting evidence 

from participants’ reports on accent similarity across talkers. It is an open question whether 

listeners have such awareness of accent type. Relevant to this question, Skoruppa & Peperkamp 

(2011) tested French listeners’ adaptation to an artificially-created novel dialect of the native 

language by altering the vowel pronunciations (see also Maye et al., 2008). Their results 

indicated that listeners had explicit knowledge of the dialectal context where the utilization of 

shifted phonetic categories was appropriate. Other studies have shown that listeners are sensitive 

to difference in speakers’ dialects and track them separately (Trude & Brown-Schmidt, 2012). 

Likewise, it is possible that as listeners are exposed to an unfamiliar foreign accent, they not only 

make online adjustments for specific segments, they also build up a representation of what the 

accent sounds like. The latter type of learning would provide listeners a basis to infer whether 

talkers are similar and help to constrain generalization when new talkers are encountered. A 

second possibility is that talker generalization is driven by bottom-up similarity (of the segment) 

among talkers, specifically by retuning listeners’ attention to particular aspects of the segmental 

productions (for instance, certain regions in the perceptual space or specific acoustic dimensions) 
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that are stable across talkers. In this case, listeners’ explicit awareness of a similar accent is not 

necessary. However, it is crucial that talkers show commonalities along acoustic cues that are 

distinctive for specific phonemes. If this is the case, we would see supporting evidence from the 

acoustic analysis of critical words. 

Meanwhile, an alternative possibility should be noted. It is that previous findings of 

talker generalization in intelligibility studies might be accounted for by a general relaxation in 

the mapping from nonstandard speech signals to lexical representations without the mediation of 

an altered phonetic representation. Listeners are shown to be more tolerant of acoustic 

mismatches when speech tokens deviate from canonical forms and accept phonologically similar 

words as speech targets (Brouwer et al., 2012; McQueen & Huettig, 2012). A general relaxation 

may also account for the finding of Baese-Berk et al. (2013) showing that training with a group 

of foreign-accented speakers with various accents improved word recognition for an untrained 

accent (see discussion of Baese-Berk et al., 2013 for other explanations). I deem this “general 

relaxation” hypothesis unlikely given convincing data from past research and results from 

Experiment 1 that listeners engage in phonetic retuning to accommodate talker-specific 

unfamiliar pronunciations. However, if the “general relaxation” hypothesis is true, listeners 

should show increased activation for both target words (/d/-final words) and their phonological 

competitors (/t/-final words) upon hearing the critical /d/-final words.  

Methods 

Participants. Fifty-five monolingual English speakers with no hearing or visual 

problems were recruited from the University of Connecticut community. One early English-

Italian bilingual was excluded. Six participants were excluded for poor performance in the 

exposure phase (response accuracy below or at chance level) or misunderstanding the test task. 
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Forty-eight participants were included in the following analyses, with equal numbers of 

participants in the experimental and the control condition.  

Speech materials. In addition to the two native-Mandarin test speakers, four male 

Mandarin speakers (speakers 3-6) were selected from a previously recorded pool. All speakers 

were late L2 learners of English. A pilot intelligibility study suggested variability across 

speakers, with the two test talkers in Experiment 4 in the medium range (Appendix A). These 

two speakers again alternately served as test talkers in Experiment 5A. Two talker conditions 

were constructed: half participants were exposed to speakers 2, 3, 4, 5, and 6 and were tested 

with speaker 1 (Multi1  Speaker 1); the other half of participants were exposed to speakers 1, 

3, 4, 5, and 6 and were tested with speaker 2 (Multi 2  Speaker 2). The exposure list was 

identical to that used in Experiment 1; the only change was that words in each exposure group 

were spoken by five different talkers with the number of items evenly divided between talkers. A 

pilot intelligibility study ensured that the overall ambiguity of critical /d/-final words during 

exposure was equated to that in Experiment 1. Recording and digital processing of all speech 

stimuli were completed following the same procedure as that in Experiment 1. 

Procedure. The procedure was identical to that of Experiment 1. Following the exposure 

and test phase, listeners were asked to a) report the number of speakers in each phase; b) 

categorically indicate whether the accents of speakers (between exposure and test phase) were 

the same or not; c) rate the accent similarity between exposure talkers and test talkers on a scale 

of 1-7; d) guess accent type of the talkers if possible. 

Results 

Exposure. Data were collapsed across exposure talkers and are presented in Table C1. 

Response accuracy indicated that critical /d/-final words were largely judged to be real words by 
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the exposure group (M = .78, SD = .08). Accuracy for critical /d/ words did not differ between 

Multi 1 and Multi 2 speaker groups, t(22) = 1.410, p = .17. 

Test. Table C3 shows mean error rates and RTs of correct responses in the test phase. 

Responses (5.3% of correct trials) above or below 2 SDs from the mean of each prime type in 

each exposure group were excluded from the RT analysis. A mixed-effects model was fitted on 

RTs of correct trials as in Experiment 1. There was a significant main effect of prime type (β = -

16.55, SE = 2.17, p < .0001) and a main effect of target type (β = 10.70, SE = 4.40, p < .05). 

There was a significant interaction between target type and prime type (β = -5.55, SE = 2.16, p < 

.05), driven by a larger priming size for /d/-final words (41ms) than /t/-final words (22ms). Thus, 

accented /d/-final words were a better match to the intended lexical candidates (/d/-final targets, 

e.g., seed) than to phonologically similar competitors (/t/-final targets, e.g., seat). Note that in 

Experiment 4, the same test talkers were used and there was no difference between priming 

effects for /d/- vs. /t/- final targets. The larger priming sizes for /d/-final words here suggested 

some learning of the accent with respect to acoustic-phonetic variation of the /d/ category, 

instead of a general looser criterion in mapping sounds to words. 

However, although the priming size for /d/-final targets was numerically larger in the 

experimental group than in the control group, the three-way exposure group × target type × 

prime type interaction was not significant (β = -1.53, SE = 2.05, p = .46). That is, priming 

patterns as a function of target type did not differ by exposure group (experimental vs. control). 

It was not expected the control participants to show any learning for /d/ tokens since they were 

not exposed to the critical sounds before test. I suspect that this surprising result was driven by 

different response patterns to the two test talkers. For instance, a lack of generalization to one of 
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the test talkers might have obscured an interaction. Or alternatively, if the result was meaningful, 

we wanted to know whether the learning effects held for both test talkers. 

 

 

Fig.6. Experiment 5A test results: Multi 1  Speaker 1 condition (left panel) and Multi 2  Speaker 2 condition 

(right panel). Priming of /d/-final words (RT in fair-SEED trials minus RT in seed-SEED trials) and /t/-final words 

(RT in fair-SEAT trials minus RT in seed-SEAT trials) for participants exposed to critical words (Experimental 

group) or replacement words (Control group). Error bars represent standard errors of the mean. 

Again, a mixed-effects model was fitted with talker condition (Multi 1  Speaker 1 vs. 

Multi 2  Speaker 2), exposure group, target type, prime type and their interactions as fixed 

effects. Priming effects are shown in Fig.6, presented separately by test talker. Crucially, there 

was a significant four-way talker condition × target type × prime type × exposure group 

interaction (β = -5.63, SE = 2.05, p < .01), suggesting that the priming pattern was affected by 

the specific exposure-test speaker pair. Additional mixed-effects models were fitted for each 

talker condition separately. In each model, exposure group, target type and prime type as well as 

their interactions were fixed effects. The structure of random effects remained the same. For 

Multi 1  Speaker 1 condition, there was a significant three-way exposure group × target type × 

prime type interaction (β = -6.73, SE = 2.87, p < .05). Follow-up analyses for -/d/ words revealed 

a significant priming effect (β = -23.85, SE = 4.59, p < .001), modulated by a significant 
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exposure group × prime type interaction (β = 9.87, SE = 4.38, p < .05). By-group analysis further 

indicated a significant priming effect for -/d/ words in the experimental group (β = -32.93, SE = 

6.70, p < .0001), but not in the control group (β = -11.38, SE = 6.41, p = .08). For /t/-final words, 

there was a significant priming effect (β = -11.65, SE = 4.61, p < .05) but no interaction between 

exposure group and prime type (β = -3.46, SE = 3.74, p = .35), suggesting equivalent priming 

magnitudes between groups. This result was highly comparable to effects we have found for 

talker-specific adaptation in Experiment 1.  

However, for Multi 2  Speaker 2 condition, despite a significant priming effect (β = -

15.97, SE = 3.19, p < .0001), there was no three-way exposure group × target type × prime type 

interaction (β = 4.11, SE = 2.82, p = .14). No other effects were significant at the .05 level. Thus, 

exposure to multiple talkers seemed to have enhanced word recognition for words produced by 

speaker 1 but somehow not for words produced by speaker 2.  

In order to understand why listeners generalized to speaker 1 only, we analyzed 

participants’ answers to the accent similarity questions. When asked to identify the number of 

talkers during exposure and test, all listeners indicated that they heard multiple talkers during 

exposure (answers ranging from two to seven). Interestingly, 28 out of 48 participants thought 

there was more than one talker at test too. When asked to guess the type of accents, only three 

participants (one from the experimental group and two from the control group) identified all 

talkers as having a Mandarin accent; other listeners were generally not confident and their 

answers included all kinds of accents (e.g., Asian, Spanish, Middle East, European and native 

American), suggesting they were unfamiliar with the Mandarin accent. Of particular interest is 

whether listeners perceived the exposure talkers and test talkers to be similar. Although we asked 

participants to indicate whether the talkers had the same accent or different accents, many 
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participants indicated that they were similar but different; and some expressed low confidence 

about their answers. We thus asked everyone to give a rating on a scale of 1-7 (regardless 

whether they identified the same accent or not). In Multi 1  Speaker 1 condition, eight 

participants reported “different accents”, ten participants reported “similar accents”, and six 

participants reported “same accent”; in Multi 2  Speaker 2 condition, ten participants reported 

“different accents”, thirteen participants reported “similar accents”, and only one participant 

identified them as having the same accent. Likert ratings of accent similarity on a scale of 1-7 

yielded more gradient results. Speaker 1 as the test talker (M = 4.85, SD = 1.16) was rated as 

more similar to exposure talkers as a group than speaker 2 (M = 4.50, SD = 1.41), although 

Mann-Whitney U test indicated that the difference between speakers was not significant (p = .34). 

