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Figure 1.7. Year one activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with a significant difference in activity times from

 August 1st, 2016 to March 6th ,2017 in north-eastern Connecticut. 

 

Figure 1.8. Year one activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with an insignificant difference in activity times

 during the white-tailed deer hunting season in north-eastern Connecticut.   
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Figure 1.9. Year one activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with insignificant differences in activity times during

 the shotgun/rifle white-tailed deer season in north-eastern Connecticut. 

 

Figure 1.10. Year two activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with an insignificant difference in activity times from

 August 1st, 2017 to March 6th ,2018 in north-eastern Connecticut. 
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Figure 1.11. Year two activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with an insignificant difference in activity times

 during the white-tailed deer hunting season in north-eastern Connecticut.   

 

 

Figure 1.12. Year two activity curves for wildlife camera detections of white-tailed deer does on

 hunted (A) and un-hunted (B) sites with an insignificant difference in activity times

 during the shotgun/rifle white-tailed deer season in north-eastern Connecticut
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Abstract 

 Landscape heterogeneity affects both predator and prey distributions. Recent increases in 

predator populations across the eastern United States along with increased human densities and 

landscape heterogeneity raises concerns for mangers of ungulate populations. Extensive research 

supports the negative effects of predators on fawn survival and has even lead to reductions in 

harvest tags as well as the implementation of extensive predator control strategies. While certain 

landscape features are known to mitigate predation, the spatial scale at which landscape features 

exhibit the greatest influence on both survival and predation of fawns is not well understood.  

We had the opportunity to study fawn survival in an area of north-west Connecticut 

characterized by a predator rich, heterogenous landscape. We used cox-proportional hazard 

models to determine the best spatial scale (15,30,60 and 100 HA circular buffers) for analysis of 

landscape variables (model set 1) that best predict fawn survival. We also investigated the effects 

of biological (model set 2) and weather variables (model set 3) on fawn survival. We then 

compared top models across the three model sets to determine the overall top model predicting 

fawn survival to 90 days.  Model set 1 indicated that survival was best predicted by the percent 

forest cover at the 15ha scale, with survival decreasing by 10% with every 1% increase in forest 

cover (HR =1.02, 95% CI= (1.012, 1.031). Model set 2 indicated that fawn sex and weight best 

predict survival, with a 96% decrease in survival for males (HR = 1.96, 95%CI = (1.08, 3.50) 

and a 61% increase in survival for every 1kg increase in fawn weight (HR=0.39, 95%CI= (0.21, 

0.72). We did not find support for effects of weather on fawn survival, with the null model less 

than 2 AICc values from the top model. Overall doe selection of birthing sites and the subsequent 

landscape composition within a 15ha buffer had the strongest influence on fawn survival. Our 
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findings support the importance of investigating both landscape and patch level variables at 

varying spatial scales on fawn survival.  

Introduction 

Modern human development and emigration from urban epicenters has increased the 

ability of wildlife species to persist and thrive in these environments (Ditchkoff et al. 2006, 

Saalfeld and Ditchkoff 2007). The interspersion of forests, farms and suburban communities 

creates a heterogenous landscape, defined by the complexity and variability in ecological 

properties (Kie et al. 2002).  This variability in macrohabitat is known to affect survival of 

wildlife species through the distribution and density of predators as well as predator efficiency 

when hunting (Rohm et al. 2007, Grovenburg et al. 2011).  Therefore prey space use is in part 

related to the degree of landscape heterogeneity and the distribution and abundance of predators 

(Kie et al. 2002, Resetarits et al. 2018). Understanding the relationship between landscape 

interspersion and impacts of predators on prey species is particularly important for wildlife 

managers tasked with maintaining healthy game species populations. One such species, the 

white-tailed deer is now found across fragmented and contiguous forests, agricultural lands, and 

highly developed landscapes (Dechen Quinn et al. 2013). Due to the high susceptibility of 

mortality at the fawn life stage, understanding fawn survival within exurban landscapes is 

important and currently not well understood (Saalfeld and Ditchkoff 2007, Shuman et al. 2017). 

