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ABSTRACT 

 

In order to apply microsimulation-based models of land use and travel demand, socio-economic 

and demographic attributes are required for each individual in a region. This disaggregate level 

information is not readily available and planners resort to population synthesis procedures. This 

research includes two studies that are focused on developing alternative paradigms for population 

synthesis and for estimating sample household weights. In the first study, a simulation-based 

technique for multi-level population synthesis using a Hidden Markov Model (HMM) framework 

is presented. A comparative analysis is carried out to highlight the feasibility and applicability of 

the proposed approach in generating consistent multilevel agents while adhering to geography-

based controls and heterogeneity. As part of the second study, an analytical procedure for 

estimating sample household weights is proposed that helps estimate consistent weights using 

disaggregate information with sparse attribute categories by controlling both at the household and 

person level. Different configurations of the system of linear equations are formulated and 

evaluated for various sets of block groups as the geographical units. Finally, the synthetic 

population is generated for ten block groups in Connecticut using the proposed synthesizing 

framework and weight estimation procedure. The analysis of synthetic outputs confirms that the 

proposed weight estimation procedure is comparable with the heuristic-based approaches and can 

be used as an alternate weight estimation routine for simulating more consistent household and 

person level attributes or drawing households from the sample to obtain a synthetic population that 

closely match the available aggregate information.
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1 INTRODUCTION 

1.1 Background 

Over the past few decades, microsimulation models have been gaining increasing interest in land-

use and transportation planning. In these models, behaviors of interest are simulated at the 

individual level while explicitly accounting for the environment in which they make decisions and 

the constraints and interactions they experience. Subsequently, these decisions are aggregated 

spatially and temporally to understand how a system will perform in alternate environments (1–

3). Microsimulation models are better suited for assessing impacts of different policies of interest 

because of their focus on the individual decision maker and the underlying decision-making 

processes. They generate results at rich spatial and temporal resolution allowing planners to draw 

insights that are otherwise not possible using more aggregate model forms (4, 5).  

Disaggregate microsimulation models require detailed household and person level information for 

each individual agent. However, such information is not readily available owing to a variety of 

reasons including privacy issues and resource limitations. Instead, the detailed information for a 

sample of the population (often referred to as sample data) and aggregate information (often 

referred to as marginal distribution data) about the entire population are available, typically from 

Census Bureaus or equivalent bodies (6). Analytical procedures are then applied to combine them 

together to create detailed records for all individuals in a region. This process is often referred to 

as synthetic population generation. With growing interest in microsimulation models, interest in 

developing synthetic population generators (SPG) has also increased. A brief overview of these 

approaches along with some examples is presented below. A detailed review of synthesizers can 

be found in (1, 4, 7, 8).  
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1.2 Literature Review 

The techniques within different SPGs can be clustered into two main groups: fitting-based 

approaches and combinatorial optimization (CO) procedures (9). Fitting-based approaches focus 

on estimating a multiway distribution of the agents’ attributes. Subsequently, agents are generated 

from the sample based on the estimated multiway distribution, and Monte Carlo based sampling 

technique. Iterative Proportional Fitting (IPF) is the most dominant fitting-based technique in the 

literature. Deming and Stephan (1940) first introduced IPF to calculate cell values of a multiway 

distribution through an iterative algorithm such that the observed marginal distributions are 

matched (10). Beckman et al. (1996) developed a synthetic population generator based on the IPF 

based procedure (11). This was one of the first SPGs and has been widely adopted in many 

operational disaggregate models in the past. A number of SPGs have been developed since to 

address different issues and limitations with the Beckman et al. (1996) procedure. For example, 

Guo and Bhat (2007) proposed an IPF-based procedure for controlling both household and person 

level marginal distributions (12). Also, addressing the same problem of household and person 

control matching, Arentze et al. (2007) introduced the concept of relational matrices in the IPF 

procedure (13). Ye et al. (2009) developed Iterative Proportional Updating (IPU) – a heuristic 

iterative procedure, that also accounts for both household and person level marginal distributions 

(14). More recently, Konduri et al. (2016) extended IPU to control for marginals at multiple spatial 

resolutions (8). For high dimensional contingency table, Pritchard and Millar (2012) introduced a 

sparse matrix-based data structure in IPF framework to deal with memory consumption issues 

while controlling both household and person-level attributes simultaneously (15). There are 

several other variants of IPF implementations including hierarchical and multi-stage IPF that focus 
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on fitting both household and person-level attributes maintaining their inter-level association (16, 

17). 

Along with fitting-based techniques, CO approaches have been emerging as a promising 

alternative to population synthesis. CO approaches also require both sample and marginal 

distributions. They also employ an iterative procedure to generate population for a geographical 

unit. The iterative procedure begins with selecting a pool of agents and assessing match with the 

given marginal distributions. At each step of the iteration, agents may be added and/or replaced 

with a new agent from the sample dataset until appropriate goodness of fit is achieved. Voas and 

Williamson (2000) implemented this approach by optimizing the sample weights such that the 

synthetic population matches the observed attributes for a geographical unit (18). Abraham et al. 