The subjective reports on accent similarity suggested two things: on the one hand, overall 

listeners did not perceive the exposure and test talkers to have the same accent, thus it was 

unlikely that listeners generalized to speaker 1 due to an active strategy to extract commonalities 

across talkers; on the other hand, speaker 1 was indeed perceptually more similar to the other 

talkers than speaker 2. It is possible that listeners developed some tacit knowledge about the 

acoustic properties of /d/ following exposure to a group of talkers, and such knowledge was more 

applicable to the productions of speaker 1 due to acoustic similarity. 

Analyses were conducted on three acoustic cues of critical /d/ words to see if acoustic 

similarity could provide a more clear account of the differential generalization pattern. As noted 

in Experiment 4, exposure words had more syllables than test words and it was not fair to 

compare temporal cues (duration of preceding vowel, closure and burst) between exposure words 

and test words. Because test words were only available for speaker 1 and speaker 2, I reasoned 

that a comparison between the exposure words produced by exposure talkers as a group and 



72 

 

 

exposure words by speaker 1 and 2 (used in Experiment 1) would help us to gauge the degree of 

similarity between the exposure and test talkers here. I compared the production patterns of 

exposure words between exposure talkers as a group (Multi 1 and Multi 2) and the test talkers 

(Speaker1 and Speaker 2), separately for each exposure-test pair. Independent samples t-tests 

indicated that Speaker 1 produced critical words with significantly shorter closure than speakers 

in Multi 1 group did (t(58) = 4.169, p < .001), but they had similar patterns for vowel (t(58) = 

1.145, p = .26) and burst (t(58) = .11, p = .91). In contrast, Speaker 2 had significantly longer 

duration for all three acoustic cues than speakers in Multi 2: vowels (t(58) = 3.755, p < .001), 

closures (t(58) = 2.789, p < .001), bursts (t(58) = 5.877, p < .001). Thus, the acoustic measures 

paralleled the explicit ratings given by the participants: Speaker 1 was indeed more acoustically 

similar to the exposure talkers as a group4.  

Discussion 

Our results indicated that multiple-talker exposure can allow listeners to retune the 

sound-to-category mapping for word-final /d/ in a talker-independent way; and when it occurs, 

the phonetic retuning leads to improved word recognition for a novel talker. However, such 

cross-talker generalization was constrained by the inter-talker similarity in the productions of the 

critical segment. The results provided some evidence that despite a shared native language (L1), 

non-native speakers may differ in the realizations of some phoneme contrasts in L2; such inter-

                                                 

4 As an exploratory analysis, we examined whether speaker 1 aligned with any of the five exposure speakers in 

particular. Pairwise comparisons were conducted to compare exposure words produced by speaker 1 to those 

produced by each exposure speaker. The only significant differences were that speaker 1 had longer bursts than 

speaker 3 (p < .01) and shorter bursts than speaker 5 (p < .05); he also had shorter closures than speaker 6 (p < .05). 

Of interest, speaker 1 had remarkably similar patterns to speaker 4, with no difference between them on any of the 

three acoustic measures (ps > .50). In contrast, speaker 2 differed from every exposure speaker in Multi 2 group on 

at least two out of the three measures, significantly at the .05 level. 
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talker misalignment in the distribution of acoustic properties may hinder generalization. Talker 

dissimilarity may explain why in some cases, training with multiple talkers of the same accent 

improved speech intelligibility of trained talkers only but did not generalize to novel talkers 

(Wade et al., 2007; Clarke, 2000), whereas other evidence shows generalization from a set of 

talkers to a new talker (e.g., Bradlow & Bent 2008).  

Of note, a pilot intelligibility study showed that the exposure speakers as a group were of 

equivalent intelligibility to the test speakers and all speakers produced /t/-like /d/ words to some 

extent. The lack of generalization from five Mandarin-accented speakers to Speaker 2 implies 

that listeners did not merely perceive the Mandarin-accented speakers as people who “produced 

/d/ like /t/s”. Rather, they were sensitive to the fine-grained phonetic detail in foreign-accented 

speech. Listeners’ subjective reports of accent similarity were consistent with acoustic measures. 

Acoustic analyses revealed that the temporal patterns of acoustic cues in Speaker 2’s productions 

were different from other exposure talkers as a group and as individuals. In Experiment 1, 

native-English listeners adapted to Speaker 1 and showed a re-weighting of acoustic cues, 

favoring burst length over vocalic cues as an informative cue to Mandarin-accented voicing 

tokens. To speculate, listeners might have engaged in the same kind of perceptual adjustments 

for the exposure talkers in the current experiment. When perceiving misalignment along specific 

acoustic dimensions, they may implicitly perceive the tokens from Speaker 2 as dissimilar to the 

exposure talkers and therefore do not generalize from exposure to test. Cross-talker 

generalization appears to be an implicit process because both Experiment 4 and Experiment 5A 

showed that listeners’ explicit judgment of the similarity voices or accents did not allow listeners 

to generalize when the acoustic information was dissimilar (Experiment 4), nor did a judgment 

of accent dissimilarity extinguish generalization when acoustic information supported it. In 
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Experiment 5A, listeners’ reports indicated poor awareness of a shared accent among talkers, and 

generalization was found in the Multi 1  Speaker1 condition, regardless of whether individual 

participants had identified the talkers’ accent as “same” or “different”.  

Experiment 5B 

Experiment 5A showed that listeners learned about the acoustic-phonetic structure of /d/ 

tokens in mixed speech coming from five Mandarin-accented speakers (Multi 1) and generalized 

the learning to a novel Mandarin speaker (Speaker 1). In Experiment 1, talker-specific perceptual 

learning was found for Speaker 1 (Speaker 1  Speaker 1). Of interest is whether the perceptual 

benefits originated from multiple-talker exposure in Experiment 5A was comparable to talker-

specific exposure. In Experiment 1, twenty-four monolingual English participants were included 

for each exposure group (experimental vs. control). Comparison of the two studies necessitated 

the addition of more participants in the MultiSpeaker1 condition to match the sample size with 

Speaker 1  Speaker 1 condition in Experiment 1 in order to assess the effects of learning from 

a specific talker versus learning from multiple talkers. 

Methods 

Participants. Twenty-four additional participants participated in the experiment. 

Including those participants from Experiment 5A who were tested on speaker 1 (n = 24), a total 

of forty-eight participants were included in the following analyses, with equal numbers of 

participants in the experimental and the control condition.  

Materials and procedure. All materials and procedures were identical to those of the 

Multi 1  Speaker 1 condition in Experiment 5A. 

Results 
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Exposure. Response accuracy for critical /d/ words in the exposure group (M = .79, SD 

= .09) suggests that they were judged to be real words for the most part (see Table C1). 

Test. Table C3 shows mean error rates and RTs in the test phase. Priming effects are 

shown in Fig.7 (left panel). Responses (4.8% of correct trials) above or below 2 SDs from the 

mean of each prime type in each exposure group were excluded from the RT analysis. The same 

mixed-effects model analyses were conducted as in Experiment 1. There was a significant 

priming effect (β = -15.83, SE = 2.87, p < .0001). /d/-final targets elicited slower responses than 

/t/-final targets (β = 14.93, SE = 5.82, p < .05). There was a significant main effect of exposure 

group (β = -20.30, SE = 2.47, p < .001), driven by overall faster responses in the experimental 

group than the control group5. Of interest, there was a significant three-way exposure group × 

target type × prime type interaction (β = -6.01, SE = 2.23, p < .01). No other effects were 

significant at the .05 level.  

Follow-up analyses were conducted by fitting mixed-effects models for /d/-final targets 

and /t/-final targets separately, with exposure group, prime type, and their interaction as fixed 

effects. Crucially, for /d/-final targets, the priming effect was significantly larger in the 

experimental group than the control group, as revealed by an exposure group-by-prime type 

interaction (β = -9.17, SE = 3.40, p < .001). For /t/-final targets, there was no exposure group-by-

prime type interaction (β = 2.87, SE = 2.93, p = .33). I also asked whether within each exposure 

group, the priming magnitudes would differ between target types. Starting with the control group, 

there was a main priming effect (β = -12.29, SE = 3.77, p < .01) but no interaction between 

target type and prime type (β = 5.59, SE = 3.77, p = .14), suggesting that auditory –/d/ words 

primed -/d/ and -/t/ targets equally. In contrast, for the experimental group, a main priming effect 

                                                 

5 Given that analysis on filler items also showed similar group effect, this group difference is likely due to between-

subject variability. 
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(β = -19.08, SE = 3.13, p < .001) was modulated by a prime type-by-target type interaction (β = -

7.92, SE = 3.14, p < .05), driven by larger priming for “seed – SEED” type trials than for “seed – 

SEAT” types. Follow-up tests indicated that priming effects were significant for both /d/-final 

targets (β = -28.07, SE = 4.88, p < .0001) and /t/-final targets (β = -10.76, SE = 4.07, p < .05) 

within the experimental group. 

Across-experiments analysis. The perceptual learning effects as exhibited by group 

difference in priming patterns replicated the previous finding on talker-specific learning (Speaker 

1  Speaker 1, Experiment 1): prior exposure to critical /d/ words significantly increased the 

degree of match between the auditory signal of other /d/-final words and their word forms (e.g., 

seed) in the mental lexicon, making seat-like words a weaker lexical competitor to seed-like 

words and facilitated word recognition. To statistically assess whether learning resulted from 

generalization was as good as learning from the specific talker, I pooled data across studies and 

included experiment (Experiment 1: Speaker1  Speaker 1, coded as 1, and Experiment 5B: 

Multi 1  Speaker 1, coded as -1) as an independent variable into the mixed-effects model. 

Fixed effects included experiment, exposure group, target type, prime type and full-scale 

interactions between these factors. A maximal random-effects structure justified by the data was 

used. Results revealed a priming effect (β = -19.63, SE = 2.14, p < .001). There was a significant 

prime type-by-experiment interaction (β = -3.52, SE = 1.52, p < .05), with the priming effects 

being smaller overall in the current experiment. There was a main effect of target type (β = 

14.99, SE = 4.93, p < .01). There was a significant three-way exposure group × target type × 

prime type interaction (β = -4.93, SE = 1.62, p < .01), reflecting a larger priming for /d/-final 

targets than /t/-final targets in the experimental group only, as in Experiments 1 and 5B. 

