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Traveling Fronts to Reaction Diffusion
Equations with Fractional Laplacians

Tingting Huan, Ph.D.

University of Connecticut, 2014

ABSTRACT

We consider the traveling fronts of the reaction diffusion equation:

ut + (−∆)su = f(u), in R× R,

for f ∈ C1(R). Namely, the solution to the following equation:


(−∆)su(x) + cu′(x) = f(u(x)), ∀x ∈ R

lim
x→−∞

u(x) = 0, lim
x→∞

u(x) = 1
(0.0.1)

where c is the speed of propagation of the front and the operator (−∆)s denotes

the fractional power of the Laplacian in one dimension with 0 < s < 1. Recall the

fractional Laplacian is defined as follows:

(−∆)su(x) = C1,s(P.V.)

∫
R

u(x)− u(y)

|x− y|1+2s
dy,

where (P.V.) stands for Cauchy principal value and C1,s =
22ssΓ((1 + 2s)/2)

π1/2Γ(1− s)
.

We show the nonexistence of traveling fronts in the combustion model with frac-



ii

tional Laplacian (−∆)s when s ∈ (0, 1/2]. Our method can be used to give a direct

and simple proof of the nonexistence of traveling fronts for the usual Fisher-KPP non-

linearity. Also we prove the existence and nonexistence of traveling waves solutions

for different ranges of the fractional power s for the generalized Fisher-KPP type

model. When considering the Allen-Cahn type nonlinearity, we show the approach

of the solution to the traveling front for a large range of initial value problems.
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Chapter 1

Introduction

1.1 Reaction Diffusion Equations

Reaction diffusion equations are considered in many areas of natural science and engi-

neering. The classical application is to the population genetics which is formulated by

R.A. Fisher in 1937. In his application, a population of diploid individuals distributed

on a planar habitat is considered. Suppose the gene at a specific locus in a specific

chromosome pair occurs in two allele forms denoted by a and A. The population is

thus divided into three classes: homo-zygotes which have genotypes aa and AA, and

hetero-zygotes which have genotype aA. Then the relative density of the allele A

u(x, t) at the point x of the habitat at time t will be close to the solution of

∂u

∂t
−∆u = f(u), in (0,+∞)× Rn (1.1.1)

1
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with

f(u) = u(1− u){(τ1 − τ2)− (τ1 − 2τ2 + τ3)u}.

where τ1, τ2 and τ3 are death rates for AA, aA and aa respectively.

In combustion theory, some flame propagation problems also lead to the form

(1.1.1) where f ∈ C1[0, 1], f(0) = f(1) = 0 and

f(u) = f(1) = 0, ∀u ∈ [0, θ], f(u) > 0, ∀u ∈ (θ, 1), f ′(1) < 0.

where θ > 0 is the ignition temperature.

More generally, we will consider f ∈ C1([0, 1]), f(0) = f(1) = 0 and we will

consider the reaction diffusion equation:

ut + Lu = f(u) in (0,∞)× R (1.1.2)

where L is the infinitesimal generator of Levy processes. According to the Levy-

Kintchine formula, they have the general form

Lu(x) = trA(x) ·D2u+ b(x) · ∇u+ c(x)u+ d(x) +∫
Rn

(u(x+ y)− u(x)− y · ∇u(x)1b1(y))dcx(y)

where A(x) is a nonegative matrix for all x, and cx is a nonnegative measure for

all x satisfying

∫
Rn

min(y2, 1)dcx(y) < +∞.



3

The above definition is very general. The simplest of all is the fractional Lapla-

cian. The fractional Laplacian (−∆)s is a classical operator which gives the standard

Laplacian when s = 1.

1.2 Fractional Laplacians

One way to define the fractional Laplacian is to consider the fractional Laplacian as

a pseudo-differential operator.

We will assume the Fourier transform be: For any f ∈ L1(Rn), then

f̂(x) =

∫
Rn

f(y)e−2πix·y dy, for all y ∈ R.

Recall that if f ∈ S(Rn), then −∆f ∈ S(Rn), (̂−∆)f ∈ S(Rn), and

(̂−∆)f(x) = (2π|x|)2f̂(x), for all x ∈ Rn.

By induction, for any k ∈ N, we can get

̂(−∆)kf(x) = (2π|x|)2kf̂(x), for all x ∈ Rn.

For any s ∈ R, the pseudo-differential operator (−∆)s is formally defined as: For

any f ∈ S(Rn), we have

̂(−∆)sf(x) = (2π|x|)2sf̂(x), for all x ∈ Rn. (1.2.1)

This formula is simple to understand and it is useful for problems in the whole
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space. On the other hand, it is hard to obtain local estimates from it.

Fractional Laplacian can also be defined as the generator of α−stable Levy process.

More precisely, if Xy is the isotropic α−stable Levy process starting at zero and f is

a smooth function, then

(−∆)α/2f(x) = lim
h→0

1

h
E[f(x)− f(x+Xh].

One can also think of (−∆)s as a singular integral given by the following theorem.

Theorem 1.2.1. Let 0 < s < 1, and f ∈ S(Rn), then we have

(−∆)sf(x) = C(n, s) · P.V.

∫
Rn

f(x)− f(y)

|x− y|n+2s
dy <∞, for all x ∈ Rn. (1.2.2)

Where C(n, s) =
s22sΓ

(
n+2s
2

)
π
n
2 Γ(1− s)

.

The above formula is most useful to study the local proper ties of equations in-

volving the fractional Laplacian. It will be the definition we will use in later chapters.

Now we would like to derive an equivalent expression of the fractional Laplacian based

on the singular integral definition. We apply the formula in (1.2.2), we can get

(−∆)sf(x) = C(n, s) · P.V.

∫
Rn

f(x)− f(y)

|x− y|n+2s
dy

= C(n, s) · lim
ε↘0, R↗∞

∫
ε<|y−x|<R

f(x)− f(y)

|x− y|n+2s
dy

= C(n, s) · lim
ε↘0, R↗∞

∫
ε<|z|<R

f(x)− f(x+ z)

|z|n+2s
dz Let z = y − x

= C(n, s) · P.V.

∫
Rn

f(x)− f(x+ y)

|y|n+2s
dy (1.2.3)

< ∞, for all x ∈ Rn.
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Besides, we can get

(−∆)sf(x) = C(n, s) · P.V.

∫
Rn

f(x)− f(y)

|x− y|n+2s
dy

= C(n, s) · lim
ε↘0, R↗∞

∫
ε<|y−x|<R

f(x)− f(y)

|x− y|n+2s
dy

= C(n, s) · lim
ε↘0, R↗∞

∫
ε<|z|<R

f(x)− f(x− z)

|z|n+2s
dz Let z = x− y

= C(n, s) · P.V.

∫
Rn

f(x)− f(x− y)

|y|n+2s
dy (1.2.4)

< ∞, for all x ∈ Rn.

Therefore, we have

(−∆)sf(x) = −C(n, s)

2
· P.V.

∫
Rn

f(x+ y) + f(x− y)− 2f(x)

|y|n+2s
dy

= D(n, s) · P.V.

∫
Rn

f(x+ y) + f(x− y)− 2f(x)

|y|n+2s
dy. (1.2.5)

Where

D(n, s) = −C(n, s)

2
= −

s22s−1Γ
(
n+2s
2

)
π
n
2 Γ(1− s)

.

This particular expression shows that the fractional Laplacian enjoys the following

monotonicity property: if u has a global maximum at x, then (−∆)su(x) ≥ 0, with

equality only if u is constant. From this monotonicity, a comparison principle can be

derived for equations involving the fractional Laplacian.
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1.3 Traveling wave solutions to reaction diffusion

equations

A traveling wave solution is a solution of the reaction diffusion equation which is

defined as u ∈ C2(R2
+) such that

u(x, t) = φ(x+ ct), ∀(x, t) ∈ R2
+.

where c is the speed of the traveling wave solution. φ is called the profile function.

When the traveling wave solution is monotone and bounded, we call it a traveling

front.

Traveling waves arise in many applied problems, see for example [15], [22], [4], [3],

[16], [6], [7], [19] and references therein. In [28], for instance, traveling wave solutions

are used to describe the propagation of impulse in nerve fibers. Various different

kinds of waves can often be observed in chemical reactions, see for example, [27].

Define the traveling wave coordinates: z = x + ct. For the classical reaction

diffusion equation with Laplacian

ut + (−∆)u = f(u), in R× R,

for f ∈ C1(R). By substitution, the profile of the traveling fronts to the above

equation will satisfy


−φ′′(z) + cφ′(z) = f(φ), ∀z ∈ R

φ′(z) > 0, ∀z ∈ R

lim
z→−∞

φ(z) = 0, lim
z→∞

φ(z) = 1

(1.3.1)



7

Similarly, for the reaction diffusion equation (1.1.2) where L = (−∆)s, we know

that the profile of the traveling front will satisfy the following PDE:


(−∆)sφ(z) + cφ′(z) = f(φ(z)), ∀z ∈ R

lim
z→−∞

φ(z) = 0, lim
z→∞

φ(z) = 1
(1.3.2)

Notice that traveling fronts are translation invariant. So as for the uniqueness, we

will always consider the uniqueness up to translation.