(2012) applied CO algorithm to control both household and person level attributes for multiple 

geographic resolutions (19). Simulated Annealing is another CO technique that follows a 

probabilistic reweighting procedure to pull a suitable set of agents from the sample (18, 20).  There 

have also been studies comparing these two popular approaches (5, 21, 22). While CO has been 

claimed to be superior in terms of performance, the fitting-based approaches are easier to 

implement and more scalable. 

More recently, there has been a third category of SPGs namely simulation-based approaches. The 

main advantage of these approaches over earlier techniques is the ability to create more diverse 

synthetic populations. In both fitting-based and CO approaches, records from the sample dataset 

are cloned to create a synthetic population. This can lead to lumpiness in the synthetic population 

and the synthesized results may not capture the full underlying distribution. The simulation-based 

approaches use a variety of techniques to model the joint distribution of household and person 

attributes underlying the population. Subsequently, a synthetic population is generated by 



4 

 

simulating draws from the joint distribution to create agents and their attributes. Caiola and Reiter 

(2010) implemented Random Forest-based synthesizer that can capture the attribute relationships 

effectively and performs well for high dimensional configuration (23). Sun and Erath (2015) 

proposed a probabilistic approach based on the Bayesian network model (4). The study 

demonstrated how a Bayesian network can be incorporated into population synthesis to understand 

the underlying structure of the population with a large set of attributes. Farooq et al. (2013) 

introduced a simulation-based approach for population synthesis where they implemented 

parametric models for conditional probability estimation and applied Markov Chain Monte Carlo 

(MCMC) procedure for generating a synthetic population (7). Among recent studies, Saadi et al. 

(2016) developed a new population synthesis technique using a Hidden Markov Model (HMM) 

(9).  In this study, the authors note that the HMM framework is more adaptable and efficient when 

it comes to fusing multiple micro-samples in model training and preserving more heterogeneous 

composition in the synthetic population. 

  

1.3 Research Scope 

The primary objective of this research is to develop alternative methodologies for population 

synthesis and for estimating sample household weights. To this end, the thesis consists of two 

research studies.  

In the first study, a simulation-based population synthesis approach is proposed for generating 

synthetic households and persons simultaneously maintaining the geography-based consistency 

and heterogeneity. This first study builds on the work by Saadi et al. (2016) by addressing two 

important limitations. 



5 

 

1. First, in their study, the synthetic population generation was only limited to persons; 

households were not generated. The study acknowledged the need for extending 

the work so that households and persons are both synthesized while also accounting 

for the available household and person level information. In this study, a 

hierarchical transition structure is proposed in the HMM-based model to capture 

the joint distribution of both households and persons simultaneously. The model 

captures the dependencies across household and person-level attributes that helps 

simulate both households and persons in a consistent manner.  

2. Second, Saadi et al. (2016) used only a single model to generate a synthetic 

population for all geographies in a region. This approach may compromise on the 

heterogeneity in the population across geographies. Additionally, the model did not 

incorporate the available marginal information. In other words, their approach 

ignored information that could potentially be used to enhance the synthetic 

population. In this study, the transition matrices for the proposed models are 

estimated using a novel procedure that incorporates information available from 

both the sample and the marginal distributions. This, in turn, helps develop 

populations that are more accurate and consistent with the available information. 

The feasibility and the applicability of the proposed model and the estimation procedure are 

demonstrated by generating a synthetic population using data from the US Census Bureau for 2 

block groups in Connecticut. The synthetic population was generated under a variety of scenarios 

mimicking the existing simulation-based procedures. Results are compared across scenarios to 

highlight the contributions of the proposed approach.  
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The second study focuses on estimating sample household weights using an analytical technique 

to eliminate the issues generally encountered in the empirically developed fitting-based 

approaches. The sample household weights are estimated in forms of least square solutions of a 

system of linear equations formulated using the available sample information and aggregate 

marginals. In fitting-based approaches where the household and persons are controlled 

simultaneously, the presence of sparse categories in the multiway table can lead to slackness in the 

estimated weights resulting in a poorer match at the person level attributes. The proposed 

procedure is capable of dealing with the sparse disaggregate information and can impose 

simultaneous control both at the household and person level. The univariate and multivariate 

configuration of the system of linear equations is proposed and sample household weights are 

generated for a different set of block groups to evaluate this estimation procedure. Finally, the 

results of a synthetic population generated using the proposed HMM-based approach and weight 

estimation method for 10 block groups are analyzed to illustrate its compatibility with heuristic-

based weight estimation technique.  

The rest of the thesis is structured as follows. Section 2 describes the HMM-based synthesizing 

approach. In addition, the section also discusses how this approach can be adapted to perform 

population synthesis that controls for both household and person attributes simultaneously. A case 

study is presented with necessary data preparation, model setup, results, and discussion of findings. 

Section 3 describes the motivation and methodology regarding the proposed sample household 

weight estimation procedure. A case study is designed to formulate the evaluation process and, the 

results and findings are presented. Finally, concluding thoughts along with limitations and future 

extensions are presented in Section 4. 
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2 STUDY 1: SIMULATION-BASED SYNTHESIZING FRAMEWORK 

2.1 Introduction 

The attributes of an agent (household) can be characterized as a sequence of characters. Each 

character in the sequence can be associated with a category for the attributes. Therefore, the length 

of the sequence is equal to the number of attributes of interest. Hidden Markov Models (HMM) 

can be used to characterize such a sequence. HMMs are probabilistic models that can be used for 

any sequence labeling problem (24, 25). These models are very dynamic in the sense that they can 

conceptualize any complex sequence analysis model using the graphical method (26). In case of 

population synthesis, HMMs can be implemented to generate a sequence of attributes for a 

particular household or person based on a transition structure that can be visualized graphically. 