However, this three-way interaction term did not further interact with experiment (β = .95, SE = 
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1.61, p = .56), indicating that the generalization pattern did not differ significantly across 

experiments.  

 

Fig.7. Test phase results across studies: multiple-talker condition (Multi 1  Speaker 1, Experiment 5B, left panel) 

and talker-specific condition (Speaker 1  Speaker 1, Experiment 1, right panel). Priming of /d/-final words (e.g., 

seed) and /t/-final words (e.g., seat) as a function of exposure group (Experimental versus Control). In both related 

priming types, /d/-final words (e.g. seed) served as auditory primes. Error bars represent standard errors of the mean. 

Discussion 

We conclude that multiple-talker exposure was as effective as talker-specific exposure in 

helping exposure participants gain an advantage over control participants and in attenuating 

lexical competition between /d/- and /t/-final minimal pairs. Bradlow and Bent (2008) trained 

participants with sentence-level speech stimuli and established a learning effect from multiple-

talker exposure as large as that from talker-specific exposure. In their study, the learning effect 

was defined as an increase in word-level recognition accuracy, measured by the number of 

keywords in sentences. We replicated their finding at the phoneme level. Note, however, despite 

that experimental participants exhibited an advantage over control participants following 

multiple-talker exposure within Experiment 5B, the overall priming was weaker following 

multiple-talker exposure (relative to talker-specific exposure). In this regard, our results also 

suggest that learning from a specific talker gave listeners the most benefit in word recognition.  
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Across experiments presented in this chapter, there were two major findings. First, talker-

specific phonetic retuning was not readily transferrable to a novel talker of the same accent. 

Exposure to a group of talkers (instead of a single talker) increased the likelihood that listeners 

could learn the accent and generalize learning to a novel accent. Second, in both cases, explicit 

knowledge of talker identity or talker accents was not the decisive factor constraining 

generalization across talkers. Rather, bottom-up similarity between exposure and test talkers had 

direct consequences on talker generalization. There are three questions we may ask about our 

results, situated in the findings of past research: Why do listeners appear to generalize experience 

from one speaker to another in some cases whereas sometimes they do not? Is there an interplay 

between top-down information about the talker situation (e.g., who is speaking, how many 

talkers, what kind of accents) and bottom-up acoustic information in guiding talker 

generalization? How do listeners move from talker-specific adaptation to general accent 

adaptation? We discuss our answers to these questions in turn. 

Why do listeners appear to generalize experience from one speaker to another in some 

cases? Previous research has yielded divided patterns with respect to talker generalization: for 

fricatives, adjustments seem to be talker-specific (Kraljic & Samuel, 2005, 2007; Eisner & 

McQueen, 2005) and listeners maintain separate sound-to-category mappings for different 

speakers. In comparison, talker adaptation for stop consonants exhibits exactly the opposite 

pattern: a single sound-to-category mapping was employed and phonetic adjustments were 

carried over to different speakers (Kraljic & Samuel, 2005, 2007). Our findings on stop 

consonants together with the findings of Reinisch and Holt (2014) on fricatives make it clear that 

the different generalization patterns for stops versus fricatives are a by-product of bottom-up 

similarity in the segmental productions. For both types of phonemes, listeners do not generalize 
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to novel talkers if the production pattern of specific phonemes from the new speaker does not 

match their experience from a prior speaker; furthermore, they will readily generalize to a 

different talker if bottom-up similarity supports it. Note that in Reinisch and Holt (2014), 

bottom-up similarity was measured by listeners’ perception of the degree of ambiguity of the 

critical segments. Our results further revealed that listeners were not merely assessing speaker 

similarity based on their overall ambiguity (as speakers were matched on this measure in 

Experiment 4), they were sensitive to fine-grained variation along multiple acoustic dimensions 

and a comparison of talker’ acoustic-phonetic space to prior talkers seemed to constrain the 

interpretation of linguistic categories in the talker’s productions.  

This leads us to the second question: does acoustic similarity tell the whole story or is 

there a role of top-down influence from listeners’ perception of the talker situation? Eisner and 

McQueen (2005) cross-spliced ambiguous fricative sounds produced by one speaker into an 

entirely new voice and observed a typical adaptation pattern for the ambiguous sounds, despite 

the fact that the new voice was perceptibly different. That is, the context of speech (or perceived 

voice) in which the critical segment was embedded did not matter. Similarly, Reinisch and Holt 

(2014) found that listeners generalized their experience with a prior accented speaker to a novel 

speaker, despite that the two speakers were identified as two individuals of different accents. In 

Experiment 4, we did not find evidence of generalization even among participants who believed 

they were listening to a single speaker the whole time. These findings mark the significance of 

bottom-up similarity in governing generalization across talkers. However, this is not to say that 

similarity between old and new speech stimuli is the sole reason whether listeners generalize or 

not. Evidently, top-down knowledge of talker identity does make a difference in phonetic 

retuning. Samuel and Kraljic (2013) manipulated listeners’ expectations of talker identity by 
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presenting visual information of a single speaker or two different speakers. While the same 

speech tokens were used, phonetic retuning for fricatives differed as a function of listeners’ 

expectations: a mix of ambiguous and unambiguous tokens denoting the same phoneme blocked 

phonetic retuning only when listeners expected them to be spoken by the same voice. Together, 

the findings are consistent with a framework in which listeners build up conservative models to 

represent talker-specific phonetic categories. Generalization is observed only when talkers are 

sufficiently similar. This raises the question: will listeners develop more talker-general 

representations as they gain more experience with a particular accent?  

We thus arrive at the third question: How do listeners move from talker-specific 

adaptation to general accent adaptation? Previous work has shown that exposure to multiple 

talkers is beneficial for accent adaptation, namely, adaptation for the specific accent independent 

of individual speakers (Bradlow & Bent, 2008; Sidaras et al., 2009). Researchers have compared 

talker-independent adaptation to foreign accents to findings from the literature on perceptual 

learning for speech. Results of Experiments 5A and 5B provided the first direct evidence that 

exposure to multiple talkers indeed elicited phonetic retuning that was generalizable within the 

accent to a novel talker. We point out that, although it was often hypothesized that distillation of 

some systematic phonetically-relevant properties across talkers led to talker-independent 

adaptation, our data suggested that “systematic properties” may not be demonstrated by all 

talkers of the accent: inter-talker variability is large in non-native speakers. Our results also 

indicated that listeners were sensitive to bottom-up similarity among talkers and used it to guide 

talker generalization. Given this, we suggest another theoretically quite different possibility that 

might also explain the current and previous findings on accent adaptation: multiple-talker 

exposure provides a larger exemplar pool (a larger sampling of acoustic-phonetic space) to 
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which novel talkers can be compared and increases the probability of encountering a similar 

talker. It is not necessary that all exposure talkers demonstrate systematicity in their productions 

and it does not require listeners to be explicitly aware of a shared accent; it requires one or more 

talkers to be sufficiently similar to the test talker. If this is the case, then in essence, multiple-

talker exposure benefits generalization as well as an appropriate exemplar speaker does in a 

single talker exposure. Of interest, an exploratory analysis (see footnote 4) did reveal that in the 

Multi 1  Speaker 1 condition where we observed generalization, the test talker (speaker 1) was 

aligned with one of the exposure talkers (speaker 4) on every acoustic measure. Thus, with 

speaker 1, listeners may not only find him similar to the acoustic properties of the exposure 

talkers in aggregate, they could also latch onto exposure speaker 4 as a comparable exemplar. 

The current experiments are unable to differentiate between the extraction hypothesis and the 

exemplar hypothesis. Future studies should test whether one “close-enough” exposure talker, 

among a set of very dissimilar talkers (different accents, for instance), would enable 

generalization to an acoustically-similar test talker, even when the test talker does not share any 

commonality with other talkers. In brief, we suggest that acoustic similarity between talkers 

explains why listeners sometimes fail to generalize across talkers and why they can benefit more 

from multiple talker exposure.  
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CHAPTER 5 THE LIMITS OF PHONETIC ADAPTATION 

In this chapter, I present two experiments that serve as case studies of talker-specific 

adaptation to foreign-accented speech. Previous research has reported successful phoneme-level 

adjustments in the face of acoustic-phonetic variation (e.g., Reinish & Holt, 2014; Eisner et al., 

2013; Witteman et al., 2013). No study has addressed the effects of speaker intelligibility and 

intra-talker variability in phonetic retuning, despite some evidence showing these factors have 

direct influences on the transcription accuracy of accented words (Wade et al., 2007; Bradlow & 

Bent, 2008). Specifically, I aim to tease the two factors apart and investigate their independent 

contribution to successful adaptation to acoustic-phonetic variation in foreign-accented speech. I 

adopted the same experimental paradigm as used in Experiment 1 and investigated talker-

specific adaptation to two different Mandarin-accented speakers. The two speakers were selected 

such that one speaker had comparable baseline intelligibility to Speaker 1 but exhibited larger 

within-category variability in the production of critical phonemes (Speaker HV, short for ‘high 

variability’, used in Experiment 6); another speaker had lower intelligibility than the original 

speaker but demonstrated very small intra-talker variability in his productions (Speaker LI, short 

for ‘low intelligibility’, used in Experiment 7). The mean intelligibility for critical test /d/-final 

words was comparable between speaker 1 (M = .65, SD = .13) and speaker HV (M = .70, SD = 

.06), with no significant difference, t(18) = 1.061, p = .30. Speaker LI (M = .22, SD = .17) had 

much lower intelligibility for /d/ tokens than Speaker 1 and HV (see Appendix A for detail). 

Standard deviation and range of the three acoustic measures (vowel duration, closure length, and 

burst length) was taken as the measures for acoustic variability (see Table 4). The measures for 

Speaker 1 are also presented for comparison. A comparison of adaptation results for these three 

speakers would illustrate whether within-talker variability and speaker intelligibility are 



83 

 

 

independently linked to the ease of foreign accent adaptation. More broadly, the results will shed 

light on the constraining factors of perceptual learning and are pertinent to the development of 

computational models for mechanisms that allow phonetic representation adjusted on a talker-

by-talker basis.  

Table 4. Three acoustic cues (preceding vowel duration, closure interval duration, and length of burst and 

aspiration) were measured for each word, presented in msec. Standard deviations and range of each 

temporal cue across words are reported as measures of within-talker variability.  