As for the reaction nonlinearity f , there are three cases which are of particular

interests in this thesis:

• Fisher-KPP Model:

f(0) = f(1) = 0, f(u) > 0, ∀u ∈ (0, 1), f ′(0) > 0, f ′(1) < 0. (1.3.3)

• Combustive Model:

f(u) = f(1) = 0, ∀u ∈ [0, θ] f(u) > 0, ∀u ∈ (θ, 1), f ′(1) < 0. (1.3.4)

• Bistable Model:

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0. (1.3.5)

When A = −∆, the classical Laplacian case, it is well-known that there exists

a traveling front u for any speed c larger than or equal to some minimum speed

c0 in the Fisher-KPP equation. And it has been shown that the front propagation

speed could be very fast depending on initial values. Fisher-KPP equation with a



8

fractional Laplacian displays a very different behavior, due to the super diffusion

process involved. It was discovered numerically in [13], [14], [24], [25] that the front

propagation can accelerate exponentially in time. Also it has been rigorously studied

and proved in [12] and [8]. Since a traveling front propagates linearly in t, it is an

immediate consequence that there is no traveling fronts.

In the bistable equation, it was shown that both in the Laplacian case and the

fractional Laplacian case, there will exists a unique pair (u, c) to (1.1.2) for all 0 <

s < 1. In the fractional Laplacian case, Gui and Zhao [20] applied the method of

continuity to get the uniform bound of the speed in terms of potential. And their

result indicate that there

In the combustion equation with the laplacian, it is known that there exists a

unique pair (u, c). As for the equation with the fractional Laplacian it has recently

been discovered in [26] that when 1
2
< s < 1, there exists a unique pair (u, c).

1.4 Previous results of the existence of traveling

wave solutions

In Chapter 2, we study the existence of the traveling wave solutions of the reaction

diffusion equations with fractional Laplacians in the combustion and the generalized

Fisher-KPP models.

To provide the setting for our result, in this section we recall important results

on some closely related questions. For comparison purpose, for each type of the

three nonlinear reaction term, we give the existence of traveling wave solutions to

the equations with the Laplacian and the existence results to the equations when

Laplacian is replaced by the fractional Laplacian with a brief review of the method
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involved.

The traveling wave solution to the classical reaction diffusion equation with Lapla-

cian is referred to the following:


−φ′′(z) + cφ′(z) = f(φ), ∀z ∈ R

φ′(z) > 0, ∀z ∈ R

lim
z→−∞

φ(z) = 0, lim
z→∞

φ(z) = 1

(1.4.1)

While the traveling wave solution to the reaction diffusion equation with the

fractional Laplacian is given by


(−∆)sφ(z) + cφ′(z) = f(φ(z)), ∀z ∈ R

lim
z→−∞

φ(z) = 0, lim
z→∞

φ(z) = 1
(1.4.2)

When A = −∆, the classical Laplacian case, it is well-known that there exists

a traveling front u for any speed c larger than or equal to some minimum speed

c0 in the Fisher-KPP equation. And it has been shown that the front propagation

speed could be very fast depending on initial values. Fisher-KPP equation with a

fractional Laplacian displays a very different behavior, due to the super diffusion

process involved. It was discovered numerically in [?], [?] that the front propagation

can accelerate exponentially in time. Since a traveling front propagates linearly in t,

it is an immediate consequence that there is no traveling fronts.

For the bistable model, sometimes known as the Allen-Cahn equation, there ex-

ists a unique traveling wave solution. An interesting observation is the relationship

between the double well potential and the speed of the traveling wave solution. When

the bistable nonlinearity is balanced, i.e., the associated double well potential has two
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wells with equal depths, a traveling wave solution with one spatial variable for the

classical Allen-Cahn equation is indeed a standing wave or a layer solution, i.e., the

speed c must be zero. If the Laplacian is replaced by the fractional Laplacian (−∆)s,

it is shown in [10] for s = 1/2 and [8], [9] for s ∈ (0, 1) that a standing wave solution

exists.

For the unbalanced equation, it was shown that both in the Laplacian case and

the fractional Laplacian case, there will exists a unique pair (u, c) to (1.4.2) for all

0 < s < 1. In the fractioanl Laplacian case, Gui and Zhao [20] applied the method

of continuity to get the uniform bound of the speed in terms of potential.

In the combustion equation with the Laplacian, it is known that there exists a

unique pair (u, c). As for the equation with the fractional Laplacian it has recently

been discovered in [26] that when 1
2
< s < 1, there exists a unique pair (u, c).

J. Roquejoffre, A. Mellet and Y. Sire [26] studied the combustion model. They

have shown that when s ∈ (1/2, 1) and f satisfies (1.3.4), there exists unique (c, u)

with c > 0 to (1.4.2).



Chapter 2

Traveling fronts to the reaction
diffusion equations

2.1 Combustion and Fisher-KPP models

By a compactness argument, we know that if (1.4.2) has a solution u(x) then

lim
|x|→∞

u′(x) = 0 and f(0) = f(1) = 0 (2.1.1)

Multiply u′(x) on both sides in (1.4.2) and integrate over R, we can get the

Hamiltonian identity as in [20]:

c

∫
R
|u′(x)|2 dx =

∫ 1

0

f(u) du (2.1.2)

The nonlinear reaction term we consider here is the following.

11
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There exists some θ ∈ (0, 1) such that f ∈ C1(R) satisfies

∫ 1

0

f(u) du > 0, and f ′(u) ≥ 0, ∀u ∈ (0, θ]. (2.1.3)

In this section, we assume 0 < s ≤ 1/2 and f ∈ C1(R) satisfies condition (2.1.9).

Assume that (c, u) is a solution to (1.4.2). By (2.1.2) and (2.1.9), we have c > 0.

Let u be the s-harmonic extension of u on R2
+, that is,

u(x, y) = Py ∗ u(x), ∀(x, y) ∈ R2
+. (2.1.4)

with

Py(x) =
asy

2s

[y2 + x2]
1+2s

2

, ∀(x, y) ∈ R2
+ and as =

Γ
(
1+2s
2

)
π

1
2 Γ(s)

. (2.1.5)

Let v(x, y) = ux(x, y) = Py ∗ u′(x) for all (x, y) ∈ R2
+, L. Caffarelli and L.

Silvestre[11] proved that v satisfies


div[y1−2s∇v(x, y)] = 0, ∀(x, y) ∈ R2

+,

lim
y↘0
−dsy1−2svy(x, y) = (−∆)su′(x), ∀x ∈ R,

v(x, 0) = u′(x), ∀x ∈ R.

where ds =
21−2sΓ(1− s)

Γ(s)
.

By the standard maximal principle arguments, it is easy to see that u′(x) > 0 for

all x ∈ R and lim
|x|→∞

u′(x) = 0 (see, e.g., [26] and [20] ). Then we know that

v(x, y) > 0, ∀(x, y) ∈ R2
+, and lim

|(x,y)|→∞
v(x, y) = 0.
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By (1.4.2), without loss of generality, we can assume u(−1) = θ. Since u′(x) > 0

for all x ∈ R, we have f ′(u(x)) ≥ 0 for all x ≤ −1. In summary, we know that v

satisfies
div[y1−2s∇v(x, y)] = 0, ∀(x, y) ∈ R2

+,

lim
y↘0
−dsy1−2svy(x, y) + cvx(x, 0) = f ′(u(x))u′(x) ≥ 0, ∀x ≤ −1,

v(x, y) > 0, ∀(x, y) ∈ R2
+ and lim

|(x,y)|→∞
v(x, y) = 0.

(2.1.6)

Define the auxiliary function

ϕ(x, y) =
y2s

[x2 + y2]
1+2s

2

+
sds
c
· 1

[x2 + y2]
1
2

∀x ≤ −1, y ≥ 0.

Direct computations tell us that for all x ≤ −1 and all y ≥ 0, we have

sds
c
· 1

|(x, y)|
≤ ϕ(x, y) ≤

(
1 +

sds
c

)
· 1

|(x, y)|

Also we will be able to get the following estimates of the auxiliary function.

div [y1−2s∇ϕ(x, y)] =
2s2ds
c
· y1−2s

[x2 + y2]
3
2

≥ 0,

lim
y↘0
−dsy1−2sϕy(x, y) = ds lim

y↘0

[
y2 − 2sx2

[x2 + y2]
3
2
+s

+
sds
c
· y2−2s

[x2 + y2]
3
2

]
= − 2sds
|x|1+2s

,

ϕx(x, 0) =
sds
c
· 1

|x|2
.

Since 0 < s ≤ 1
2
, we have 1

|x|2 ≤
1

|x|1+2s for all x ≤ −1. Hence for all x ≤ −1, we



14

have

lim
y↘0
−dsy1−2sϕy(x, y) + cϕx(x, 0) = − 2sds

|x|1+2s
+
sds
|x|2

≤ − 2sds
|x|1+2s

+
sds
|x|1+2s

= − sds
|x|1+2s

< 0.

For any δ > 0, let wδ(x, y) = v(x, y)− δϕ(x, y) for all x ≤ −1 and all y ≥ 0, then

wδ satisfies


div[y1−2s∇wδ(x, y)] ≤ 0, ∀x ≤ −1, y > 0,

lim
y↘0
−dsy1−2sDywδ(x, y) + cDxwδ(x, 0) ≥ 0, ∀x ≤ −1,

lim
|(x,y)|→∞

wδ(x, y) = 0.