The transition patterns can be defined based on the attributes of interest and their intra-level and 

inter-level relations and then available information can be used to estimate the transition 

probabilities. However, mapping the appropriate dependency of intra-level and inter-level 

attributes is necessary to generate consistent information about a household and the persons 

belonging to that household. In this study, a hierarchical structure is proposed to build the 

interconnection between the household and person level HMMs. A transition probability 

estimation technique is also proposed as part of this study to incorporate the geography-based 

aggregate information in the training stage for more accurate probability distributions. The 

following sections describe the general aspects of HMM and how household and person level 

HMMs can be defined and connected to obtain a complete hierarchical structure. Then a case study 

is demonstrated to illustrate the contribution of the study in generating a synthetic population that 

is consistent with the corresponding geographical information.  
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2.2 Methodology 

2.2.1 Overview of HMM Framework 

In order to explain the functional aspects of HMM, a simple toy example is presented in Figure 

2-1. Let us consider that one is interested in understanding the educational journey for those who 

are currently employed. Assuming everyone employed has completed middle school, the 

educational journey can be represented by an HMM as shown in Figure 2-1. Each oval represents 

a state (the state is represented by a character and the associated definition is presented in the 

figure) and each directed link represents a potential transition from one state to the next. In this 

figure, a path consisting of a series of directed links beginning with the state A (i.e. “Middle 

School” Graduate) and ending in state H (i.e. “Employed”) represents an educational journey. For 

example, a sequence ACEH represents an educational journey where someone completed High 

School after Middle School, skipped College, entered the workforce, and got employed. 

Transitions are possible from any of the states to any other state. However, for any given use case, 

only a subset of transitions is reasonable and/or supported by data. For example, a transition from 

state A to state H is probably not supported by data. On the other hand, the transition from state C 

to state B is inconsistent. In HMM, including dummy states can help join different parts of the 

model without disturbing the actual transition patterns. Dummy states do not have any technical 

implication in the model; however, in a sequence generation problem, they are very useful for the 

proper identification of different blocks of the model. The states that emit a symbol or character to 

indicate an attribute category in the sequence are referred to as active states.  
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Figure 2-1: Structure of a simple HMM 

 

HMM comprises of three main parameters: transition probability matrix, initial probability vector, 

and emission probability matrix. The architecture of HMM is built with a finite set of  states 

represented by vector 𝐴 =  {𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑁} where 𝑁 is the total count of states. Each state is 

associated with a probability distribution that regulates the transition to other possible states (27). 

Transitions from state 𝑖 to state 𝑗 are governed by a transition probability matrix 𝑇 where 𝑇 =

 {𝑃(𝑡𝑖𝑗)} and each element in the matrix represents the probability of transition from state 𝑖 to state 

𝑗. In other words, a given state 𝑘 is not observable directly. Instead, state 𝑘 manifests itself in the 

form of an outcome from an observation set, 𝛽𝑘  =  {𝛽1𝑘 , 𝛽2𝑘, 𝛽3𝑘, … , 𝛽𝑚𝑘} where 𝑚 is the size of 

the set. 𝑀 is the set of all observation symbols corresponding to the 𝑁 states. An observation 

symbol corresponding to state 𝑘 is observed based on an emission probability vector, 𝐸𝑘  =

 {𝑃(𝛽𝑚𝑘)}. HMM also requires a set of initial probabilities that represents the state from which the 

sequence starts. The set of initial probabilities is given by a vector, 𝜋 =  {𝑃(𝑖)}. In terms of the 

structure of these elements, 𝑇 is a 𝑁 × 𝑁 dimensional matrix, 𝐸 is a 𝑁 × 𝑀 dimensional matrix 

and 𝜋 is 𝑁 dimensional vector. In addition to the above parameters, HMM also incorporates some 

logical and consistency constraints as indicated in Equation 2-1 to Equation 2-5.  
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0 ≤ 𝑃(𝑡𝑖𝑗)  ≤ 1,      1 ≤ (𝑖, 𝑗 ) ≤ 𝑁                                (2-1) 

 

∑ 𝑃(𝑡𝑖𝑗) = 1,     1 ≤ 𝑖 ≤ 𝑁 𝑁
𝑗=1                            (2-2) 

 

0 ≤ 𝑃(𝛽𝑚𝑘)  ≤ 1,      1 ≤ 𝑚 ≤ 𝑀,  1 ≤ 𝑘 ≤ 𝑁              (2-3) 

 

∑ 𝑃(𝛽𝑚𝑘) = 1 ,     1 ≤ 𝑘 ≤ 𝑁 𝑀
𝑚=1                 (2-4) 

 

∑ 𝑃(𝑖) = 1𝑁
𝑖=1                   (2-5) 

   

As noted above, an external observer can only see the outcome corresponding to a state since the 

actual states are hidden. Therefore, this configuration of the Markov model is called Hidden 

Markov Model. Alternatively, if the state is observed directly then it is commonly referred to as 

just a Markov Model. Depending on the variant of the Markov Model that is applicable for a given 

situation, alternative procedures are available for estimating the parameters.  