Speaker 
Standard deviations Range 

Vowel Closure Burst Vowel Closure Burst 

Exposure /d/-final words 
      

Speaker HV 46 19 30 164 83 111 

Speaker LI 31 18 14 119 84 63 

Speaker 1 34 18 12 150 92 46 

Test /d/-final words 
      

Speaker HV 38 16 23 194 64 112 

Speaker LI 23 14 7 117 92 34 

Speaker 1 34 16 13 142 90 57 

 

Experiment 6 

Methods 

Participants. Forty-eight monolingual English speakers with no hearing or visual 

problems (according to self-report) were recruited from the University of Connecticut 

community. All participants were undergraduate students who were naïve to Mandarin and had 

no or minimal previous exposure to Mandarin-accented English. Participants were randomly 

assigned to one of the two exposure groups (experimental vs. control). After excluding one 

participant for misunderstanding the test task, twenty-three experimental participants and twenty-
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four control participants were included in the following analyses.  

Speech materials. Speaker HV was Speaker 2 in Experiments 4 and 5. We use “HV” 

here to indicate his speech characteristics of interest in this experiment. Speech materials and 

recording procedure was identical to that in Experiment 1. 

Procedure. The experimental procedure was identical to that in Experiment 1. Talker-

specific perceptual learning was examined. 

Results  

Exposure. For Speaker HV, response accuracy indicated that critical /d/ words were 

largely judged to be real words by the exposure group (M = .82, SD = .15). Accuracy for other 

words is presented in Table C1. 

Test. Table C4 shows mean error rates and RTs in the test phase. RT priming effects are 

shown in Fig.8 (left panel). Responses (4.6% of correct trials) above or below 2 SDs from the 

mean of each prime type in each exposure group were excluded. A mixed-effects model was 

fitted as in Experiment 1. There was a main effect of prime type (β = -12.27, SE = 2.80, p < 

.0001) and a main effect of target type (β = 13.99, SE = 5.34, p < .05). There was an interaction 

between exposure group and target type (β = 4.55, SE = 2.12, p < .05). Crucially, there was no 

three-way interaction between target type, prime type and exposure group (β = -.34, SE = 2.12, p 

= .87). So there was no evidence of adaptation in the experimental group, compared to the 

control group. 
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Fig.8. Test phase results for Speaker HV (panel A, Experiment 6) and Speaker LI (panel B, Experiment 7): Priming 

effect (RT in unrelated priming minus RT in related priming) to /d/-final words (e.g., seed) and /t/-final words (e.g., 

seat) for participants exposed to critical words (experimental group) or replacement words (control group). In both 

related priming types, /d/-final words (e.g., seed) served as auditory primes. Error bars represent standard errors of 

the mean.  

 

Comparing Speaker HV with Speaker 1. To statistically assess whether learning 

resulted indeed differed between the two speakers, I pooled data across studies and included 

experiment (Experiment 6: Speaker HV  Speaker HV and Experiment 1: Speaker1  Speaker 

1) as an independent variable (contrast coded as follows: Experiment 1 = 1, Experiment 6 = -1). 

Fixed effects included experiment, exposure group, target type, prime type and full-scale 

interactions between these factors. A maximal random-effects structure justified by the data was 

used. Results revealed a priming effect (β = -18.13, SE = 2.10, p < .001). There was a significant 

prime type-by-experiment interaction (β = -5.29, SE = 1.50, p < .001), with the priming effects 

being smaller overall in the current experiment. There was a main effect of target type (β = 

14.27, SE = 4.90, p < .01). Unlike in Experiment 1 alone, there was now no three-way exposure 

group × target type × prime type interaction across experiments (β = -2.14, SE = 1.50, p = .15). 

However, the four-way interaction between the four independent variables was not significant 

either (β = -1.90, SE = 1.50, p = .20). Therefore, although a significant adaptation effect was not 
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observed between experiment group and control group for Speaker HV, the overall priming 

patterns did not differ for Speaker HV and Speaker 1 significantly.  

Discussion 

Given that Speaker HV had equivalent intelligibility to that of Speaker 1 in Experiment 1, 

successful talker-specific adaptation in the previous study and the lack of significant adaptation 

effects in the current study together pointed to a negative effect of intra-talker variability on 

phonetic retuning. However, /d/-final words produced by Speaker HV did elicit numerically 

greater activation for the intended targets among the experimental group than the control group, 

suggesting that the intra-talker variability may have slowed down the adaptation processing, or 

dampened adaptation effects in some participants, instead of blocking it. A lack of significant 

difference across Experiment 1 and Experiment 6 further supports this. However, given the null 

interaction effects involving “experiment,” additional studies are needed to examine whether 

more exposure tokens would ultimately help listeners to retune phonetic representation of the /d/ 

category when intra-talker variability is large.  

A question stemming from this finding is that whether listeners would have difficulty 

adapting when the overall stimulus variability is large in the speech signal, regardless of 

individual speakers. Given the successful generalization in Experiment 5B in the condition of 

multi-talker exposure (which likely increased the overall variability), this was unlikely. A 

comparison between the Multi 1  Speaker 1 in Experiment 5B and Speaker HV  Speaker 

HV in this experiment confirmed this. On the variability measures, the critical exposure words 

from Multi 1 as a group had a standard deviation of 48ms (vowel), 27ms (closure) and 33ms 

(burst) and a range of 180ms (vowel), 106ms (closure) and 146 ms (burst). All of these measures 

were larger than those of the productions of Speaker HV, indicating larger variation in Multi 1 
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group. However, it did not keep listeners from generalizing to Speaker 1. Thus, large inter-talker 

variability per se did not nullify adaptation. The current results suggest that difficulty with 

Speaker HV reflects listeners’ ability to track talker-specific acoustic patterns in adaptation. 

Experiment 7 

Methods 

Participants. Forty-four participants listened to Speaker LI, with twenty-three 

participants in the experimental group and twenty-one participants in the control group. All 

participants gave informed consent and received course credits for their participation.  

Speech materials. Speaker LI was a late L2 learner of English. Demographic 

information of speaker is presented in Appendix A. Speech materials and recording procedure 

was identical to that in Experiment 1. 

Procedure. The experimental procedure was identical to that in Experiment 1. 

Results  

Exposure. For Speaker LI, fewer of the critical words were judged to be real words by 

the experimental group (M1 = .61, SD1 = .10), relative to Speaker HV (in Experiment 6) and 

Speaker 1 (in Experiment 1). Replacement words were judged with much higher accuracy by the 

control group (M2 = .81, SD2 = .06), which was comparable to that for the other two speakers.  

Response accuracies for filler words and nonwords were not different between the two exposure 

groups (See Table C1). This suggests that the overall low accuracy in lexical decision for LI is 

mostly attributable to consistent misperception of /d/-final tokens as /t/ (e.g. ‘overload’ is 

perceived as ‘overloat’). The low accuracy for critical words was expected for Speaker LI, as he 

was selected based on his low intelligibility productions of /d/ tokens. The question was whether 
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the small amount of words that were recognized as real words were sufficient to provide lexical-

to-phonetic feedback that drives phonetic retuning. Of note, Kraljic and Samuel (2007) showed 

that as few as ten critical ambiguous items were enough to elicit a recalibration of the boundary 

between two contrastive phonetic categories (e.g., /d/ and /t/).  

Test. Table C4 shows mean error rates and RTs in the test phase. RT priming effects are 

shown in Fig.8 (presented together with Speaker HV in Experiment 6). Responses (5.0% of 

correct trials) above or below 2 SDs from the mean of each prime type in each exposure group 

were excluded. A mixed-effects model was fitted as in Experiment 6. There was a main effect of 

prime type (β = -15.47, SE = 2.88, p < .0001) and a main effect of target type (β = 26.96, SE = 

4.97, p < .0001). There was an interaction between target type and prime type (β = 9.91, SE = 

2.88, p < .001). Crucially, there was no three-way interaction between target type, prime type 

and exposure group (β = -.22, SE = 2.48, p = .93).  

To unpack the target type × prime type interaction, additional mixed-effects models were 

fitted separately for /d/-final targets and /t/-final targets. Results indicated a significant priming 

effect only for /t/-final targets (β = -25.68, SE = 3.96, p < .0001), but not for /d/-final targets (β = 

-5.37, SE = 4.20, p = .21). That is, auditory forms of “seed” successfully primed the visual 

targets of “SEAT” instead of “SEED”. Furthermore, there was no interaction between exposure 

group and prime type for either target type (ps > .80). This significant target type effect in 

priming magnitude and a lack of further interaction with exposure group suggests that, regardless 

of exposure group, when listeners heard the accented /d/-final words (e.g., ‘seed’), /t/-final word 

forms (e.g., ‘seat’) were activated to a greater extent in the mental lexicon than the intended 

words. This was expected for the control group in that the low intelligible /d/ tokens should pose 

a mismatch to the mental representation of /d/ and be mapped onto /t/ category. However, 
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surprisingly, there was no sign of any adaptation benefit observed in the experimental group. 

Given that acoustical variability of Speaker LI was comparable to Speaker 1 in Experiment 1 

(Table 4, with Speaker LI exhibiting even higher within-talker consistency than Speaker 1), the 

difference in priming patterns were likely due to the low intelligibility of Speaker LI. This 

implies that sufficiently intelligible tokens are a pre-requisite for rapid acoustic-phonetic 

adaptation.  

Comparing Speaker LI with Speaker 1. Again, to statistically assess whether learning 

resulted indeed differed between the two speakers, we pooled data across studies and included 

experiment (Experiment 7: Speaker LI  Speaker LI and Experiment 1: Speaker1  Speaker 1) 

as an independent variable (contrast coded as follows: Experiment 1 = 1, Experiment 7 = -1). 