(2.1.7)

Lemma 2.1.1. There exists some δ0 > 0 such that wδ0(−1, y) ≥ 0 for all y ≥ 0.

Proof. First we see that

lim
y→∞

ϕ(−1, y)
y2s

[1+y2]
1+2s

2

= lim
y→∞

y2s

[1+y2]
1+2s

2
+ sds

c
· 1

[1+y2]
1
2

y2s

[1+y2]
1+2s

2

= 1 +
sds
c
<∞.

Since u′(x) > 0 for all x ∈ R, then u(0) > u(−1), which implies that there exists

some constant B1 > 0 such that

as[u(0)− u(−1)] · y2s

[1 + y2]
1+2s

2

≥ B1ϕ(−1, y), ∀y ≥ 1. (2.1.8)
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Since v(x, y) = Py ∗ u′(x) for all (x, y) ∈ R2
+, by (2.1.5), for all y ≥ 1 we have

v(−1, y) =

∫
R

asy
2s

[(−1− x)2 + y2]
1+2s

2

· u′(x) dx

≥ asy
2s

[1 + y2]
1+2s

2

∫ 0

−1
u′(x) dx

= as[u(0)− u(−1)] · y2s

[1 + y2]
1+2s

2

≥ B1ϕ(−1, y).

On the other hand, since v(x, y) > 0 for all (x, y) ∈ R2
+, so there exists some

B2 > 0 such that

inf
0≤y≤1

v(−1, y) ≥ B2 · sup
0≤y≤1

ϕ(−1, y).

Let δ0 = min{B1, B2} > 0, we know that

wδ0(−1, y) ≥ 0, ∀y ≥ 0.

Lemma 2.1.2. For the above δ0 in Lemma 2.1.1, there holds that

wδ0(x, y) ≥ 0, ∀x ≤ −1, y ≥ 0.

Proof. Assume wδ0(x0, y0) < 0 for some x0 ≤ −1 and some y0 ≥ 0. Since wδ0(x, y)→

0, as |(x, y)| → ∞, by Lemma 2.1.1, we know that there exists some x1 < −1 and

some y1 ≥ 0 such that

wδ0(x1, y1) = inf
x≤−1, y≥0

wδ0(x, y) < 0.
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By the strong maximum principle for uniformly elliptic equations, we know that

y1 = 0. Applying Hopf lemma as in [8], we have

lim
y↘0
−dsy1−2sDywδ0(x1, y) < 0.

Since x1 is an interior minimum of wδ0(x, 0) in x < −1, then we have

Dxwδ0(x1, 0) = 0

. By (2.1.7), we get

lim
y↘0
−dsy1−2sDywδ0(x1, y) = lim

y↘0
−dsy1−2sDywδ0(x1, y) + cDxwδ0(x1, 0) ≥ 0.

We get a contradiction. Therefore

wδ0(x, y) ≥ 0, ∀x ≤ −1, y ≥ 0.

Now we provide the first theorem regarding to the existence of the traveling front

of (1.4.2).

Theorem 2.1.3. Suppose that there exists some θ ∈ (0, 1) such that f ∈ C1(R)

satisfies

∫ 1

0

f(u) du > 0, and f ′(u) ≥ 0, ∀u ∈ (0, θ]. (2.1.9)
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Then there is no solution to (1.4.2) if 0 < s ≤ 1
2
.

This theorem applies to the combustion model. For the Fisher-KPP model, i.e,

f ∈ C1(R) satisfies

f(u) > 0 = f(0) = f(1), ∀u ∈ (0, 1), f ′(0) > 0, and f ′(1) < 0,(2.1.10)

Theorem 2.1.3 implies that if 0 < s ≤ 1/2, (1.4.2) has no solution.

Proof. Assume (c, u) is a solution to (1.4.2). By Lemma 2.1.5, we know that

wδ0(x, 0) ≥ 0, ∀x ≤ −1.

Since ϕ(x, 0) ≥ sds
c
· 1

|x|
for all x ≤ −1, we know that

u′(x) ≥ δ0sds
c
· 1

|x|
, ∀x ≤ −1.

On the other hand, we know that

∫
R
u′(x) dx = 1. This is a contradiction which

implies that there is no solution to (1.4.2).
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2.2 Generalized Fisher-KPP model

In this section, we assume there exists some θ ∈ (0, 1), 0 < p < ∞, A1 > 0 and

A2 > 0 such that


f(u) > 0 = f(0) = f(1), ∀u ∈ (0, 1),

A1u
p ≤ f(u) ≤ A2u

p, ∀u ∈ [0, θ],

f ′(u) ≥ A1u
p−1, ∀u ∈ (0, θ).

(2.2.1)

One example for (2.2.1) is the following:

f(u) = up(1− u), ∀u ∈ R,

where p > 0 is the reaction power.

Our goal is to find the critical exponent s = s(p) such that a solution of (1.4.2)

exists if and only if 1 > s ≥ s(p). In this section, we provide the proof of nonexistence

of solutions for (1.4.2) when s < s(p) by studying the asymptotics of solutions related

to (1.4.2). By Theorem 2.1.3, it is readily seen that the solution to (1.4.2) does not

exist when 0 < s ≤ 1/2. Later, we shall discuss the existence of solutions to (1.4.2)

by a similar argument as in [26].

The following lemma is important in the proof of nonexistence, and has already

been proven in [26]. For completeness, we list the proof here.

Lemma 2.2.1. Let 1
2
< s < 1 and u ∈ C2(R) such that lim

|x|→∞
u′(x) = 0 and

lim
x→±∞

u(x) = L± for some L−, L+ ∈ R, then we have

lim
R→∞

∫ R

−R
(−∆)su(y) dy = 0.
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Proof. For any R > 0, we have

∫ R

−R
(−∆)su(y) dy = C1,s

[∫ R

−R

∫
|w|≥1

u(y)− u(y + w)

|w|1+2s
dwdy

+

∫ R

−R
(P.V.)

∫
|w|<1

u(y)− u(y + w)

|w|1+2s
dwdy

]
= C1,s

[∫ R

−R

∫
|w|≥1

u(y)− u(y + w)

|w|1+2s
dwdy

−
∫ R

−R

∫
|w|<1

u(y + w)− u(y)− u′(y)w

|w|1+2s
dwdy

]
.

For

∫ R

−R

∫
|w|≥1

u(y)− u(y + w)

|w|1+2s
dwdy, since 1

2
< s, by Fubini-Tonelli’s theorem

and the dominated convergence theorem, we know that

∫ R

−R

∫
|w|≥1

u(y)− u(y + w)

|w|1+2s
dwdy = −

∫ R

−R

∫
|w|≥1

∫ 1

0

u′(y + tw) · w
|w|1+2s

dtdwdy

= −
∫
|w|≥1

w

|w|1+2s

∫ 1

0

∫ R

−R
u′(y + tw) dydtdw

= −
∫
|w|≥1

w

|w|1+2s

∫ 1

0

[u(R + tw)

−u(−R + tw)] dtdw

→
∫
|w|≥1

w

|w|1+2s
· (L− − L+) dtdw = 0,

as R→∞

For

∫ R

−R

∫
|w|<1

u(y + w)− u(y)− u′(y)w

|w|1+2s
dwdy, since s < 1, by Fubini-Tonelli’s



20

theorem and the dominated convergence theorem, we know that

∫ R

−R

∫
|w|<1

u(y + w)− u(y)− u′(y)w

|w|1+2s
dwdy

=

∫ R

−R

∫
|w|<1

∫ 1

0

∫ 1

0

1

|w|2s−1
· u′′(y + rtw) drdtdwdy

=

∫
|w|≤1

1

|w|2s−1

∫ 1

0

∫ 1

0

∫ R

−R
u′′(y + rtw) dydrdtdw

=

∫
|w|≤1

1

|w|2s−1

∫ 1

0

∫ 1

0

[u′(R + rtw)− u′(−R + rtw)] drdtdw

→ 0, as R→∞.

Therefore, we can conclude that

∫ R

−R
(−∆)su(y) dy → 0, as R→∞.

Remark 2.2.2. If (c, u) is a solution to (1.4.2), since u′ ∈ L1(R), by Lemma 2.2.1

and f(u) ≥ 0 for all u ∈ [0, 1] we know that f(u) ∈ L1(R). In particular, if we know

that there exists some constants C > 0 and r > 0 such that

u′(x) ≥ C

|x|r
, ∀x ≤ −1,

then we have r > 1 by the integrability of u′. On the other hand, by (2.2.1), we

know that f(u(x)) ≥ A
(

C
r−1 ·

1
|x|r−1

)p
for all x ≤ −1. Hence it necessarily holds that

(r − 1)p > 1, i.e., r > p+1
p

.