To incorporate more complex models in HMM framework, researchers have been developing 

extensions to HMM such as Hierarchical HMM (HHMM), Layered HMM (LHMM) and Nested 

HMM (NHMM) (28–31). Among these variants, HHMM is of interest given its relevance to the 

population synthesis approach proposed in the next subsection. HHMM allows one to organize 

states using a hierarchical structure. In HHMM, there are multiple root states that can each be 

represented as an individual HMM. These root states are stacked as layers in a hierarchical 

structure to form the complete HHMM model. When a transition occurs to a root states, typically 

the corresponding underlying HMM is executed and the model then proceeds to the next root state 

in the HHMM hierarchy. The HMMs within root states can have shared connections across root 

states allowing for a shared structure and recurring pass in the model. This hierarchical model 
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structure is a key ingredient to extend the work by Saadi et al. (2016) to deal with the multi-level 

population synthesis i.e. synthesizing both households and persons. The basic idea is that person 

models can be thought of as the descendent of root states that can be embedded in a hierarchical 

fashion within a household model which again can be descendent of another root state. This 

approach allows for ensuring dependencies between person attributes and household attributes. 

Building and training an HHMM is computationally very expensive (32). HHMMs can be 

converted to its equivalent flat HMM without compromising the structural integrity of the model 

(29, 33). An HHMM that has shared transition structure can be converted to flat HMM by 

duplicating the sub-models. Though the flattening process introduces computational tractability, it 

comes at the expense of an increase in the dimension of the HMM (34).  

In the next subsection, the proposed approach for implementing multi-level population synthesis 

using HHMM intuition and HMM equivalency is presented. Further, since the states in the models 

are configured to represent different attribute categories of agents in a direct manner, each state is 

associated with only one outcome in the population synthesis case. In other words, the states are 

not technically hidden in the HMM models in this case. Therefore, this can be conceptualized as 

the Markov Model variant of HMM i.e. state and observed outcome are same and the emission 

probability vector 𝐸𝑘 for any state 𝑘 is given as {1}. In the remaining text while the term “HMM” 

will be used, it must be noted that the Markov Model variant is what is adopted in the synthesis 

approach. 

2.2.2 Hierarchical Structure of HMM-based Population Synthesis 

The first objective of this study is to use the HMM framework to synthesize not only households 

but also persons within the households. While the work by Saadi et al. (2016) can be used to 

synthesize households and persons separately, an additional procedure is needed to tie them 
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together. The HHMM forms the basis for incorporating both household and person synthesis 

jointly. The flattening of HHMM and its equivalency to HMM is adopted to estimate the model 

structure. In HMM, states are considered as attribute categories for both household and person 

models. Therefore, the number of states in both household and person models are completely 

dependent on the size of attribute sets and their respective categories. Further, key household 

attributes are used to generate root states. Then the person models consistent with the defined root 

states are embedded to build the hierarchical structure. The procedure for building the household 

model is the same as Saadi et al. (2016). Each household attribute and their respective categories 

serve as active states in the household model. As noted earlier, a hierarchical tree structure is used 

to build the household-level HMM model and then to incorporate the person-level HMM models 

within the household model. Subsequently, this allows the synthesis of both household and person 

attributes together while also accounting for the consistency between the household and person 

level characteristics. A simple household model is shown in Figure 2-2.  

 

Figure 2-2: Simple structure of a household model 
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Assuming that there are two types of households – family and non-family, the number of household 

members is largely influenced by the household composition in that household. Therefore, the 

states of SIZE attribute are branched out depending on the states of TYPE attribute in Figure 2-2. 

In a similar fashion, it is possible to accommodate other household attributes such as persons with 

age under 18 years (UNDER18). In that case, the states of UNDER18 have separate branches 

originating from each of the SIZE states. The number of states for attribute UNDER18 is governed 

by the originating SIZE state. For example, for a household with three persons, there will be a 

maximum of two persons with age below 18 years (assuming that the householder’s age is above 

18 years). Therefore, there will be three possible transitions from the SIZE-3 state: 0 UNDER18, 

1 UNDER18, and 2 UNDER18. Now by defining the states of UNDER18 as a root states, person 

models for these household compositions can be embedded based on the hierarchy. For example, 

in the state 0 UNDER18, a model representing householder, a model for the second person, and a 

model for the third person are embedded. On the other hand, for the state 2 UNDER18, a 

householder model is embedded one time and the person model for those under 18 is embedded 

two times. Figure 2-3 illustrates the fully embedded SIZE-3 branch based on the household 

composition.  

 

Figure 2-3: Connection of person models with household model 



14 

 

The proposed HMM structure allows the generation of household attributes in the upper level of 

the model and then proceeds towards the lower level to generate person level attributes. This model 

can also be configured to deal with open-ended categories. Choice/decision states can be placed in 

the model structure to decide the next transition to an embedded HMM subjected to some 

constraints. As noted earlier, each person model is an individual HMM similar to Saadi et al. 