Fixed effects included experiment, exposure group, target type, prime type and full-scale 

interactions between these factors. A maximal random-effects structure justified by the data was 

used. Results revealed a priming effect (β = -19.78, SE = 1.98, p < .001) and a significant prime 

type-by-experiment interaction (β = -3.82, SE = 1.62, p < .05), with the priming effects being 

smaller overall in the current experiment. There was a main effect of target type (β = 21.09, SE = 

4.80, p < .001). In addition, there was a significant target type × experiment interaction (β = -

6.40, SE = 1.72, p < .001) and a significant target type × prime type × experiment interaction (β 

= -7.11, SE = 1.62, p < .001), suggesting that the priming patterns for the two target types 

differed between the two experiments. This was consistent with separate analyses conducted for 

the two experiments. No other effects were significant. To unpack the interaction target type × 

prime type × experiment interaction, two additional models were fitted, separately for /d/-final 

words and /t/-final words. In each model, fixed effects included experiment, exposure group, 

prime type and their interactions. For /d/-final targets, there was a significant effect of 
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experiment-by-prime type interaction (β = -10.73, SE = 2.56, p < .001), reflecting the fact that 

identity priming for /d/-final words was larger overall (across experimental and control groups) 

following talker-specific learning for Speaker 1 in Experiment 1 than for Speaker LI. This was 

due to the extremely small priming for Speaker LI’s /d/ productions. For /t/-final words, the 

priming magnitude did not differ as a function of exposure group or experiment (ps > .10). 

Discussion 

Previous literature establishes that native listeners flexibly accommodate unfamiliar 

acoustic-phonetic variation in speech via a mechanism of phonetic retuning guided by top-down 

knowledge such as lexical information (e.g., Norris et al., 2003; Eisner et al., 2013). Phonetic 

retuning has been shown to happen over a very short time scale: a few critical words containing 

the to-be-adapted segment are sufficient to drive perceptual learning. Little is known about the 

limits of such perceptual learning. To our knowledge, the present work is the first study to 

specifically address the role of speaker intelligibility and intra-talker variability in phoneme-level 

adaptation. Our results showed that both of them independently had direct consequences for 

rapid perceptual adaptation. Low speech intelligibility likely sets limits on the amount of top-

down lexical feedback to phonetic adjustments, although we could not entirely exclude the 

possibility that lower intelligibility talkers may have larger phonetic deviations from the target 

phonemes, which may require more time to adjust to. However, this possibility itself is untested. 

We return to this in the general discussion in Chapter 6. Large intra-talker variability may have 

increased the degree of indeterminacy of mapping bottom-up acoustic signal onto speech 

categories thus slowing down adaptation, as shown in the comparison of adaptation for Speaker 

1 and Speaker HV. It is important to note that the negative impacts did not affect every listener. 

Rather, it increased variability of adaptation effects among participants. As the across-
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experiments analyses show, although there was no significant adaptation effect within 

Experiment 6, whereas there were significant effects of adaptation in Experiment 1, group 

differences in priming patterns were not significantly different between these two experiments. It 

is possible some participants were more susceptible to negative influences coming from acoustic 

variability. 

At least, we could say that high intelligibility alone is not a guarantee of adaptation 

success. Future studies should further investigate whether the observed negative influences on 

adaptation merely reflect initial delays and can be overcome by more speech input, as shown 

with adaptation to sentence-level stimuli (Bradlow & Bent, 2008), or alternatively, represent 

more categorical limitations on phonetic retuning. For instance, it might be that failing to meet 

an intelligibility threshold blocks rapid adaptation completely and only extensive training can 

improve perception of poorly intelligible accented speech (see Wade et al., 2007).  

Native phonetic retuning (e.g., Kraljic & Samuel) is largely thought to be automatic and 

rapid; in contrast, perceptual learning for non-native speech categories generally requires long 

and repetitive training (e.g., Lively, Logan, & Pisoni, 1993; Bradlow, 2008). The different 

timelines for these two types of learning suggest distinct perceptual and cognitive processes. It is 

an open question whether as foreign-accented speech becomes more non-native like and more 

variable, it would evoke the adaptation mechanism needed for non-native category acquisition 

and make the adaptation cognitively more taxing. Notwithstanding, the current results mark the 

difficulty listeners may face in adapting to natural foreign accents.  
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CHAPTER 6 GENERAL DICUSSION 

Speech perception requires listeners to extract a meaningful message out of highly 

variable and sometimes ambiguous signals. One prominent source of speech variability arises 

from talker-related characteristics. Despite considerable talker variation, past research has shown 

that listeners are very adept at accommodating changes in speaking rate (Miller & Liberman, 

1979), idiosyncratic pronunciations (e.g., Norris et al., 2003), an unfamiliar dialect (e.g., Floccia, 

Goslin, Girard & Konopczynski, 2006) or foreign accent (e.g., Clarke & Garrett, 2004). The 

exact mechanism by which adult listeners efficiently accommodate talker variability in natural 

speech is not well understood. Nor is there a consensus with respect to the nature of lexical and 

pre-lexical representations. Research on ‘perceptual learning for speech’ reveals that native 

listeners use top-down information to flexibly adjust the mapping from speech sounds to 

phonetic categories in the face of perceptual ambiguity (e.g., Norris et al., 2003; Kraljic & 

Samuel, 2005, 2006, 2007). In this dissertation, I adopted the exposure-and-test perceptual 

learning paradigm (Norris et al., 2003; McQueen et al., 2006) to study native listeners’ rapid 

adaptation to a special case of talker variation, namely foreign accents.  

Perceiving foreign-accented speech is a particularly challenging task, because it not only 

contains typical idiolectal differences, but also presents more global deviations from native 

language categories. Native listeners may have to reorganize their own representations of 

phonetic categories because accented speech does not map well onto existing inventories. 

Furthermore, inevitable influences of phonological transfer from one’s native language can make 

a non-native speaker’s phonetic categories unstable and likely increase within-talker variability 

(Wade et al., 2007). Needless to say, speakers differ in their L2 proficiency and speaker 

intelligibility can vary considerably across speakers of the same accent. Meanwhile, exactly due 
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to systematic influences from their L1, speakers with the same non-native accent do share some 

accent regularities in their speech. Given this, there are potentially strong motivations to 

generalize across non-native speakers of the same accent whereas generalizing across idiolect 

differences has less utility. Together, these characteristics make foreign-accented speech a good 

experimental case to examine how listeners form talker-specific representations during 

adaptation and how the representations may evolve and generalize across talkers. I now 

summarize my findings and situate them in the broader literature on speech perception and 

adaptation for a discussion of insights we may have from the current study. 

What is Reorganized during Talker-Specific Adaptation? 

While previous work has focused on the recalibration of phonetic boundaries, my first 

major finding is that the learning of systematic variation in accented speech fundamentally 

affects the phonetic analysis of speech samples: even unambiguous tokens were perceived as 

better exemplars of the intended categories (/d/ and /t/) after exposure to an accented speaker. 

Thus, listeners were not merely moving the phonetic boundary in order to resolve lexical 

ambiguity; in addition, they were sensitively tracking the fine-grained phonetic detail that carries 

critical segmental information. Adaptation to the accented speech reshaped the internal phonetic 

structure beyond the boundary region. This finding adds to existing literature that characterizes a 

highly adaptive native perceptual system: Listeners can exhibit a small boundary shift to 

accommodate ambiguous tokens (e.g., Norris et al., 2003), or a bigger boundary shift in the face 

of a sound that falls unambiguously into an unintended category (e.g., Sumner, 2011), or 

structural adjustment within a category as shown here. More broadly, the adaptive ability in 

updating within-category structure may enable listeners to readily adapt to unfamiliar idiolects, 

dialects or even non-native accents in which speech tokens do not cause cross-category 
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confusion. Re-organization within the category proper may be sufficient to improve online 

speech processing in these scenarios, enabling not only disambiguation of tokens near the 

category boundary, but speeding lexical access to tokens nearer the category center. Future work 

is needed to test this possibility. For example, the Spanish vowel /u/ differs acoustically from 

English /u/ (Bradlow, 1995) but can be identified as the intended category easily by native-

English listeners (e.g., Wade et al., 2007). When hearing the accented tokens, English listeners 

may update the best-exemplar region of the /u/ category during perceptual learning of Spanish-

accented /u/ sounds, leaving the phonetic boundary location unchanged.  

It is important to note that strong lexical-to-phonetic feedback is necessary for adaptation 

to occur. As shown in Experiment 7, when a speaker’s productions were not very intelligible, 

each word provided less clear lexical information to help listeners interpret the speech signal. 

Although Kraljic and Samuel (2007) demonstrated that as few as ten critical words were 

sufficient to elicit phonetic recalibration, our results show that adapting to variable tokens in 

natural non-native accents is more effortful. Meanwhile, speakers with low intelligibility may 

also demonstrate larger deviations from the native distributions and require more drastic 

adjustments (e.g., a bigger shift in the boundary location). Future research should explore 

whether large deviations itself slow adaptation, with other factors being equal (i.e., when intra-

talker variability and the amount of lexical-to-phonetic feedback are controlled). 

At Which Level does Adaptation Occur? 

The second major finding is that perceptual learning operates at a somewhat finer-grained 

level than “phonological abstraction” (Norris et al., 2003): undoubtedly listeners have abstracted 

away from the specific lexical items and generalize whatever they learn during exposure to novel 

words at test, but they also show sensitivity to the precise acoustic cues that are used in phoneme 
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specification. Listeners’ attention to acoustic-level detail is manifested in several experiments. In 

Experiment 1, acoustic analysis showed that Speaker 1’s productions of /d/ and /t/ did not 

entirely overlap; rather, the cue (burst length) he used to distinguish voicing was not an 

informative cue typically used by native listeners. Experiment 1 provided evidence that in the 

face of phonetic variation beyond native regularities, native listeners dynamically updated their 

own cue-weighting functions. Much of the discussion in perceptual learning studies has focused 

on the abstractness of pre-lexical retuning, given the evidence that learning generalizes across the 

lexicon (Norris et al., 2003; McQueen et al., 2006), across word positions (Jesse & McQueen, 

2011; Eisner et al., 2013) and across places of articulation (Kraljic & Samuel, 2006). However, 

Reinisch et al. (2014) found that native perceptual learning, at least when guided by visual 

information (a visual /aba/ or a visual /ada/), was restricted to the specific acoustic cues to which 

listeners were exposed. If the specific cues used to contrast /b/ and /d/ were not aligned between 

exposure stimuli and test stimuli, for instance, /b/ and /d/ were contrasted by formant transitions 

in exposure and were then distinguished by burst information at test, then recalibration of the 

phonetic boundary did not generalize to test stimuli. In line with Reinisch et al. (2014), our data 

highlight an important role of specific acoustic cues in reorganizing the internal structure of 

phonetic categories as listeners adapted to a specific talker.  