In the following, we assume that (c, u) is a solution to (1.4.2) with c > 0 and

u(−1) = θ. Let u be the s-harmonic extension of u on R2
+ and v(x, y) = ux(x, y) =

Py ∗ u′(x) for all (x, y) ∈ R2
+, by the same discussion as in section ??, we know that



21

v satisfies
div[y1−2s∇v(x, y)] = 0, ∀(x, y) ∈ R2

+,

lim
y↘0
−dsy1−2svy(x, y) + cvx(x, 0) = f ′(u(x))u′(x), ∀x ∈ R,

v(x, y) > 0, ∀(x, y) ∈ R2
+, and lim

|(x,y)|→∞
v(x, y) = 0.

(2.2.2)

For any α ∈ [1, 2s] and β > 0, we consider the axillary functions

ϕα,β(x, y) =
y2s

[x2 + y2]
1+2s

2

+
2βsds
αc

· 1

[x2 + y2]
α
2

, ∀x ≤ −1, y ≥ 0.

By direct computations, for all x ≤ −1 and all y ≥ 0 we know that

2βsds
2sc

· 1

[x2 + y2]
α
2

≤ ϕα,β(x, y) ≤
(

1 +
2βsds
αc

)
· 1

|(x, y)|
,

div [y1−2s∇ϕα,β(x, y)] =
2βsds
c
· (2s− 1 + α)y1−2s

[x2 + y2]
α+2
2

≥ 0,

lim
y↘0
−dsy1−2sDyϕα,β(x, y) = ds lim

y↘0

[
y2 − 2sx2

[x2 + y2]
3
2
+s

+
2βsds
c
· y2−2s

[x2 + y2]
α+2
2

]
= − 2sds

|x|1+2s
,

Also we get

Dxϕα,β(x, 0) =
2βsds
c
· 1

|x|1+α
.

Hence for all x ≤ −1, we have

lim
y↘0
−dsy1−2sDyϕα,β(x, y) + cDxϕα,β(x, 0) = − 2sds

|x|1+2s
+

2βsds
|x|1+α

.
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For any δ ∈ (0, 1), let

wδ,α,β(x, y) = v(x, y)− δϕα,β(x, y), ∀x ≤ −1, y ≥ 0.

Then wδ,α,β satisfies



div[y1−2s∇wδ,α,β(x, y)] ≤ 0, ∀x ≤ −1, y > 0,

lim
y↘0
−dsy1−2sDywδ,α,β(x, y) + cDxwδ,α,β(x, 0) =

f ′(u(x))u′(x)− 2δβsds
|x|1+α + 2δsds

|x|1+2s , ∀x ≤ −1,

lim
|(x,y)|→∞

wδ,α,β(x, y) = 0.

(2.2.3)

Lemma 2.2.3. For any fixed α ∈ [1, 2s] and β > 0, for all δ ∈ (0, 1], if we have

f ′(u(x))u′(x)− 2δβsds
|x|1+α

+
2δsds
|x|1+2s

≥ 0, ∀x ≤ −1,

then there exists some constant C > 0 such that

u′(x) ≥ C

|x|α
, and u(x) ≥ C

|x|α−1
, ∀x ≤ −1.

Proof. Since α ≥ 1, we know that
1

[1 + y2]
α
2

≤ 1

[1 + y2]
1
2

for all y ≥ 0. By taking the

limit of the ratio, one can get

lim
y→∞

ϕα,β(−1, y)
y2s

[1+y2]
1+2s

2

≤ lim
y→∞

y2s

[1+y2]
1+2s

2
+ 2αβsds

c
· 1

[1+y2]
1
2

y2s

[1+y2]
1+2s

2

= 1 +
2αβsds

c
> 0.

By the same arguments as in Lemma 2.1.1 and Lemma 2.1.2, we know that there



23

exists some small δ0 > 0 such that

wδ0,α,β(x, y) ≥ 0, ∀x ≤ −1, y ≥ 0.

Since ϕα,β(x, 0) ≥ 2βsds
c
· 1

|x|α
for all x ≤ −1, we have

u′(x) = v(x, 0) ≥ 2δ0βsds
c

· 1

|x|α
, ∀x ≤ −1.

Lemma 2.2.4 (Initial Asymptotic Rate). There exists some constant C0 > 0 such

that

u′(x) ≥ C0

|x|2s
, and u(x) ≥ C0

|x|2s−1
, ∀x ≤ −1.

Proof. Let α = 2s and β = 1 in Lemma 2.2.3. Observe that

f ′(u(x))u′(x)− 2δβsds
|x|1+α

+
2δsds
|x|1+2s

= f ′(u(x))u′(x)− 2δsds
|x|1+2s

+
2δsds
|x|1+2s

= f ′(u(x))u′(x) ≥ 0, ∀x ≤ −1.

Then Lemma 2.2.3 leads to the conclusion.

Remark 2.2.5. Lemma 2.2.4 provides an alternative proof of Proposition 4.2 in [26].

As an immediate consequence of Lemma 2.2.4 and Remark 2.2.2, we have the

following

Theorem 2.2.6. Let
1

2
< s ≤ p+ 1

2p
, then there is no solution to (1.4.2). In partic-

ular, for all 0 < p ≤ 1 and
1

2
< s < 1, there is no solution to (1.4.2).
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Lemma 2.2.7 (Asymptotic Rate Lifting). Let p+1
2p

< s < 1 and r ∈ (p+1
p
, 2s], we

assume there exists some constant B0 > 0 such that

u′(x) ≥ B0

|x|r
, and u(x) ≥ B0

|x|r−1
, ∀x ≤ −1.

Let α ∈ [1, 2s] be such that α ≥ p(r− 1), then there exists some constant C > 0 such

that

u′(x) ≥ C

|x|α
, and u(x) ≥ C

|x|α−1
, ∀x ≤ −1.

Proof. By the assumption and (2.2.1), for all β > 0, all δ ∈ (0, 1] and all x ≤ −1, we

know that

f ′(u(x))u′(x)− 2δβsds
|x|1+α

+
2δsds
|x|1+2s

≥ A1|u(x)|p−1u′(x)− 2δβsds
|x|1+α

≥ A1

(
B0

|x|r−1

)p−1
· B0

|x|r
− 2δβsds
|x|1+α

=
A1B

p
0

|x|r+(p−1)(r−1) −
2δβsds
|x|1+α

≥ A1B
p
0 − 2δβsds
|x|1+α

.

Let β =
A1B

p
0

2δsds
> 0, by Lemma 2.2.3, we complete the proof.

Remark 2.2.8. If p+1
p
< r < p

p−1 , letting α = p(r − 1), we know that

1 < α <
r

r − 1
(r − 1) = r.

We shall show the following theorem.

Theorem 2.2.9. Let p > 1 and 1
2
< s < min

{
1, p

2(p−1)

}
, then (1.4.2) has no solution.
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Proof. Assume (c, u) is a solution to (1.4.2). We have Claim I: Choose r0 = 2s and

let rk+1 = p(rk − 1) for all k ≥ 0, then it necessarily holds that p
p−1 > rk >

p+1
p

and

there exists some constant Bk > 0 such that

u′(x) ≥ Bk

|x|rk
, and u(x) ≥ Bk

|x|rk−1
, ∀x ≤ −1.

When k = 0, by the assumption 2s < p
p−1 , Lemma 2.2.4 and Remark 2.2.2,

we know that the Claim I is true. Assume the Claim I holds for k = n, that is,

p
p−1 > rn >

p+1
p

and there exists some constant Bn > 0 such that

u′(x) ≥ Bn

|x|rn
, and u(x) ≥ Bn

|x|rn−1
, ∀x ≤ −1.

By Remark 2.2.8 and Lemma 2.2.7, we know that 1 < rn+1 < rn <
p
p−1 and there

exists some constant Bn+1 > 0 such that

u′(x) ≥ Bn+1

|x|rn+1
, and u(x) ≥ Bn+1

|x|rn+1−1
, ∀x ≤ −1.

By Remark 2.2.2, it necessarily holds that rn+1 >
p+1
p

. Hence we know that the

Claim I is true for k = n + 1. By induction, we can conclude that Claim I holds for

all k ≥ 0.

Claim II: It necessarily holds that

2s > 1 +
1

p
+

1

p2
+ · · ·+ 1

pn
, ∀n ≥ 1.
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Since rk+1 = p(rk − 1) for all k ≥ 0, we know that

rk = 1 +
rk+1

p
, ∀k ≥ 0

Hence we obtain

2s = r0 = 1 +
r1
p

= 1 +
1

p

(
1 +

r2
p

)
= 1 +

1

p
+

1

p2
+ · · ·+ 1

pn
+
rn+1

pn+1

> 1 +
1

p
+

1

p2
+ · · ·+ 1

pn
, ∀n ≥ 1.

Since p > 1, by taking n→∞ in Claim II, we know that it necessarily holds that

2s ≥ 1

1− 1
p

=
p

p− 1
,

which contradicts with our assumption. Therefore if p > 1 and 1
2
< s < min

{
1, p

2(p−1)

}
,

(1.4.2) has no solution.

Note that p
2(p−1) ≥ 1 if 1 < p ≤ 2, and p

2(p−1) < 1 if 2 < p. Therefore, there is no

solution to (1.4.2) for all s ∈ (0, 1) if p ≤ 2.