(2016) that are constructed using person-level attributes. These models are duplicated as necessary 

within the household states. However, the idea of recurring pass allows the use of same person 

model without duplicating thus reducing the overall dimensions of the HMM. These individual 

models have a simple transition structure. Nonetheless, the order of attributes is always important 

to capture the conditional transitions between attributes. In order to preserve the relationship of 

persons belonging to a particular household, person models can have root and decision states, and 

the concept of guaranteed pass helps build inter-person connections. This is essential to deal with 

inconsistent inter-personal relationship during simulation. Figure 2-4 illustrates an example of 

introducing decision states to deal with gender issues while simulating the householder and second 

person for family households. This generates consistent gender information of the second person 

based on householder gender information in a family household using a conditional probability 

distribution. The total number of states in the transition matrix is, therefore, governed by the size 

of household and person models and the logical way of connecting those individual models in a 

hierarchical fashion. It should be noted that expert knowledge and heuristics are applied to 

determine the interdependencies of attributes. Depending on the use case and how the hierarchy in 

agent’s attributes is addressed, a completely different configuration of the models can be defined 

to synthesize the required information. The complete hierarchical structure of the proposed HMM-

based synthesis model is included in Figure A-1 as an appendix.  
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Figure 2-4: Configuration of a single person (Householder) model 

 

2.2.3 Geography-based Transition Probability Estimation 

The second objective of this study is to present an approach for estimating the transition 

probabilities that not only accounts for the information contained in the sample data but also 

accounts for the marginal distributions so that the population that agrees with available information 

can be generated. For typical HMM models, transition frequencies between the states are estimated 

from an observed sample. In population synthesis, this direct procedure can be used as outlined in 

the study by Saadi et al (2016). The direct procedure has a major limitation in terms of matching 

attribute marginals for a geographic unit. The transition patterns of attributes estimated directly 

from sample data do not represent the real population structure for a geographic unit. As a result, 

there will be large differences between synthetic population results and observed marginal 

distributions for a geographic unit. Saadi et al. (2018) proposed a hierarchical procedure to deal 
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with this limitation by integrating HMM and IPF under the same framework (35). However, their 

approach does not consider accounting for both household and person marginals simultaneously.  

This study proposes a new procedure for estimating the transition counts using both aggregate and 

disaggregate information. In the proposed approach, the weights for sample households are first 

estimated using Iterative Proportional Updating algorithm proposed by Ye et al. (2009) controlling 

all available household and person level marginals for a geographic unit. The details of this 

heuristic-based weighting procedure are outlined in the study by Ye et al. (2009). These weights 

are then summed up based on the corresponding household and person attribute combinations and 

used directly as the exact transition frequencies for that particular geographical unit. The transition 

probabilities thus generated conform to the available marginal distributions. The synthetic 

population also accounts for this information and fewer deviations are observed with respect to 

available marginals. 

 

2.3 Case Study 

2.3.1 Data Preparation 

A case study was conducted to demonstrate the proposed HMM population synthesis framework 

and the associated transition probability estimation routine. The study considers 4 household 

attributes (household type, household income, the presence of persons under 18 years, and 

household size) and 4 person attributes (age, employment, ethnicity, and gender) to generate 

synthetic population for two block groups in Connecticut (IDS: 0427002, 2531001). Block groups 

are selected from two different Public-Use Micro Areas (PUMA). Both the aggregate and 

disaggregate data are collected from the US Census Bureau. The aggregate data is processed from 

the American Community Survey (ACS) 2010-2014 Summary datasets and disaggregate data is 
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collected from corresponding Public Use Micro Sample (PUMS). The disaggregate data contains 

information on 70,221 households and 181,082 persons at the PUMA level. Household and person 

attributes are defined as categorical variables. The description of attributes and a summary of 

aggregate marginals for two block groups are listed in Table A-1 included in the Appendices 

section.  

A hierarchical transition structure was developed using the household and person attributes 

mentioned above. The order of attributes in the household model was household income, 

household type, household size, and presence of persons under 18 years. The household model has 

two major branches depending on the household types because family and non-family households 

have completely different household compositions. Based on the household size, categories for the 

presence of persons under 18 years form the second set of branches. These categories are also set 

as root states to embed person models. The order of attributes in person models is age, 

employment, ethnicity, and gender. The hierarchical structure contains a total of 4203 states 

including active, dummy and decision states. Therefore, the dimension of the transition matrix 

considered in this case study is 4203 by 4203. The transition probabilities are estimated using three 

different approaches to highlight the feasibility and applicability of the proposed sample household 

weight-based estimation approach.  

1. Case 1: The transition matrix is estimated directly using the entire PUMS data 

resulting in a general transition probability distribution for all block groups. This is 

similar in spirit to the approach proposed by Saadi et al. (2016).   

2. Case 2: For each block group, the transition matrix is estimated using the sample 

records of only those households that belong to the corresponding PUMA 

geographies. PUMA 2300 that is associated with block group BG0427002 has 



18 

 

2,000 household records and 5,196 person records. PUMA 100 associated with 

block group BG2531001 includes 1,868 household records and 4,546 person 

records. Since the block groups are selected from two different PUMA, two 

different transition matrices were prepared.  

3. Case 3: In this case, the transition matrices are estimated using the proposed 

procedure for each of the block groups. For both block groups, the entire PUMS 

data is used as a seed. Marginals for each block group are used as controls in 

estimating weights for transition frequencies. Two transition matrices were 

prepared for two block groups in this case. 