Results from Experiments 1 and 6 together further demonstrated that listeners were 

highly sensitive to the within-talker consistency of specific acoustic cues in cueing phoneme 

identity; high within-talker variability was observed to have negative impacts on rapid 

adaptation. This is a novel finding. In previous studies on perceptual adaptation, production 

variability is relatively neglected as a topic of investigation. Naturally, speaker intelligibility is 

often correlated with within-category variability in production (e.g., Wade et al., 2007). We 
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controlled for speaker intelligibility in Experiments 1 and 6 in order to understand the role of 

acoustic variability. The current finding is consistent with a number of findings on phoneme 

categorization in native speech. In an eye-tracking study, Clayards et al. (2008) demonstrated 

that listeners were less certain in categorizing stops (/b/ or /p/) along a VOT continuum and 

showed shallower categorization curves when within-category cue variability was large, even 

when the central tendency of acoustic distribution was held constant. This suggested that, to be 

sensitive to the variance of the distribution, listeners must have been tracking the entire 

probabilistic distribution of the phonetic category. In Clayards et al. (2008), the amount of 

within-category variability was coupled with the amount of between-category overlap. Other 

research has shown that within-category variability independently contributes to perceptual 

uncertainty and identification difficulty (Newman et al., 2001; Hazan et al., 2013). The current 

results extend this set of findings by showing that when the acoustic distributions of the speech 

signal do not match existing representations, listeners dynamically adapt by building up new cue-

category mappings for a specific talker. Crucially, the remapping not only contains information 

about where the category boundary is (as shown in studies of phonetic boundary recalibration 

and Experiment 2), and about what are good tokens (as shown in Experiment 3) but also the 

amount of distributional variation for the talker. As noted in the discussion of Experiment 6, the 

data were supportive of listeners’ tracking of talker-specific productions, rather than overall 

stimulus variability. 

When do Listeners Generalize across Talkers? 

Support for attention to acoustic detail in adaptation also comes from our finding on 

cross-talker generalization. In Experiment 4, talker generalization of phonetic retuning was 

governed by bottom-up similarity between talkers, instead of listeners’ judgments of talker 
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identity or accent type. In addition, we found that even speakers of the same non-native accent 

demonstrated different subphonemic patterns (compare Speakers 1 and 2, who were matched on 

intelligibility), although at the phoneme level, their productions are somewhat similar 

(pronouncing word-final /d/ similar to /t/). Listeners tracked fine-grained detail along multiple 

dimensions in a rich acoustic-phonetic space, and they did not generalize experience with prior 

foreign-accented speaker to another speaker of the same accent if the speakers were not 

sufficiently similar along those acoustic dimensions. Thus, acoustic similarity, which contains 

richer information than an overall degree of segmental ambiguity or speaker intelligibility, 

constrains generalization.  

Experiment 5 (5A and 5B) is the first study to investigate the benefits of multiple-talker 

exposure at pre-lexical levels. The results from the cross-modal priming task provide 

confirmatory evidence that an altered sound-to-category mapping underlies cross-talker 

generalization. The observed improvement in word recognition for a novel speaker was not due 

to a general relaxation that merely includes more competitors as a viable match to existing word 

forms. Meanwhile, our results show that even when listeners generalize prior experience to novel 

talkers, it does not necessarily mean that they have formed more abstract, talker-independent 

representations. First of all, listeners apparently did not develop an explicit awareness of a shared 

accent between accented speakers in the current work. Admittedly, the exposure phase was brief 

and listeners heard only isolated words. Compared to other intelligibility studies (Bradlow & 

Bent, 2008; Sidaras et al., 2009), listeners in Experiment 4 and 5 had fewer speech samples to 

evaluate the accent of speakers. It is possible that under more natural situations where listeners 

receive extraneous information about talkers’ accents, they could develop an explicit knowledge 
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of the accent of speakers, and use it to actively predict incoming acoustic patterns and constrain 

generalization.  

Second, our data indicated that listeners did not indiscriminately generalize to any novel 

talker of the same accent. This suggests that if some “implicit” knowledge of a shared accent 

boosts generalization across talkers, this implicit knowledge has to develop at the level of 

specific acoustic cues. Interestingly, in the Multi 1  Speaker 1 condition where we observed 

talker generalization, Speaker 1 was not only acoustically similar to the exposure speakers in 

aggregate, but also highly resembled a particular speaker (Speaker 4). As discussed in Chapter 4, 

a “generalization-by-exemplar comparison” model is logically consistent with current finding. It 

is also consistent with all previous studies that show discrepant generalization patterns for 

fricatives and stops. These studies have examined transfer of phonetic retuning from one single 

speaker to a novel speaker. In every case where generalization was observed, talkers were indeed 

acoustically similar, if acoustic information was even reported (Kraljic & Samuel, 2007; 

Reinisch & Holt, 2014). It is noteworthy that in the literature of adult second language learning, 

high variability training approaches have been widely found to be most effective in helping 

adults acquire non-native phonetic categories and generalize to stimuli outside the training set 

(see Bradlow, 2008 for a review). However, in some cases, training with an appropriate 

individual talker was as effective as multiple-talker training in promoting stimulus-general 

learning and transferred to a novel talker (Magnuson et al., 1995). The notion of exemplar-type 

generalization is consistent with this kind of data. 

Of course, it is possible that listeners may move from exemplar-type generalization to 

extraction-type generalization as they accumulate experience with acoustics of an accent. For 

instance, initial exposure to Mandarin-accented English may present information about /t/-like 
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/d/s or even specific constellation of vocalic cues and burst cues for word-final /d/. More and 

more exposure in the form of multiple talkers may draw listeners’ attention to burst length as a 

phonetically-critical cue for the critical segment such that ultimately, it does not require an exact 

acoustic match along all acoustic dimensions to elicit generalization. Listeners may infer from 

the presence of a long burst that a novel speaker has a Mandarin accent and that they should 

apply their previous experience with Mandarin-accented speakers to understand this speaker. The 

extraction-type generalization may give listeners more flexibility and greater chance to reach 

stable speech perception in a dynamically-changing multi-linguistic society.  

What are the Effects of Phonetic Reorganization on Lexical Access? 

It is evident in the present study that the foreign-accented spoken words did not function 

fully as native words in the sense that a robust lexical activation was still observed for 

phonetically similar words. Following adaptation, accented /d/-final words (e.g., ‘seed’, 

pronounced like ‘seat’) activated the intended word form more strongly; however, phonetically-

related competitors (‘seat’ for ‘seed’) were not eliminated from consideration. This pattern was 

observed for talker-specific adaptation (Experiment 1) and generalization to a novel talker 

(Experiment 5B). These results are somewhat in contrast with studies on adaptation to native 

dialectal variants (Dahan, Drucker, & Scarborough, 2008; Trude & Brown-Schmidt, 2012). 

Trude and Brown-Schmidt (2012) found that as listeners adapted to a dialectal speaker who 

pronounced the vowel of ‘bag’ as ‘[eɪ]’ (as in ‘bake’), they were more quickly eliminating ‘bag’ 

as a competitor for ‘back’ than they were accepting ‘bag’ as a potential candidate for the auditory 

‘bake’. Our results were the opposite: listeners included an accented /d/ as more acceptable 

candidates of a lexical entry (e.g., ‘seed’) before they eliminated the accented token as viable 

candidates for /t/-final words (e.g., ‘seat’), if a complete elimination of phonological competitors 
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could ever be achieved. This may imply that listeners are more conservative facing a foreign-

accented speaker whose productions mismatch native categories not just for a single sound in 

specific words, but mismatches native speech more globally for multiple consonants and vowels. 

Another potential reason why learning for a foreign accent seems incomplete (within the time 

frame examined) compared to learning an altered phoneme in a native accent (cf. McQueen et 

al., 2006) may lie in the specific process that achieves the adaptation. That is, shifting attention 

to a previously unattended acoustic dimension may require more perceptual and/or cognitive 

efforts than recalibrating a boundary along a familiar dimension does (e.g., recalibrating /s/ and 

/f/ boundary, or a VOT boundary between /d/ and /t/).  

Theoretical Implications and Future Directions 

A consistent finding across all three sets of experiments is that even in this brief exposure 

paradigm, listeners tracked acoustic distributions along multiple dimensions in a speaker’s 

productions and adjusted the mapping from sounds to words accordingly, as guided by lexical 

information. This ability is crucial in adaptation to unfamiliar pronunciations that deviate from 

native norms as listeners used this information to a) rapidly restructure phonetic categories and 

facilitate word recognition for a given talker; b) effectively “assess” whether generalization to a 

novel talker is appropriate. Moreover, the degree of within-talker acoustic variability, not just the 

presence of it, predicted talker-specific adaptation results.  

As discussed in Chapter 2, neither the talker normalization theories which assume 

invariant, canonical phonological representations for all talkers, nor the episodic theories which 

assume a detailed representation for each word by each talker, provide sufficient principles to 

account for existing evidence on perceptual adaptation studies. Several modified versions have 

been proposed to chart a middle course between the extreme stances (Mirman et al., 2006; 
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Goldinger, 2007; Pierrehumbert, 2006; Johnson, 2006). Of special interest here are the models 

that specify how talker adaptation and its generalization work. Mirman et al. (2006) added a 

Hebbian learning algorithm to the TRACE model (McClelland & Elman, 1986), allowing the 

abstractionist model to adjust the connections from acoustic features to phoneme units, as a way 

to adapt to speaker characteristics. The Hebbian-TRACE model demonstrated that bottom-up 

acoustic similarity (or lack of it) in phonetically-relevant cues constrained generalization. 

However, as the model has to adjust constantly as the talker changes, without a mechanism to 

store the learning results, it cannot account for persistent effects of talker adaptation (e.g., Eisner 

& McQueen, 2006; Kraljic & Samuel, 2005). Furthermore, because the model does not 

discriminate intra- versus inter-talker variability in the speech input, it would predict that both 

types of variability block, or at least slow down rapid adaptation. However, as we noted in the 

discussion of Experiment 6, the variability coming from Speaker HV’s productions and that from 

multiple talkers did not produce the same effect, implying that listeners were sensitive to the 

source of variability.  