Now we are going to assume that f satisfies (2.2.1), p > 2 and p
2(p−1) ≤ s < 1,

we will show that a solution to (1.4.2) exists. A. Mellet, J. Roquejoffre and Y. Sire

[26] have shown the existence of traveling fronts for the non local combustion model

when 1
2
< s < 1. The proof for the generalized Fisher-KPP model follows a similar

argument to that in [26]. For any c ∈ R and b > 0, we first consider the following
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truncated problem:


(−∆)su(x) + cu′(x) = f(u(x)), ∀x ∈ (−b, b),

u(x) = 0, ∀x ≤ −b,

u(x) = 1, ∀x ≥ b.

(2.2.4)

Proposition 2.2.10. Assume s ≥ p

2(p− 1)
and f satisfies (2.2.1). Then there exists

a constant M such that if b > M the truncated problem 2.2.4 has a solution (ub, cb).

Furthermore, the following properties hold:

1. There exists K independent of b such that −K ≤ cb ≤ K;

2. ub is non-decreasing with respect to x and satisfies 0 < ub(x) < 1 for all x ∈

(−b, b).

To prove this Proposition, we need the construction of sub- and super-solutions.

The construction is based on the following lemmas, same as in [26]. We would like

to present the proof of the following second lemma, and especially elaborate on the

sliding method mentioned in [26].

Lemma 2.2.11. For any c ∈ R and b > 0, (2.2.4) has a solution uc,b such that

0 ≤ uc,b(x) ≤ 1 in R, uc,b is non-decreasing in R and c→ uc,b is continuous.

Proof. The proof is the same as the proof of Lemma 2.4 in [26].

Lemma 2.2.12. There exists some constants M,K > 0 such that for all b > M , we

have

a. If c > K, then uc,b(0) < θ;



28

b. If c < −K, then uc,b(0) > θ.

Together with Lemma 2.2.11, Lemma 2.2.12 implies that there exists cb ∈ [−K,K]

such that uc,b(0) = θ.

Proof. Consider the function

ϕ(x) =


1

|x|2s−1 , ∀x ≤ −1,

1, ∀x > −1.

Since 2s > 1, by Lemma 2.2 in [26], we have

(−∆)sϕ(x) + cϕ′(x) = − C1,s

2s|x|2s
+
c(2s− 1)

|x|2s
+O

(
1

|x|4s−1

)
, as x→ −∞.

Moreover, by (2.2.1), we get

f(ϕ(x)) ≤ A2|ϕ(x)|p ≤ A2

|x|(2s−1)p
, ∀x ∈ R.

Since p
p−1 ≤ 2s, we have (2s−1)p ≥ 2s, which implies that for all c ≥ C1,s

2s(2s− 1)
+

A2 + 1

2s− 1
, we have

(−∆)sϕ(x) + cϕ′(x)− f(ϕ(x)) ≥ 1

|x|2s
+O

(
1

|x|4s−1

)
, as x→ −∞.

Since 4s−1 > 2s, we know that there exists some large A > 0 which is independent

of c such that for all c ≥ C1,s

2s(2s− 1)
+
A2 + 1

2s− 1
, we have

(−∆)sϕ(x) + cϕ′(x) ≥ f(ϕ(x)), x ≤ −A.
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For −A < x < −1, we know that (−∆)sϕ(x) is bounded, but ϕ′(x) =
2s− 1

|x|2s
≥

2s− 1

A2s
, so there exists some K > 0 such that for all c ≥ K, we have

(−∆)sϕ(x) + cϕ′(x) ≥ sup
x∈[−A,−1]

f(ϕ(x)).

Hence for all c ≥ K, we have

(−∆)sϕ(x) + cϕ′(x) ≥ f(ϕ(x)), ∀x ≤ −1.

On the other hand, by the definition of ϕ(x) and (2.1.1), we know that for all

x ≥ −1, (−∆)sϕ(x) > 0, ϕ′(x) = 0 and f(ϕ(x)) = 0. In summary, for all c ≥ K,

we have ϕ(x) is a super-solution for (2.2.4). Now fix some large M > 0 such that

ϕ(−M) = 1
M2s−1 < θ.

Claim: For all c ≥ K and all b ≥ M , we have uc,b(x) ≤ ϕ(x −M) for all x ∈ R, in

particular, uc,b(0) < θ.

Let φ(x) = ϕ(x−M), define

Ψt(x) = φ(x+ t)− uc(x), x ∈ R.

Let

O = {t ≥ 0 : Ψt(x) = φ(x+ t)− uc(x) ≥ 0, x ∈ R},

then O is nonempty since {t ≥ 2b} ⊂ O. O is clearly closed. Take a convergent

sequence {tn} ⊂ O, tn → t as n→∞ then

lim
n→∞

Ψtn(x) = lim
n→∞

φ(x+ tn)− uc(x) ≥ 0, x ∈ R
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so t ∈ O.

Next we show that for any t ∈ O,

Ψt(x) = φ(x+ t)− uc(x) > 0 for all x ∈ (−b, b).

In fact, if there exists x0 ∈ (−b, b) such that Ψt(x0) = φ(x0 + t)−uc(x0) = 0, then

0 > (−∆)sΨt(x0) + cΨ′t(x0) ≥ f(φ(x0 + t))− f(uc(x0)) = 0.

This is a contradiction.

It follows that O is open. Together with the fact that O is closed, we get O =

[0,∞). By the above sliding argument we know

uc(0) ≤ ϕ(−M) < θ.

Similarly, for a lower bound we define ϕ1(x) = 1−ϕ(−x). Then if c ≤ −K, x > 1,

(−∆)sϕ1(x) + cϕ′1(x) = −[(−∆)sϕ(−x)− cϕ′(x)] ≤ 0 ≤ f(ϕ1).

Moreover ϕ1(x) = 0 for x ≤ 1. Take M so that ϕ1(−M) = 1− t0, then ϕ1(x) > θ for

x ≥M . Define ϕ1,M(x) = ϕ1(x+M), then ϕ1,M is a sub-solution to 2.2.4. Therefore

by the same argument as above uc(0) ≥ ϕ1,M(0) > θ for c < −K.

Theorem 2.2.13. Under the conditions of Proposition 2.2.10, there exists a subse-

quence bn →∞ such that ubn → u0 and cbn → c0. Furthermore, c0 ∈ (0, K] and u0 is

a monotone increasing solution of (1.4.2).
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Proof. By Lemma 2.2.12, cb ∈ [−K,K] we have the elliptic estimate for ub:

‖ub‖C2,α ≤ C

for some α ∈ (0, 1). Thus there exists a subsequence bn →∞ such that

cn := cbn → c0 ∈ [−K,K]

un := ubn → u0, as n→∞.

Thus u0 satisfies (−∆)su0+c0u
′
0 = f(u0). Also we know u0 is monotone increasing,

u0(0) = θ and u0 is bounded. By a compactness argument, there exist γ0, γ1 such

that lim
x→−∞

u0(x) = γ0 and lim
x→∞

u0(x) = γ1 with

0 ≤ γ0 ≤ θ ≤ γ1 ≤ 1.

We know both γ0 and γ1 satisfy f(γ0) = 0 and f(γ1) = 0 which implies γ0 =

0, γ1 = 1. Moreover, by integrating (−∆)su0 + c0u
′
0 = f(u0) over R, together with

Lemma 2.2.1, we know

c0 =

∫
R
f(u0(x))dx > 0.



Chapter 3

Asymptotic Rates and Stability

3.1 Assymptotic rates at Infinity

In this chapter, we will study asymptotic behaviors of solutions to (1.4.2) when x→

±∞. Let f ∈ C1(R) satisfy (2.2.1) and (c, u) be a solution to (1.4.2). First we

investigate the asymptotic behavior of u when x→∞. Let M = ‖f‖C1([0,1]) > 0, by

(2.2.2), we know that


div[y1−2s∇v(x, y)] = 0, ∀(x, y) ∈ R2

+,

lim
y↘0
−dsy1−2svy(x, y) + cvx(x, 0) +Mv(x, 0) = [M + f ′(u(x))]u′(x) ≥ 0, ∀x ∈ R,

v(x, y) > 0, ∀(x, y) ∈ R2
+, and lim

|(x,y)|→∞
v(x, y) = 0.

(3.1.1)

We consider the axillary function

ϕ(x, y) =
y2s

[x2 + y2]
1+2s

2

+
2sds
M
· 1

[x2 + y2]
1+2s

2

, ∀x ≥ 1, y ≥ 0.

32
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For all x ≥ 1 and all y ≥ 0, we can get the following estimates.

2sds
M
· 1

[x2 + y2]
1+2s

2

≤ ϕ(x, y) ≤
(

1 +
2sds
M

)
· 1

|(x, y)|
,

div [y1−2s∇ϕ(x, y)] =
2sds
M
· (4s)(1 + 2s)y1−2s

[x2 + y2]
2s+3

2

≥ 0,

lim
y↘0
−dsy1−2sϕy(x, y) = ds lim

y↘0

[
y2 − 2sx2

[x2 + y2]
3
2
+s

+
2sds
M
· y2−2s

[x2 + y2]
α+2
2

]
= − 2sds

|x|1+2s
,

Dxϕ(x, 0) = −2sds
M
· 2s

|x|2+2s
.