For transition probability estimation, the sample household weights were calculated using IPU 

algorithm embedded in an open source application called PopGen (36). The proposed HMM model 

framework was implemented using a Python package named “hmmlearn” (37) that allows the 

generation of as many households as needed. Households and associated persons were generated 

in the form of attribute sequences. Then the attribute sequences were processed using a decoding 

program to obtain the attribute set. For each case, 5 simulations were run to obtain a representative 

set of synthetic population. For every 1,000 households, each simulation took about 10 minutes to 

generate the sequences and about 30 seconds to process those in a test system powered by Intel 

Core-i7 processor with 12GB RAM. 

2.3.2 Results and Discussions 

 

The total numbers of synthetic households and persons for each of the cases are summarized in 

Table 2-1. In each case, the total number of synthetic households matches perfectly with the 

observed total number of households for the block groups. Since the household model is placed at 
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the upper level of the proposed hierarchical structure and the drawing unit is also a household, this 

match is not surprising. However, there are some differences in the total number of synthetic 

persons. As the person models are executed based on the household size distribution, the number 

of persons is simulated based on the probability distribution at that level. For block group 

BG0427002, over-synthesis of persons is observed for the first two cases with significant variation. 

On the other hand, the total number significantly improves in Case 3 with a smaller percent 

difference of 1.36%. Another interesting point in Table 2-1 is that both block groups have almost 

the same number of households, but their person totals are quite different. Case 1 generates nearly 

equal number of persons in both block groups, because the transition probabilities come from a 

single transition probability matrix. Surprisingly, the person totals in BG2531001 is very close to 

the simulated totals resulting in a difference of 1.3%. The result may be counter-intuitive in a sense 

that Case 1 provides a better match than Case 3 which shows a variation of 4.75%. However, this 

block group may be a very average one leading to an overall better result in the first two cases. It 

is evident that the percent difference of the total number of persons for each case is comparatively 

low compared to the other block group. 

Table 2-1: Summary of synthetic households and persons for three cases 

 BG0427002 BG2531001 

 Marginals Case 1 Case 2 Case 3 Marginals Case 1 Case 2 Case 3 

Total Households 1,043 1,043 1,043 1,043 1,041 1,041 1,041 1,041 

Percent Difference (%) NA 0 0 0 NA 0 0 0 

 

Total Persons 1,913 2,521 2,660 1,887 2,545 2,512 2,470 2,424 

Percent Difference (%) NA -31.78 - 39.05 1.36 NA 1.30 2.95 4.75 

Note: NA = not applicable 
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In order to understand the fitting of synthetic output with observed aggregate data, the synthetic 

marginals for each case are compared with corresponding observed marginals for two block 

groups. Figure 2-5 and Figure 2-6 represent the comparison of marginals for block groups 

BG0427002 and BG2531001, respectively. In Figure 2-5, the synthetic population in Case 3 match 

closely with the observed category marginals both at the household and person level. Table A-1 

(included as an appendix) shows that there is no household that has more than 4 persons and no 

person in age category 2. Synthetic results in Case 3 reflect this information completely, whereas 

the other two cases are unable to capture this information from aggregate marginals and they 

generate households and persons with these unavailable categories that is inconsistent with this 

block group information. Figure 2-6 also shows that the synthetic population in Case 3 fits very 

well with observed marginal information for this block group except for two attribute categories 

at the person level. That being said, for both block groups, Case 3 can incorporate the marginal 

distributions information of that block group to generate more reliable synthetic household and 

persons. On the other hand, the performances of Case 1 and Case 2 are very poor in matching the 

observed marginal – this is reasonable because these do not incorporate the marginal distribution 

information during the synthesis. Case 2 should produce better results than Case 1 as transition 

frequencies are estimated from corresponding PUMA records which can have more relevant 

information regarding the block groups. However, the analysis shows that the result is not 

consistent for all attribute categories and in some cases its performance is poorer than Case 1. This 

may be attributed to smaller sample sizes resulting from a limited number of records in the 

corresponding PUMA samples. 
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Figure 2-5: Comparison of marginals for BG0427002 

 

 

Figure 2-6: Comparison of marginals for BG2531001 

 

To further illustrate the differences in the synthesis of each case, the absolute percent difference 

(APD) is calculated for all attribute categories of the two block groups. For block group 

BG0427002, the percent differences are very large for Case 1 and Case 2 compared to Case 3 in 
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Figure 2-7. For Case 3, all attribute categories have APD lower than 12%. The average of APD 

across categories is about 55.33%, 64.56% and 3.62% for Case 1, Case 2 and Case 3 respectively. 

In Figure 2-8, Case 3 also provides very lower APD compared to the other two cases. However, 

in the case of infrequent attribute categories, it shows comparatively large APD since the observed 

marginals are very low for these categories and a small variation can result in a large percent 

difference. Nonetheless, the overall assessment can be made based on the average of APD for all 

attribute categories. The average APD is about 42.21%, 40.56% and 3.85% for Case 1, Case 2 and 

Case 3 respectively. This analysis shows that Case 3 offers a good improvement over the other 

two cases. In terms of matching individual household and person attribute categories, Case 3 

renders less difference compared to Case 1 and Case 2.  