Johnson (2006) proposed an exemplar-resonance model that allows explicit recognition 

of social identity of talkers (e.g., gender) and uses the social label to bias speech recognition. In 

this model, listeners retain speech exemplars in memory that contain information about both 

linguistic categories (words) and social categories (e.g., female and male). The incoming speech 

signal activates existing exemplars that are acoustically similar, and the activated exemplars 

further activate categorical information (a word “seed” or a male speaker). In addition, once an 

exemplar is activated, feedback activation from categories to exemplars (resonance) spreads 

activation out to other exemplars that share the category membership. This model would readily 

account for a few findings. First, since acoustic similarity determines the overall exemplar 
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activation for a given category, it would predict that generalization occurs only when bottom-up 

similarity supports it. It would also predict that the more exemplars of accented “seed” that are 

similar to the input, the larger activation for “seed”. This is consistent with the generalization-by-

exemplar hypothesis we suggested in explaining the difference between the Multi 1  Speaker 1 

and Speaker 2  Speaker 1 conditions. Second, since talker detail is stored in exemplars, 

listeners naturally discriminate between variability within- and across-talkers, which were found 

to constrain generalization differently. However, a problem remains for this episodic model: if 

no abstract pre-lexical representation of phonetic categories is used in spoken word recognition, 

how could listeners possibly generalize from a few limited speech samples to novel words? 

Considering the fact that a Mandarin-accented “seed” would potentially activate pre-existing 

English-accented “seat” exemplars (which should outnumber Mandarin-accented “seed” 

exemplars due to long-term native language experience), it is especially hard for this model to 

account for the rapid adaptation and generalization.  

The current finding is consistent with a framework in which listeners a) routinely track 

the full distribution (not only the mean, but also the variance) of acoustic-phonetic cues across 

individual talkers, b) dynamically weight each cue accordingly to its informativeness to phoneme 

distinction, for a given talker and c) use the similarity in acoustic-phonetic cues to constrain 

talker generalization for an adjusted cue-to-category mapping. Two types of models are suitable 

to account for the data.  

The Attention-to-Dimension (A2D) model (Francis et al., 2000; Francis & Nusbaum, 

2002) for non-native language learning can be adapted to account for the rapid adaptation data. 

This model acknowledges that non-native languages differ from native language not only in the 

absolute distribution along familiar dimensions (e.g., VOT differences for French stops and 
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English stops), but also in the particular acoustic dimensions that reliably cue phoneme contrast. 

For instance, Japanese listeners have difficulty distinguishing English /r/ and /l/ because they rely 

on both the second and third formant frequency (primarily F2) as cues for distinction, whereas 

the phonemes are predominantly contrasted by F3 in English. A mismatch in the cue weighting 

strategy between an English speaker and a Japanese listener causes perceptual difficulty (e.g., 

Yamada & Tohkura, 1992). Given category labels as feedback, listeners can be trained to 

selectively weigh particular cues more heavily in phoneme identification (Francis et al., 2000) or 

to attend to previously unattended cues (from VOT to F0 in distinguishing Korean stops, Francis 

& Nusbaum, 2002). It is made explicit in the A2D model that selective attention to relevant cues 

in the L2, which might be less informative in one’s L1, is helpful in acquiring new phonetic 

categories and generalizing to new syllabic contexts. A similar discrepancy of cue-weighting 

functions arises between a foreign-accented speaker and a native listener. In the present study, 

the Mandarin-accented speaker (Speaker 1) did not saliently vary vowel duration in the voicing 

contrast. In adaptation, English listeners who were exposed to a few /d/-final words showed 

evidence of relying more on the burst length than the control group, a cue that is not typically 

used to make the voicing distinction in English. It is important to note that the current 

experiments did not provide a rigorous within-subjects test to see if sensitivity is indeed 

increased for certain acoustic cues (pre- and post-adaptation) as examined in studies of cue-

weighting in learning non-native categories (e.g., Francis & Nusbaum, 2002). Future research is 

required to directly address the role of attention in perceptual adaptation. Although native 

phonetic retuning seems effortless, evidence exists that phonetic retuning may be disturbed when 

cognitive load is synchronously high (Samuel, 2014). Meanwhile, increased processing effort is 

usually required for foreign-accented speech (e.g., Schmid & Yeni-Komshian, 1999; Munro & 
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Derwing, 1995). It remains unclear how crucial it is to effectively allocate attention to the 

relevant aspects of speech input in accent adaptation. 

While the A2D model is an appealing model to account for the current findings, the 

model itself does not readily generate predictions about the time course of different types of 

perceptual learning. Apparently, rapid phonetic adaptation observed here occurred over much 

shorter time than shown in previous training studies of non-native phoneme learning. It is 

possible that the amount of deviation from the native language (which is likely larger in a non-

native language than in a foreign accent than in an idiosyncratic native variant, e.g., Kraljic & 

Samuel, 2007) is the determining factor for the time course of learning. Additionally, shifting 

attention between acoustic dimensions might require more time than adjusting the boundary 

location along a pre-attended dimension.  

Another issue concerns the mechanism of generalization. In past research, learning-

elicited selective attention to acoustic cues has only been demonstrated in talker-specific (e.g., 

Francis & Nusbaum, 2002) and context-specific conditions (e.g., visually-guided phonetic 

adaptation, Reinisch et al., 2014). In the current study, similarity along specific dimensions 

between talkers predicted generalization. However, our design could not assess whether listeners 

applied the adjusted weighting to the novel talker. Related to this, Witteman et al. (2013) found 

that exposure to a German-accented Dutch speaker did not immediately facilitate word 

recognition of a second accented speaker, but somehow made the adaptation for the second 

speaker faster (compared to listeners who did not have experience with the first speaker). It could 

be that in the face of a different speaker, listeners did not directly apply the adjusted 

representation (due to perceived acoustic dissimilarity in the distributions of a cue, for example). 

Yet exposure to the first speaker could have retuned listeners’ attention to relevant acoustic 
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information that would be helpful in the recognition of the critical phoneme, and thus made the 

adaptation to the second speaker faster. The current study could be easily modified to provide a 

test of the generalization issue. First, we could adopt an orthogonal design (Holt & Lotto, 2006) 

such that for the exposure stimuli, vowel length (deviating from native values) serves as the only 

informative cue for one group of listeners while burst length serves as the only informative cue 

for another group. We then test each group on two sets of stimuli, containing the cue consistent, 

or inconsistent with the exposure stimuli. All stimuli would be created out of Speaker 1’s natural 

productions. The A2D model would predict that generalization from exposure to test would be 

observed only in the consistent cue condition. That is, even for a given speaker, generalization is 

not guaranteed if different cue-weighting changes are required for specific stimuli. Moreover, 

since vowel length is a cue that English listeners typically use, adaptation for the consistent 

vowel cue condition is predicted to be faster than the consistent burst cue condition. 

Complementary to these predictions, we predict that the re-weighting of acoustic cues, in 

particular the added weighting of burst length for the Mandarin accent, would allow listeners to 

generalize their learning to other stop consonant contrasts (e.g., /b/-/p/). Generalization from one 

accented speaker to another would also be observed if they use the same set of acoustic cues. 

Future research should investigate whether the observed adjustment in the phonetic structure and 

cue-weighting strategy generalize to other contexts (e.g., phonemes, speakers, accents).  

 As noted above, attentional shifts between acoustic cues may help listeners to move from 

exemplar-type generalization to extraction-type generalization as they gain more experience 

across multiple talkers which allow them to pay attention to the most talker-general, relevant 

cues (and ignore irrelevant acoustic variation) in an accent. At its heart, this account aligns with 

the “distilling regularities” idea that was hypothesized by Bradlow and Bent (2008) and Sidaras 
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et al. (2009). We did not find sufficient support for it within our study. Future work should test 

whether more extensive exposure might promote it.  

Bayesian models can be used to model the current findings. Clayards et al. (2008) tested 

an ideal observer model which makes use of “entire probability distributions” and also involves 

cue weighting in speech perception. It explicitly predicts a role of acoustic variance (on top of 

mean values). In Bayesian terms, the task of speech perception is to determine the probability of 

a category identity, given an input cue (posterior probability). For instance, observing a burst 

length of 40 ms, what is the probability of category /d/? This posterior probability is proportional 

to the prior probability of a category (e.g., the likelihood of /d/) times the conditional probability 

of a cue input given the category (i.e., the likelihood of a 40ms burst given a production of /d/). 

The outcome of phoneme identification depends on the posterior probability of /d/ (relative to 

posterior probability of other categories, e.g., /t/). In the current study, the word frequency of /d/-

final words and /t/-final words were equated. That is, prior probabilities of /d/ and /t/ were the 

same. As listeners encounter a Mandarin-accented speaker, they build up the conditional 

probability in his productions, based on the exposure stimuli. A widely distributed acoustic-

phonetic cue decreases the likelihood each value of the cue (e.g., a bust length of 40ms) appears 

as a member of a category (e.g., /d/). That is, the conditional probability gets smaller. And thus, 

posterior probability of /d/ gets smaller. This explains the data that a speaker with large within-

talker variability was harder to adapt to.  

In an advanced version of the model, Kleinschmidt & Jaeger (2014) proposed an ideal 

adapter belief updating framework that builds on the same Bayesian concept but allows updating 

of conditional probabilities that is sensitive to talker information. The technical details are 

beyond the scope of this dissertation, but two assumptions of the framework should be noted. 
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First, listeners build up generative models of category-to-cue mappings via statistical learning. 

For instance, they know how well a /d/ predicts a burst of 40ms. This is shown in Clayards et al. 

(2008). This level of Bayesian learning explains how talker-specific adaptation occurs. Second, 

the generative models are tailored to specific talkers. Listeners build up separate talker-specific 

generative models based on their prior experience with that talker. That is, talker is a parameter 

in computing the posterior probability. In addition, listeners also estimate how likely one or more 

previously-built generative model matches the productions of a new talker. In a sense, talker 

identity is represented as distributions of generative models. At this level, instead of computing 

probabilities of categories given cue input, listeners compute the probability of a generative 

model given an observed input and a talker (whose identity is known). This level of Bayesian 

learning allows predictions of talker generalization. Pertinent to the current finding, this 

framework predicts that listeners use previous generative models to narrow down the 

interpretation of tokens from a novel talker. The more overlap between the acoustic distributions 

of the current speech input and a previous generative model, the more likely a generative model 

will be used to interpret the current speech input. It would be harder to adapt to a novel talker 

whose generative model falls out of the range of previous models. Our finding that listeners 

generalized in the Multi 1  Speaker 1 condition but not Multi 2  Speaker 2 condition is 

consistent with this prediction. Needless to say, the model also predicts that there is no 

generalization from one talker to another if they are not acoustically similar (that is, a previous 

generative model will not be applied to the productions of a novel talker), which is exactly the 

case in the Speaker 1  Speaker 2 and Speaker 2  Speaker 1 condition. Lastly, because the 

inference of generative models is uncertain for any talker, generalization does not require explicit 

knowledge of talker or accent identity, as found in the current study. The framework additionally 
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predicts that when such social information is available, listeners will narrow down the selection 

of generative models more easily. Trude et al. (2013) showed that providing contextual cues to 

talker identity helped listeners constrain adaptation to a specific talker in a two-talker situation. 