Hence for all x ≥ 1, we have

lim
y↘0
−dsy1−2sϕy(x, y) + cϕx(x, 0) +Mϕ(x, 0)

= − 2sds
|x|1+2s

− 2csds
M
· 2s

|x|2+2s
+M · 2sds

M
· 1

|x|1+2s
,

= −2csds
M
· 2s

|x|2+2s
≤ 0.

For any δ > 0, let

wδ(x, y) = v(x, y)− δϕ(x, y), ∀x ≥ 1, y ≥ 0.

Then wδ satisfies


div[y1−2s∇wδ(x, y)] ≤ 0, ∀x ≥ 1, y > 0,

lim
y↘0
−dsy1−2sDywδ(x, y) + cDxwδ(x, 0) +Mwδ(x, 0) ≥ 0, ∀x ≥ 1,

lim
|(x,y)|→∞

wδ(x, y) = 0.

(3.1.2)
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We have the following

Proposition 3.1.1. There exists some constant C > 0 such that

u′(x) ≥ C

|x|1+2s
, ∀x ≥ 1.

Proof. By the same argument as in Lemma 2.1.2, we know that there is a positive

constant δ0 such that

v(x, y) ≥ δ0ϕ(x, y), ∀x ≥ 1, y ≥ 0.

In particular, we know that

u′(x) = v(x, 0) ≥ δ0ϕ(x, 0) =
2δ0sds
|x|1+2s

, ∀x ≥ 0.

Lemma 3.1.2. Let β > 0, we consider the function

ψβ(x) =


1

|x|β
, ∀x < −1,

0, ∀x ≥ −1.

Then

a. If 0 < β < 1, we have

(−∆)sψβ(x) = −C1,s ·B(2s+ β, 1− β)

x2s+β
+ o

(
1

x2s+β

)
, as x→∞.
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b. If β > 1, we have

(−∆)sψβ(x) = − C1,s

β − 1
· 1

x1+2s
+ o

(
1

x1+2s

)
, as x→∞.

c. If β = 1, we have

(−∆)sψ1(x) = −C1,s lnx

x2s+1
+ o

(
lnx

x2s+1

)
, as x→∞.

Proof. In fact, for all x ≥ 2, by changing of variables, we know that

(−∆)sψβ(x) = C1,s

[∫ −x−1
−∞

ψβ(x)− ψβ(x+ y)

|y|1+2s
dy + (P.V.)

∫ ∞
−x−1

ψβ(x)− ψβ(x+ y)

|y|1+2s
dy

]
= C1,s

∫ −x−1
−∞

−1

|x+ y|β|y|1+2s
dy = − C1,s

x2s+β

∫ −1− 1
x

−∞

1

|z + 1|β|z|1+2s
dz.

a. When 0 < β < 1, we have

∫ −1
−2

1

|z + 1|β
dz <∞.

By the dominated convergence theorem, we know that

∫ −1− 1
x

−∞

1

|z + 1|β|z|1+2s
dz →

∫ −1
−∞

1

|z + 1|β|z|1+2s
dz, as x→∞.

On the other hand, we know that

∫ −1
−∞

1

|z + 1|β|z|1+2s
dz =

∫ 1

0

y1+2s∣∣∣− 1
y

+ 1
∣∣∣β ·

1

y2
dy (by letting z = −1

y
)

=

∫ 1

0

y2s+β−1(1− y)−β dy = B(2s+ β, 1− β) > 0.
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So we know that

(−∆)sψβ(x) = −C1,s ·B(2s+ β, 1− β)

x2s+β
+ o

(
1

x2s+β

)
, as x→∞.

b. When β > 1, we know that

∫ −1
−2

1

|z + 1|β
dz =∞, which implies that

∫ −1− 1
x

−∞

1

|z + 1|β|z|1+2s
dz →∞, as x→∞.

By L’Hospital rule, we have

lim
x→∞

∫ −1− 1
x

−∞
1

|z+1|β |z|1+2s dz

xβ−1
= lim

x→∞

xβ ·
∣∣1 + 1

x

∣∣−1−2s · 1
x2

(β − 1)xβ−2
=

1

β − 1
.

So we derive

(−∆)sψβ(x) = − C1,s

β − 1
· 1

x1+2s
+ o

(
1

x1+2s

)
, as x→∞.

c. When β = 1, we know that

∫ −1
−2

1

|z + 1|
dz =∞, which implies that

∫ −1− 1
x

−∞

1

|z + 1||z|1+2s
dz →∞, asx→∞.

By L’Hospital rule, we know that

lim
x→∞

∫ −1− 1
x

−∞
1

|z+1||z|1+2s dz

lnx
= lim

x→∞

|x| ·
∣∣1 + 1

x

∣∣−1−2s · 1
x2

1
x

= 1.
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Therefore we have

(−∆)sψ1(x) = −C1,s lnx

x2s+1
+ o

(
lnx

x2s+1

)
, as x→∞.

Lemma 3.1.3. Let β > 0, ψβ(x) be defined as in Lemma 3.1.2, then we have the

following estimates:

a. If 0 < β < 1, there holds that

(−∆)sψβ(x) = −C1,s · A(s, β)

|x|2s+β
+ o

(
1

|x|2s+β

)
, as x→ −∞;

where

A(s, β) =

∫ ∞
1

1

|z|1+2s|z + 1|β
dz − 1

s
+

∫ 1

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz;

b. If β > 1, we have

(−∆)sψβ(x) = − C1,s

β − 1
· 1

|x|1+2s
+ o

(
1

|x|2s+1

)
, as x→ −∞;

c. If β = 1, we have

(−∆)sψ1(x) = −C1,s ln |x|
|x|2s+1

+ o

(
ln |x|
|x|2s+1

)
, as x→ −∞.
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Proof. For all x < −2, we know that x+ 1 < −x− 1 and

(−∆)sψβ(x) = −C1,s

2

∫
R

ψβ(x+ y) + ψβ(x− y)− 2ψβ(x)

|y|1+2s
dy

= −C1,s

2

[∫ x+1

−∞

1
|x+y|β −

2
|x|β

|y|1+2s
dy +

∫ −x−1
x+1

1
|x+y|β + 1

|x−y|β −
2
|x|β

|y|1+2s
dy

+

∫ ∞
−x−1

1
|x−y|β −

2
|x|β

|y|1+2s
dy

]

= − C1,s

2|x|2s+β

[∫ −1− 1
x

−∞

1
|z−1|β − 2

|z|1+2s
dz +

∫ 1+ 1
x

−1− 1
x

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz

+

∫ ∞
1+ 1

x

1
|z+1|β − 2

|z|1+2s
dz

]
Let y = −xz

= − C1,s

|x|2s+β

[∫ ∞
1+ 1

x

1
|z+1|β − 2

|z|1+2s
dz +

∫ 1+ 1
x

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz

]

For the first term inside the bracket, we know that

lim
x→−∞

∫ ∞
1+ 1

x

1
|z+1|β − 2

|z|1+2s
dz =

∫ ∞
1

1

|z|1+2s|z + 1|β
dz − 1

s
.

a. Since β ∈ (0, 1), we know that

∫ 1

0

1

|z − 1|β
dz <∞, which implies that

lim
x→−∞

∫ 1+ 1
x

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz =

∫ 1

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz.

Let

A(s, β) =

∫ ∞
1

1

|z|1+2s|z + 1|β
dz − 1

s
+

∫ 1

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz,
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then we have

(−∆)sψβ(x) = −C1,s · A(s, β)

|x|2s+β
+ o

(
1

|x|2s+β

)
, as x→ −∞.

b. Since β > 1, we know that

∫ 1

0

1

|z − 1|β
dz =∞, which implies that

∫ 1+ 1
x

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz →∞, as x→ −∞.

By L’Hospital rule, we know that

lim
x→−∞

∫ 1+ 1
x

0

1

|z−1|β
+ 1

|z+1|β
−2

|z|1+2s dz

(−x)β−1
= lim

x→−∞

[
|x|β + 1

2β
− 2
]
·
(
− 1
x2

)
−(β − 1)(−x)β−2

=
1

β − 1
.

Hence we have

(−∆)sψβ(x) = − C1,s

β − 1
· 1

|x|2s+1
+ o

(
1

|x|1+2s

)
, as x→ −∞.

c. Since β = 1, we know that

∫ 1

0

1

|z − 1|
dz =∞, which implies that

∫ 1+ 1
x

0

1
|z−1|β + 1

|z+1|β − 2

|z|1+2s
dz →∞, as x→ −∞.

By L’Hospital rule, we know that

lim
x→−∞

∫ 1+ 1
x

0

1
|z−1|+

1
|z+1|−2

|z|1+2s dz

ln(−x)
= lim

x→−∞

[
|x|+ 1

2
− 2
]
·
(
− 1
x2

)
1
x

= 1.
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Hence we have

(−∆)sψ1(x) = −C1,s ln |x|
|x|2s+1

+ o

(
ln |x|
|x|2s+1

)
, as x→ −∞.

Lemma 3.1.4. Consider the function

φ(x) =

 1, ∀x ≤ −1,

0, ∀x > −1.

Then

(−∆)sφ(x) = −C1,s

2s
· 1

|x|2s
+ o

(
1

|x|2s

)
, as x→∞, and

(−∆)sφ(x) =
C1,s

2s
· 1

|x|2s
+ o

(
1

|x|2s

)
, as x→ −∞.