Research supports the role of macrohabitat and its effects on fawn survival (Rohm et al. 2007, 

Grovenburg et al. 2012), yet the relationships between macrohabitat conditions at various 

landscape scales on fawn survival and predation is not well understood.  

Predation on fawns is a growing concern across much of the south-eastern United States, 

with recent research indicating low survival and high mortality (Kilgo et al. 2012, Gulsby et al. 
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2015, Shuman et al. 2017). Recent research on fawn survival in the north-eastern United States is 

limited (Williams and Gregonis 2015) and of importance as this area is characterized by both 

increasing human and predator populations. The expansion of coyotes into the north-east within 

the past 100 years ignites a call for a greater understanding of the role that predators play in 

white-tailed deer recruitment (Robinson et al. 2014). Many states have already experienced 

decreased fawn survival due to increases in predator populations, leading to reduction in doe 

harvest tags and the implementation of predator control strategies (Robinson et al. 2014, 

Chitwood et al. 2015). While much research exists on the factors affecting fawn survival, 

including a combination of weather, biological and landscape covariates, the relative importance 

of these covariates in comparison to each other vary based on geographic location and their 

influence on predation is unclear (Rohm et al. 2007, Grovenburg et al. 2012, Shuman et al. 2017, 

Warbington et al. 2017). 

We had the unique opportunity to investigate fawn survival across a heterogenous 

landscape within a three-predator system. Black bears, coyotes, and bobcats are among the many 

large mammals once uncommon in much of the New England forests (Foster et al. 2002). These 

species are now commonly encountered through the woods and backyards of Connecticut and 

likely play a role in fawn recruitment. Our goal was to determine the top models for three model 

sets; landscape variables across varying scales, biological and weather models. We then 

compared top models from each of the three model sets to determine the overall top model for 

predicting risk to fawn survival. We predict that biological variables will best predict survival, as 

they relate to overall herd health going into the breeding season.  
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Study Area 

 We conducted our study in western Connecticut, more specifically in Litchfield County 

which is referred to as deer management zone one (DMZ 1) (Figure 2.1). This DMZ is bordered 

by Massachusetts to the north and New York to the west. Human population density averaged 

30.5 people/km2 (Connecticut Economic Resource Center 2010). DMZ 1 is primarily forested 

(62%), 19% developed, 14% turf, grass in large lawns or agricultural field, 3% wetlands (non-

forested and forested), and 3% water. Dominant tree species comprising Connecticut forests by 

net volume are, red maple (Aver rubrum)(21%), red oak (Quercus rubra) (14%), white pine 

(Pinus strobus) (8%), black oak (Quercus veluntina) (7%), black birch (Betula lenta) (7%), white 

oak (Quercus alba) (7%), eastern hemlock (Tsuga canadensis) (5%), white ash (Frasinus 

Americana) (5%), sugar maple (Acer saccharum) (4%), scarlet oak (Quercus coccinea) (4%) and 

various other species (18%) (Hochholzer 2010).  Predator densities of eastern coyote, black bear 

and bobcat in DMZ 1 are some of the highest in the state (Paul Rego, Connecticut Department of 

Energy and Environmental Protection, personal communication). Annual average temperature 

for DMZ 1 is 49.25°F with average annual precipitation of 53.42 inches and average annual 

snowfall of 31 inches (U.S. Climate Data 2018).    