 

Figure 2-7: Comparison of Absolute Percent Differences (APD) for BG0427002 
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Figure 2-8: Comparison of Absolute Percent Differences (APD) for BG2531001 

  

From Figure 2-7 and Figure 2-8, it can be seen that Case 3 performs better than other cases. A 

scatter plot helps better understand the overall fit of both household and person-level attributes 

that are synthesized using the proposed HMM framework. Figure 2-9 represents a two-dimensional 

plot where each observation is a particular household or person attribute categories. For both block 

groups, the results from Case 3 exhibit a very good fit with the observed category totals with higher 

𝑅2 values. The observations obtained from Case 1 and Case 2 show comparatively scattered 

distribution. This plot helps to explain why aggregate controls are necessary to generate more fitted 

population in the HMM framework.  
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Figure 2-9: Comparison of synthetic attribute totals with block group marginals 

 

Since it is evident from the results presented so far that Case 3 is the best among other cases of 

estimating the transition probabilities, the further exploration is warranted to explore the results of 

Case 3 using more geographical units to incorporate the variations and heterogeneity in the 

household and person attributes. Therefore, the synthetic population is generated for 10 random 

block groups using the estimated transition frequencies derived from IPU-based sample household 

weights and the detailed results are included in the Appendices sections. As illustrated in Figure 

2-10, the percent deviations in person totals in most block groups are less than 7% which is 

acceptable. However, there is still scope for improvement in matching the total number of synthetic 

persons with the observed marginals. The synthetic attribute totals are also compared to the 

observed marginals for each of the block group in Figure A-2 added as an appendix and a perfect 

𝑦 ≈ 𝑥 relationship is observed in each case indicating that the synthetic outputs are equivalent to 

observed marginals and are within an acceptable range.  
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Figure 2-10: Weighted absolute percent deviation in person total for 10 additional block groups 

 

In order to inspect the fit at a more disaggregate level, deviations from observed marginals are 

calculated for both household and person-level attribute categories and are presented in Figure A-

3 and Figure A-4 included as appendices. The deviations are considerably higher at the person-

level attribute categories compared to those at the household level categories. This can be 

attributed to the heuristic-based IPU weights where the higher degree of sparsity in seed matrix 

may result in laxity in matching the person level attributes more closely. Therefore, the research 

addresses the need for developing a sample household weight estimation procedure that is based 

on systematic technique and is more robust in handling a higher degree of sparsity without 

compromising the fitness at household and person level. This motivation leads to the second study 

in this research that involves estimating the sample household weights using an analytical 

procedure.  

The next section proposes the analytical procedure that is based on least square solutions of a 

system of linear equations formed using the available aggregate and disaggregate information to 

estimate household weights through an iterative method by controlling the household and person-
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level attributes simultaneously. This method is also analogous to IPU-based weight estimation 

technique in a sense that the weights are constrained by the available geography-based information 

and hence is capable of capturing the diversity and heterogeneity in household compositions and 

individual attributes. The following section also describes the methodology of the proposed weight 

estimation procedure and presents a case study to evaluate different aspects of the estimated 

weights for various configuration of the system.   
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3 STUDY 2: ANALYTICAL PROCEDURE FOR SAMPLE HOUSEHOLD 

WEIGHTS ESTIMATION 

3.1 Introduction 

In population synthesis domain, Iterative Proportional Fitting (IPF) is one of the most popular 

algorithms to obtain the joint distributions of household and person level attribute categories by 

fitting a contingency table at the corresponding level. The conventional implementation of this 

algorithm involves adjusting the household and person level attributes with the observed control 

totals independently. This results in two separate sets of estimated weights. IPF does not allow for 

simultaneous weight adjustment at multiple levels to come up with a final set of household weights. 

Therefore, in an IPF-based population synthesis framework, inconsistent and inaccurate 

distributions of person-level attributes are observed when household weights obtained by adjusting 

only the household level attributes are used for random drawing from the sample.  

In an effort to address this limitation, Iterative Proportional Updating (IPU) was developed. IPU 

addresses this limitation using a heuristic iterative method that adjusts the household weights such 

that both household and person level marginal distributions are simultaneously satisfied. In other 

words, the iterative weight adjustment mechanism in IPU ensures better match at person-level 

without affecting the fitness at household-level (14). The use of these adjusted weights results in 

synthetic households and persons that are more representative. Due to the heuristic nature of IPU 

there are known limitations (e.g. The performance of IPU in matching the person-level attributes 

may not be as good as it is expected when the number of sparse categories in the household and 

person-level attributes may provide less flexibility in matching the person-level control totals (14)) 

and unanswered questions (e.g. the analytical underpinnings are yet to be established).  
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The primary objective of this study was to explore an analytical procedure for estimating weights 

that are consistent in matching household and person-level attributes simultaneously. This 

procedure while ensuring that the method has established analytical properties, is able to deal with 

sparse categories. Since the sample household weights estimated using the proposed procedure are 

controlled both at the household and person level, these estimated weights can be used in any 

fitting-based approaches to obtain synthetic households and persons that are consistent with the 

corresponding observed marginals. Furthermore, this analytical method is also applicable to the 

proposed HMM-based population synthesis framework to obtain appropriate frequencies in the 

transition matrix that are controlled by the observed geographical constraints.  