Proof. a. In fact, for all x ≥ 2, we have

(−∆)sφ(x) = C1,s

[∫ −x−1
−∞

φ(x)− φ(x+ y)

|y|1+2s
dy + (P.V.)

∫ ∞
−x−1

φ(x)− φ(x+ y)

|y|1+2s
dy

]
= −C1,s

∫ −x−1
−∞

1

|y|1+2s
dy

= −C1,s

2s
· 1

|x+ 1|2s

= −C1,s

2s
· 1

|x|2s
+ o

(
1

|x|2s

)
, as x→∞.
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b. If x ≤ −2, we have

(−∆)sφ(x) = C1,s

[
(P.V.)

∫ −x−1
−∞

φ(x)− φ(x+ y)

|y|1+2s
dy +

∫ ∞
−x−1

φ(x)− φ(x+ y)

|y|1+2s
dy

]
= C1,s

∫ ∞
−x−1

1

|y|1+2s
dy

=
C1,s

2s
· 1

|x+ 1|2s

=
C1,s

2s
· 1

|x|2s
+ o

(
1

|x|2s

)
, as x→ −∞.

Below we show a form of the maximal principle which is a slight variation of those

in [?] and [20].

Lemma 3.1.5 (The Maximum Principle). Let H be a nonempty open subset of R,

assume d(x) ≥ 0 for all x ∈ H and w ∈ C1(H) satisfies


(−∆)sw(x) + cw′(x) + d(x)w(x) ≥ 0, ∀x ∈ H,

lim
|x|→∞

w(x) = 0,

w(x) ≥ 0, ∀x /∈ H.

Then w(x) ≥ 0 for all x in R.

Proof. Assume w(x0) < 0 for some x0 ∈ R, since w(x) ≥ 0 for all x /∈ H, lim
|x|→∞

w(x) =

0, and w ∈ C1(H), then there exists some x1 ∈ H such that

w(x1) = inf
x∈R

w(x) < 0.
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Since x1 is a global minimum of w in R, x1 ∈ H and w ∈ C1(H), then

(−∆)sw(x1) < 0, and w′(x1) = 0.

Since d(x) ≥ 0 for all x ∈ H, and x1 ∈ H, so we have

(−∆)sw(x1) + cw′(x1) + d(x1)w(x1) < 0,

which contradicts with the assumption.

The following two propositions give suitable lower and upper bounds of the asymp-

totic decay rates of u′ and 1 − u at ∞, which are expected to be a power of 1 + 2s

and 2s, respectively.

Proposition 3.1.6. Let
1

2
< s < 1 and (c, u) be a solution to (1.4.2) with c > 0.

Assume that f ′(1) < 0, then there exists some constant C > 0 such that

u′(x) ≤ C

|x|2s
, and 1− u(x) ≤ C

|x|2s
, x ≥ 1.

Proof. Since f ′(1) < 0, there exists some m > 0 and θ0 ∈ (0, 1) such that f ′(u) ≤

−m for all u ∈ [θ0, 1]. Let ε > 0 be such that −C1,s

2s
+ mε−2s =

m

2
ε−2s, that is,

ε =

(
sm

C1,s

) 1
2s

. Consider

Ψ(x) = φ
(
x− ε−1 − 1

)
+ ψ2s(−εx) ∀x ∈ R.
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we know that

Ψ(x) = ε−2s · 1

|x|2s
, and Ψ′(x) = −2sε−2s · 1

|x|1+2s
, ∀x > 1

ε
.

By Lemma 3.1.4 and Lemma 3.1.3, we know that

(−∆)sΨ(x) = −C1,s

2s
· 1

|x|2s
+ o

(
1

|x|2s

)
, as x→∞.

Hence we have

(−∆)sΨ(x) + cΨ′(x) +mΨ(x) =

[
−C1,s

2s
+mε−2s

]
· 1

|x|2s
+ o

(
1

|x|2s

)
=

m

2
ε−2s · 1

|x|2s
+ o

(
1

|x|2s

)
, as x→∞.

So there exists some large R > 0 such that

(−∆)sΨ(x) + cΨ′(x) +mΨ(x) ≥ 0, ∀x ≥ R.

Up to a translation, without the loss of generality, we assume u(0) = θ0. Notice

that v(x) = u′(x) > 0 in R satisfies

(−∆)sv(x) + cv′(x) +mv(x) = [m+ f ′(u(x))]v(x) ≤ 0, ∀x ≥ R.

Since Ψ(x) > 0 for all x ∈ R, there exists some C > 0 such that

C > ‖v‖C(R) and C inf
x∈[ε−1,R]

Ψ(x) ≥ ‖v‖C(R).
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Since Ψ(x) = φ
(
x− ε−1 − 1

)
= 1 for all x ≤ ε−1, we get CΨ(x) = C ≥ ‖v‖C(R)

for all x ≤ ε−1. In summary, we know that

CΨ(x) ≥ v(x), ∀x ≤ R.

Let w(x) = CΨ(x)− v(x) for all x ∈ R, we have


(−∆)sw(x) + cw′(x) +mw(x) ≥ 0, ∀x ≥ R,

lim
x→∞

w(x) = 0,

w(x) ≥ 0, ∀x ≤ R.

By Lemma 3.1.5, we have w(x) ≥ 0 in R, which implies that

C

|x|2s
≥ v(x) = u′(x), ∀x ≥ 1.

Proposition 3.1.7. Let
1

2
< s < 1, assume that f ′(1) < 0, let (c, u) be a solution to

(1.4.2) with c > 0. Then there exists some constant C > 0 such that

u′(x) ≤ C

|x|1+2s
, and 1− u(x) ≤ C

|x|1+2s
, x ≥ 1.

Proof. Since f ′(1) < 0, there exists some m > 0 and θ0 ∈ (0, 1) such that f ′(u) ≤ −m

for all u ∈ [θ0, 1]. Let ε > 0 be such that

−ε−1 · C1,s

2s− 1
− ε−1 · C1,s

2s
+mε−1−2s =

m

2
· ε−1−2s.
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That is, we have

ε2s

2s
+

ε2s

2s− 1
=

m

2C1,s

.

Look at the function Ψ(x) = ψ2s(εx−2) +ψ1+2s(−εx) for all x ∈ R, we know that

Ψ(x) = ε−1−2s · 1

|x|1+2s
, and Ψ′(x) = −ε−1−2s · 1 + 2s

|x|2+2s
, ∀x > ε−1.

By Lemma 3.1.2 and Lemma 3.1.3, we know that

(−∆)sΨ(x) = −ε−1 · C1,s

2s− 1
· 1

|x|1+2s
− ε−1 · C1,s

2s
· 1

|x|1+2s
+ o

(
1

|x|1+2s

)
, as x→∞.

So we get

(−∆)sΨ(x) + cΨ′(x) +mΨ(x) =

[
−ε−1 · C1,s

2s− 1
− ε−1 · C1,s

2s
+mε−1−2s

]
· 1

|x|1+2s
+ o

(
1

|x|1+2s

)
=

m

2
· ε−1−2s · 1

|x|1+2s
+ o

(
1

|x|1+2s

)
, as x→∞.

Hence there exists some large R > 0 such that

(−∆)sΨ(x) + cΨ′(x) +mΨ(x) ≥ 0, ∀x ≥ R.

Without the loss of generality, we assume u
(
ε−1
)

= θ0, we know that v = u′

satisfies

(−∆)sv(x) + cv′(x) +mv(x) = [m+ f ′(u(x))]v(x) ≤ 0, ∀x ≥ ε−1.
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For all x ≤ ε−1, we have εx− 2 ≤ −1 and −εx ≥ −1, which implies that

Ψ(x) = ψ2s(εx− 2) =
1

|εx− 2|2s
.

By Proposition 3.1.6), we know that there exists some constant C1 > 0 such that

u′(x) = v(x) ≤ C1Ψ(x), ∀x ≤ ε−1.

Notice that for all x ≥ ε−1, Ψ(x) ≥ ψ1+2s(−εx) > 0, which implies that there

exists some C2 > 0 such that

C2 inf
x∈[ 1

ε
,R]

Ψ(x) ≥ sup
x∈[ε−1,R]

v(x).

Let C = max{C1, C2} > 0 and w(x) = CΨ(x)− v(x) for all x ∈ R, then


(−∆)sw(x) + cw′(x) ≥ 0, ∀x ≥ R,

lim
x→∞

w(x) = 0,

w(x) ≥ 0, ∀x ≤ R.

By Lemma 3.1.5, we know that w(x) ≥ 0 in R, which implies

C

|x|1+2s
≥ v(x) = u′(x), ∀x ≥ 1.

Proposition 3.1.8. Let
1

2
< s < 1,let (c, u) be a solution to (1.4.2) with c > 0 in
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Theorem 2.2.13. Then there exists some constant C > 0 such that

1

C|x|2s
≤ u′(x), and

1

C|x|2s−1
≤ u(x) ≤ C

|x|2s−1
, ∀x ≤ −1.

Proof. We have shown in the proof of Theorem 2.2.13 that there exists some constant

C > 0 such that

u(x) ≤ C

|x|2s−1
, ∀x ≤ −1.