No direct evidence is available for the multiple-talker situation. Future studies should investigate 

whether “telling” listeners (e.g., providing long carrier sentences or visual information, etc.) that 

they are listening to a group of Mandarin-accented speakers would facilitate adaptation at a 

group level and promote generalization to a novel talker, keeping bottom-up input consonant. A 

strength of this framework is that by constructing different acoustic distributions, the 

computational model can simulate outcomes that are testable in human participants. One 

important issue suitable for computational testing is how the exact type of phonetic adjustment 

(boundary shift, within-category reorganization, or attentional shifts between acoustic 

dimensions) depends on the distributional properties of the acoustic variation and the time course 

of each type of adaptation. 

Taken together, the findings presented in this dissertation practically bridge two lines of 

research which have been conducted separately: the lexically-guided phonetic reorganization 

mechanism that underlies the adaptation to idiolect differences of native speakers also supports 

adaptation to natural foreign accents. In addition, bottom-up similarity at the acoustic-phonetic 

level explains a range of situations in which adaptation effects may or may not generalize to 

novel talkers, reconciling some of the inconsistent results in both domains. We expand previous 

research by showing that perceptual learning for speech is not just a matter of adjusting phonetic 

boundaries in face of noncanonical tokens; it also promotes a reorganization of the internal 

category structure. Furthermore, the ability to track acoustic-phonetic characteristics for 

individual talkers helps listeners dynamically adapt and selectively generalize, maintaining a 
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balance between flexibility and stability in a highly variable acoustic environment. I believe the 

future directions suggested above would further advance our understanding of the reorganization 

of the perceptual architecture that listeners experience when they adjust to accented speech, and 

other types of unfamiliar speech in general. 
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APPENDICES 

Appendix A Intelligibility Tests for Mandarin Speakers 

In a pilot study, all Mandarin speakers recorded a word list with 190 words (Rogers, 

1997), each of which included one or more phonemes predicted to cause difficulty for native 

listeners when spoken with a Mandarin accent. The words sampled across vowels and 

consonants that are difficult for Mandarin speakers of English. A separate group of 24 listeners 

transcribed words from the 190-word lists of the six speakers to establish baseline intelligibility 

for each of the Mandarin speakers. Six counterbalanced lists were created. Results are presented 

in Table A1. 

Critical Exposure /d/-final Words 

The same 24 native English-speaking listeners also completed a 2AFC identification task to 

assess the ambiguity of the final consonant in the training -/d/ words of each Mandarin speaker. 

During this task, listeners were asked to decide whether the word they heard ended in /d/ or /t/. 

For example, for the auditory item apprehend, they were asked to choose between apprehend or 

apprehent. Likewise, for apprehent, they chose between apprehend and apprehent. It was 

emphasized to the listeners that they would hear both words and nonwords, and their decision 

should be based on the final sound only. Speaker 1 and speaker 2 were matched on their overall 

intelligibility and intelligibility of critical /d/-final words in the experiments. In addition, words 

from each speaker in the multiple-talker condition (Experiment 4 and 5) were selected in a way 

that equated the overall ambiguity of exposure words (% /d/ responses given for /d/-final words 

in the 2AFC task) across experiments. 
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Table A1. Average intelligibility scores (expressed in % words correctly transcribed), and performance 

for exposure /d/-final words for all Mandarin speakers. Numbers in parentheses are standard errors. 

Demographic information is represented in the last 3 columns.  

Speaker 
Overall 

intelligibility  

/d/ responses (%) 

for exposure 

words 

Age of 

English 

Acquisition 

(years) 

Age of arrival 

in the U.S. 

(years) 

Length of 

Residence 

(months) 

1 46(1) 72(5) 11 18 18 

2  46(2) 77(4) 12 26 42 

3  37(1) 49(6) 10 15 36 

4 34(2) 78(3) 11 19 24 

5 70(2) 88(4) 7 24 60 

6 64(1) 83(4) 12 22 6 

 

Critical /d/-final Test Words from Speakers 1, 2 and 3 

To establish ambiguity of /d/ pronunciations in critical test items, three separate groups of 

10 native-English listeners completed a 2AFC identification task. Participant group 1, 2, 3 heard 

tokens from speaker 1, speaker 2 and speaker 3, respectively. In the task, participants heard a 

mixed list containing all 60 critical minimal pairs of /d/-final and /t/-final words. Two 

counterbalanced lists were created with each list blocked into two halves, such that either -/d/ 

(e.g., seed) or -/t/ word (e.g., seat) of each minimal pair was presented in each half. Within each 

half, items were repeated in three sub-blocks. Within each sub-block, items were randomly 

presented. Performance did not differ across subblocks or halves of the lists. Thus we report the 

mean percent correct response for /d/-final words as the intelligibility measure for each speaker. 

The mean intelligibility was comparable between speaker 1 (M = .65, SD = .13) and speaker 2 

(M = .70, SD = .06), with no significant difference, t(18) = 1.061, p = .30. Speaker 3 (M = .22, 
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SD = .17) had lower intelligibility for /d/ tokens than Speaker 1(t(18) = 6.739, p < .001) and 2 

(t(18) = 9.049, p < .001).  
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Appendix B Experiment Materials 

Table B1. Example stimuli in the cross-modal priming task in Experiment 1, 4-7. Auditory primes are in 

lower case; visual targets are in capital letters. There were four counterbalanced lists. Each list contained 

15 groups of stimuli as shown in the table. 
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Appendix C Experiment Results 

Table C1. Response accuracy in the auditory lexical decision task (Exposure phase) across experiments. 

Critical words are /d/-final words for the experimental group and replacement words for the control 

group. Standard deviations are presented in parentheses. 

Experiment Exposure group Critical words Filler words Nonwords 

Experiment 1 Experimental .81 (.09) .80 (.06) .77 (.16) 

 

Control .81 (.09) .84 (.05) .69 (.17) 

Experiment 4 Experimental .83 (.07) .82 (.07) .71 (.15) 

 

Control .75 (.10) .81 (.08) .68 (.15) 

Experiment 5A Experimental .78 (.08) .87 (.05) .71 (.12) 

 

Control .84 (.07) .89 (.03) .70 (.11) 

Experiment 5B Experimental .79 (.09) .87 (.06) .67 (.17) 

 

Control .82 (.07) .88 (.05) .70 (.12) 

Experiment 6 Experimental .82 (.15) .78 (.14) .66 (.20) 

 

Control .78 (.10) .80 (.08) .68 (.12) 

Experiment 7 Experimental .61 (.10) .85 (.07) .76 (.12) 

 

Control .81 (.06) .87 (.05) .80 (.09) 
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Table C2. Mean error rates and RT across participants in the cross-modal priming task as a function of 

exposure group in Experiment 1 in Chapter 3. Standard deviations are given in parentheses. 

 /d/-final /t/-final 

Exposure group Related prime 

primea 

Unrelated prime Related prime Unrelated prime 

Example seed-SEED fair-SEED seed-SEAT fair-SEAT 

Mean % error 

Experimental 10 (7) 15 (13) 7 (7) 12 (10) 

Control 9 (8) 18 (11) 6 (6) 13 (7) 

Mean RT (ms) 

Experimental 598 (89) 672 (115) 593 (96) 630 (100) 

Control 577 (89) 616 (92) 553 (87) 588 (81) 
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Table C3. Mean error rates and RT across participants in the cross-modal priming task as a function of 

exposure group across experiments in Chapter 4. Standard deviations are given in parentheses. 

      /d/-final /t/-final 

  

Exposure group 

Related 

prime 

Unrelated 

prime 

Related 

prime 

Unrelated 

prime 

    Example seed-SEED fair-SEED seed-SEAT fair-SEAT 

Exp.4 Mean % error 

Experimental 12 (8) 13 (8) 9 (6) 8 (6) 

Control 13 (9) 10 (9) 8 (7) 8 (5) 

Mean RT (ms) 

Experimental 591 (78) 632 (91) 564 (68) 592 (70) 

Control 604 (79) 642 (76) 590 (72) 621 (72) 

Exp.5A Mean % error 

Experimental 10 (9) 17 (10) 6 (5) 10 (7) 

Control 12 (9) 17 (12) 8 (5) 11 (10) 

Mean RT (ms) 

Experimental 577 (50) 626 (63) 571 (64) 593(62) 

Control 576 (52) 610 (60) 570 (49) 592 (43) 

Exp.5B Mean % error 

Experimental 10 (9) 16 (10) 6 (5) 11 (7) 

Control 10 (9) 18 (12) 7 (5) 10 (10) 

Mean RT (ms) 

Experimental 578 (59) 625 (75) 565 (71) 584 (46) 

Control 633 (80) 647 (89) 603 (79) 633 (66) 
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Table C4. Mean error rates and RT across participants in the cross-modal priming task as a function of 

exposure group in Experiment 6 and 7 in Chapter 5. Standard deviations are given in parentheses. 

      /d/-final /t/-final 

  

Exposure group 

Related 

prime 

Unrelated 

prime 

Related 

prime 

Unrelated 

prime 

    Example seed-SEED fair-SEED seed-SEAT fair-SEAT 

Speaker 

HV 

Mean % error 

Experimental 10 (8) 12 (8) 6 (5) 8 (5) 

Control 11 (8) 14 (11) 8 (8) 11 (10) 

Mean RT (ms) 

Experimental 610 (86) 648 (68) 589 (77) 611 (65) 

Control 595 (56) 617 (63) 585 (65) 607 (72) 

Speaker 

LI 

Mean % error 

Experimental 15 (13) 16 (8) 7 (6) 6 (6) 

Control 10 (9) 15 (8) 6 (6) 9 (9) 

Mean RT (ms) 

Experimental 636 (75) 645 (64) 576 (56) 621 (56) 

Control 614 (107) 625 (87) 540 (71) 593 (87) 
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