 

3.2 Methodology 

The proposed analytical procedure for sample household weights estimation is designed as a linear 

system of equations in the form of 𝐴𝑥 = 𝑏, where 𝐴 is the contribution matrix containing the 

information about household and person level attribute categories, 𝑏 is the constraints array 

corresponding to the household and person level attribute category, and 𝑥 is the solution set of the 

linear system that represents the estimated household weights. The dimension of the contribution 

matrix 𝐴 is (𝐽 + 𝐾) × 𝐻, where 𝐽 is the total number of household level categories, 𝐾 is the total 

number of person level categories and 𝐻 is the total number of households contained in the sample 

dataset.  

The contribution matrix 𝐴 is formed using the information obtained from the disaggregate sample 

dataset. Each element of the matrix represents the frequency of household or persons that belongs 

to the corresponding sample household and the relevant household or person level attribute 
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categories. The constraints array 𝑏 is a vector of length (𝐽 + 𝐾) that contains the observed 

marginals extracted from the aggregate information of the geographical unit for which the sample 

household weights are to be estimated. The solution set 𝑥 is an array having a dimension of 𝐻 × 1 

containing the estimated household weights for a specific geographical unit. The linear system can 

be configured in two ways using the univariate and multivariate constraints. The univariate linear 

system is formulated directly using the available aggregate totals and sample information. In case 

of a multivariate linear system, the multiway frequency of joint distribution of household and 

person level attribute categories are estimated through an iterative procedure by fitting a 

contingency table containing the attribute categories of interests.  

In a univariate linear system, two different matrices 𝐴𝑢
𝐻 and 𝐴𝑢

𝑃 are extracted from the sample 

information that contain the univariate frequencies of household and person level attribute 

categories respectively. 𝐴𝑢
𝐻  = {𝑎𝑗ℎ} and 𝐴𝑢

𝑃 =  {𝑎𝑘ℎ} where, 𝑗 ∈ 𝐽𝑢, 𝑘 ∈ 𝐾𝑢 and ℎ ∈ 𝐻. These 

two individual matrices are stacked vertically to construct the final univariate contribution matrix 

𝐴𝑢 of dimension  (𝐽𝑢 + 𝐾𝑢) × 𝐻. 𝐶𝐻 = {𝑐𝑗} and 𝐶𝑃 = {𝑐𝑘} are the constraint arrays for univariate 

household and person level attribute categories that are also stacked vertically to form the required 

constraints array. Therefore, for each 𝑗 and 𝑘, the linear system corresponding to household and 

persons respectively are constructed using the following equations (Equation 3-1 and 3-2) and then 

are stacked vertically to obtain the final linear system in the form 𝐴𝑥 = 𝑏 that helps estimate the 

household weights more consistently addressing the simultaneous control at both household and 

person level in the estimation routine.  

∑ 𝑎𝑗ℎ𝑥ℎ = 𝑐𝑗
𝐻
ℎ=1       (3-1) 

∑ 𝑎𝑘ℎ𝑥ℎ = 𝑐𝑘
𝐻
ℎ=1         (3-2) 
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In case of a multivariate system, the formulation technique is the same as univariate system except 

for the fact that each row in the household or person level contribution matrix represents a joint 

category that is essentially obtained from fitting a contingency table constructed using the 

univariate attribute categories. Therefore, the household and person level contribution matrices for 

the multivariate system are represented as 𝐴𝑚
𝐻 = {𝑎𝑗ℎ} and 𝐴𝑚

𝑃 =  {𝑎𝑘ℎ} where, 𝑗 ∈ 𝐽𝑚, 𝑘 ∈ 𝐾𝑚 

and ℎ ∈ 𝐻. Since, 𝐽𝑚 and 𝐾𝑚 contain more elements than 𝐽𝑢 and 𝐾𝑢 respectively, the final 

contribution matrix 𝐴𝑚 in the multivariate system has more rows compared to the univariate 

contribution matrix 𝐴𝑢.   

Generally, the system of linear equations in case of sample household weight estimation is an 

underdetermined system, where 𝐻 > (𝐽𝑢 + 𝐾𝑢) or 𝐻 > (𝐽𝑚 + 𝐾𝑚) and the estimated weights 

should be non-negative and non-zero (0 < 𝑥 < ∞) to be consistent with the use case of population 

synthesis. Additionally, the contribution matrix in both univariate and multivariate configuration 

exhibits a higher degree of sparsity in the underlying structure. Therefore, the proposed procedure 

solves the system of linear equations using LSMR, an iterative algorithm for sparse least square 

problems that deals with the underdetermined system as well (38). LSMR implements the Golub-

Kahan bidiagonalization technique (39) and monotonically reduces the value of ‖𝐴𝑇𝑟𝑖‖, where 𝑟𝑖 

is the residual (𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖) in 𝑖𝑡ℎ iteration (38).  Since, the solutions of the system of linear 

equations are lower-bounded minimization problem, Trust Region Reflective method is 

implemented within LSMR to efficiently explore the entire variable space and improve the 

convergence (40).  
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Figure 3-10: Weighted average absolute percent deviation across attribute categories 

 

 

Figure 3-11: Weighted average absolute percent deviation (APD) across block groups 
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Figure A-3: Deviations in each attribute categories for the first 5 of 10 block groups 
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Figure A-4: Deviations in each attribute categories for the last 5 of 10 block groups 

 