Now it suffices to show that there exists some constant C > 0 such that

1

C|x|2s
≤ u′(x), ∀x ≤ −1.

Let ε > 0 be such that − C1,s

2s− 1
+ 2scε1−2s = − C1,s

2(2s− 1)
, that is,

ε1−2s =
C1,s

4sc(2s− 1)
.

Let Φ(x) = ψ2s(εx) in R, then

Φ(x) = ε−2s · 1

|x|2s
, and Φ′(x) = ε−2s · 2s

|x|1+2s
, ∀x ≤ −ε−1.

By Lemma 3.1.3, we have

(−∆)sΦ(x) = − C1,s

2s− 1
· ε−1

|x|1+2s
+ o

(
1

|x|1+2s

)
, as x→ −∞.
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So we get

(−∆)sΦ(x) + cΦ′(x) = − C1,s

2s− 1
· ε−1

|x|1+2s
+ cε−2s · 2s

|x|1+2s
+ o

(
1

|x|1+2s

)
=

[
− C1,s

2s− 1
+ 2scε1−2s

]
ε−1

|x|2s
+ o

(
1

|x|1+2s

)
= − C1,s

2(2s− 1)
· ε−1

|x|1+2s
+ o

(
1

|x|1+2s

)
, as x→ −∞

So there exists some large R > 0 such that

(−∆)sΦ(x) + cΦ′(x) ≤ 0, ∀x ≤ −R.

Since f ′(t) ≥ 0 for all t ∈ [0, θ0], without the loss of generality, we assume

u(−ε−1) = θ0. Notice that v(x) = u′(x) > 0 in R satisfies

(−∆)sv(x) + cv′(x) = f ′(u(x))(x) ≥ 0, ∀x ≤ −ε−1.

Since Φ(x) = 0 for all x ≥ −ε−1, so we get Φ(x) ≤ v(x) for all x ≥ −ε−1. Since

v(x) > 0 in R, there exists some C > 1 such that

C inf
x∈[−R,−ε−1]

v(x) ≥ sup
x∈[−R,−ε−1]

Φ(x).

Let w(x) = Cv(x)− Φ(x) for all x ∈ R, we have


(−∆)sw(x) + cw′(x) ≥ 0, ∀x ≤ −R,

lim
x→−∞

w(x) = 0,

w(x) ≥ 0, ∀x ≥ −R.
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By Lemma 3.1.5, we have w(x) ≥ 0 in R, which implies that

C

|x|2s
≤ v(x) = u′(x), ∀x ≤ −1.

3.2 Stability results

Another question of interests is the the approach of solution to a traveling wave so-

lution for the initial value problem corresponding to (1.1.2) with fractional laplacian.

That is, we would like to focus on the fate of solutions whose initial conditions are

small perturbations of the traveling wave under consideration. If any such solution

stays close to the set of all translates of the traveling wave u(·) for all positive times,

then we say that the traveling wave u(·) is stable. If there are initial conditions arbi-

trarily close to the wave such that the associated solutions leave a small neighborhood

of the wave and its translates, then the wave is said to be unstable.

Fife and McLeod [17] considered the pure initial value problem for the nonlinear

equation

ut − uxx − f(u) = 0, x ∈ (−∞,∞), t > 0, (3.2.1)

in the case

f(0) = f(1) = 0, f ′(x) < 0, f ′(1) < 0.
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The initial value being, say

u(x, 0) = φ0(x), −∞ < x <∞. (3.2.2)

One of the central questions for this problem is the behavior as t → ∞ of the

solution u(x, t); in particular one would like to determine under what circumstances

it does (or does not) tend to a traveling front solution.

If we assume f ∈ C1 with f(0) = f(1) = 0, so that u ≡ 0 and u ≡ 1 are particular

solutions of (3.2.1), it is a standard result that if u0 is piecewise continuous and

0 ≤ u0 ≤ 1, then there exists one and only one bounded classical solution u(x, t) of

(3.2.1)-(3.2.2), and 0 ≤ u(x, t) ≤ 1 for all x, t. Indeed, they have shown the following

theorem:

Theorem 3.2.1. Consider

ut − uxx − f(u) = 0, x ∈ (−∞,∞),

in the case

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0

Let u(x, 0) = u0(x) satisfy 0 ≤ u0 ≤ 1. Let

a− = lim sup
x→−∞

u0(x), a+ = lim inf
x→∞

u0(x).

Then u approaches a translate of U uniformly in x and exponentially in time, if a−

is not too far from 0, and a+ not too far from 1. Here u = U(x − ct), U(−∞) =

0, U(∞) = 1 is the traveling front solution. More precisely, there are constants z0,
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K > 0 and w > 0, and

|u(x, t)− U(x− ct− z0)| < Ke−wt.

Their approach relies on a priori estimates and the standard comparison theorems

for parabolic equations, i.e., let N be the nonlinear differential operator, acting on

functions of x and t, defined by,

Nu ≡ ut − uxx − cux − f(u).

Consider the initial value problem

Nu = 0 for (x, t) ∈ (−∞,∞)× (0,∞), (3.2.3)

u(x, 0) = u0(x). (3.2.4)

Comparison Theorem. Let u be a sub solution, and ū a super solution, of

(3.2.3). Then u(x, t) ≤ ū(x, t) in (−∞,∞)× [0, T ).

It turns out that when we consider the same problem in the fractional Laplacian

setting, we could obtain a similar stability result by establishing the corresponding

comparison principle.

In what follows, we establish the preliminary results related to the stability of

traveling fronts of the reaction diffusion equations involving the fractional Laplacian

in the bistable case. We will consider the following initial value problem:

ut + (−∆)su = f(u) in (0,∞)× R (3.2.5)
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with the following initial value,

u(x, 0) = u0(x), −∞ < x <∞. (3.2.6)

We will also assume the nonlinearity f ∈ C1[0, 1] satisfy

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, (3.2.7)

f(u) < 0 for 0 < u < α, (3.2.8)

f(u) > 0 for α < u < 1, (3.2.9)

where 0 < α < 1.

The existence of traveling fronts has been shown by X. Cabre and Y. Sire in [?]

when the bistable nonlinearity is balanced and by C. Gui and M. Zhao in [20] when

the bistable nonlinearity is unbalanced. Assume the existence and uniqueness of the

solution to the initial value problem (3.2.5)-(3.2.7), and we are expecting a similar

stability result of the traveling fronts.

The main tool needed here is the comparison principle for (1.1.2) where L is the

generator of of a strong continuous semigroup in a Banach space X. It is applicable

to This comparison principle can be found in [12]. For completion, we will state the

comparison principle here.

We first consider the non homogeneous linear problem

 ut + Lu = f(u) in (0,∞)× Rn,

u(0, ·) = u0 in Rn,
(3.2.10)

for u0 in any of both Banach spaces.
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Assume that f1, f2 ∈ C1(R) is globally Lipschitz and f ′ is uniformly continuous

in R, and f1 ≤ f2 in R. We then have

if u1(0, ·) ≤ u2(0, ·) belong to Cu,b(Rn), then u1(t, ·) ≤ u2(t, ·)

for all t ∈ [0,∞), where u1 and u2 are the respective solutions of the nonlinear

problem (3.2.10) with f and u0 replaced by fi and ui(0, ·). Cu,b(Rn) = {u : Rn → R :

u is bounded and uniformly continuous in Rn}.

We set z = x− ct, and write the solution of (3.2.5)-(3.2.6) as

v(z, t) = u(x, t) = u(z + ct, t)

Followed by a comparison argument, we get the stability result when the traveling

wave solution exists. More precisely, we have obtained the following theorem:

Theorem 3.2.2. Let 0 < s < 1, consider equations (3.2.5)-(3.2.7). Assume the

traveling front solution is U with speed c, let u0 satisfies 0 ≤ u0 ≤ 1, and suppose

lim sup
x→−∞

u0(x) < α, lim inf
x→∞

u0(x) > α,

then there exists constants z1, z2, q0, and µ (the last two positive), such that

U(z − z1)− q0e−µt ≤ v(z, t) ≤ U(z − z2) + q0e
−µt. (3.2.11)

The proof of the theorem relies on the comparison principle for fractional Lapla-

cian. The comparison principle can be found in [12], in which the authors consider
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the Cauchy problem

 ut + Au = f(u) in (0,+∞)× Rn,

u(0, ·) = u0 in Rn, 0 ≤ u0 ≤ 1

where A is the infinitesimal generator of a Feller semigroup. Examples includes ∆

(the classical Laplacian) and (−∆)s with s ∈ (0, 1) (the fractional Laplacian). By

adding a drift term to the classical Laplacian or the fractional Laplacian, the resulting

operator will still be an infinitesimal generator of a Feller semigroup. According to

[12], we have the following comparison principle.

Lemma 3.2.3. Assume that f1, f2 ∈ C1(R) are globally Lipschitz and f ′i , i = 1, 2 is

uniformly continuous in R. If f1 ≤ f2 in R, we then have:

if u1(0, ·) ≤ u2(0, ·) are both bounded and uniformly continuous inRn, then u1(t, ·) ≤ u2(t, ·).

The proof of the theorem then follows directly from [17]. It then establishes the

stability of traveling fronts in the C0 norm. The C1 norm stability for the traveling

fronts still remains as an open question.
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