Methods 

Capture and Monitoring 

 White-tailed deer capture work began in the winter of 2012 and continued through the 

winter of 2015. We darted 25-26 female deer each year over baited sites using a dart gun (model 

171c or 389, Pneu-Dart Inc., Williamsport, PA) and a 2-cc disposable, wire-barbed, dart 

equipped with radio transmitters (Pneu-Dart Inc., Williamsport, PA). We immobilized deer using 

a combination of Telazol (280 mg) and Xylazine (315 mg). We radio collared and implanted 

adult female deer with temperature-activated vaginal implant transmitters (VIT) (Models 
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M2920B and M3930; Advanced Telemetry Systems Inc., Isanti, MN). The VIT’s detected a 

change in temperature and were equipped with a timer, recording the number of 30-minute 

intervals that passed since expulsion (Shuman et al. 2017). We recorded information on age, 

condition of the doe and location of capture site. After processing was complete, we reversed 

xylazine hydrochloride with tolazoline hydrochloride (200mg intravenous). 

 We monitored the very high frequency collars and the VIT signals daily from early May 

each year (2012-2015) until all VIT’s dropped. When we detected a change in the VIT signal, 

indicating the transmitter had been expelled during birth, we would locate the transmitter and 

search the surrounding area for fawns (Warbington et al. 2017).  If fawns were located, we 

would immediately blind fold them and place them in a mesh sling filled with natural vegetation 

to reduce scent transfer while wearing non-scented latex gloves (Rohm et al. 2007, Grovenburg 

et al. 2012, Shuman et al. 2017, Warbington et al. 2017). We measured and recorded fawn 

weight, hoof growth, inner ear length, tail length and hind leg length, as well as, location of VIT 

and fawns using a global positioning system (GPS). We continued to locate fawns and does daily 

using radio-telemetry gear and the process of bi-angulation. We recorded locations of fawns and 

does for 90 days post capture, and then 3-times per week thereafter until the end of the hunting 

season (December 31). When the mortality signal activated, we would hone in on the collar and 

record the GPS location. We documented mortality events with photographs and classified the 

source of mortality as bear when very little remains were left and bear scat was near the kill site, 

as coyotes when remains were scattered and no obvious neck could be found, as bobcats when 

obvious puncture wounds were located on the fawn’s necks and remains were cached. We 

classified predation as unknown when no obvious scat could be found and remains exhibited a 

combination of the previous classifications making it difficult to determine the primary predator 
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responsible. Mortality classified as a natural event occurred when fawns were located at birth 

sites, with no obvious predation signs and no other physical damage. We classified the cause of 

mortality as human when kill sites did not fit any of the previous predator classifications and as 

poached when obvious human sign was discovered at the mortality site and wounds to the fawn 

were created by man-made objects. We classified mortality as farming equipment when fawns 

and or collars were found either in freshly mowed fields or hay bales. Unknown mortality 

occurred when it was not clear whether it was human or predator.   

Landscape and Weather Variables 

 To assess the relative importance of landscape scale on fawn survival we created circular 

buffers at 15, 30, 60 and 100 ha intervals around the GPS birth site locations of fawns in ArcGIS 

(Environmental Systems Research Institute 2014) (Figure 2.1). Due to the lack of research that 

looks at the effects of landscape variables at different scales on fawn survival, we selected 

intervals that related to the average 50% fixed kernel home range of does collared during this 

study (31ha). We created buffers both smaller and larger than the core home-range to capture 

potential variability in the effects and relative importance of landscape variables. We used 

FRAGSTATS Version 3.3 (McGarigal and Marks 1995) in ArcGIS and the National Land Cover 

Database (Homer et al. 2015) to calculate both class and landscape level variables. Land cover 

classes were generalized and included forested (deciduous, conifer and mixed), developed 

(developed open space, low, medium and high development), barren (rock/sand/clay), shrubland 

(dwarf shrub and shrub/scrub), Herbaceous (grassland/herbaceous, sedge/herbaceous, lichens 

and moss), planted/cultivated (pasture/hay, and cultivated crops), and wetlands (woody wetlands, 

emergent herbaceous wetlands).  We selected a set of both landscape and class-level variables 

based on previous research on the effects of macrohabitat variables on survival and basic neonate 

ecology (Rohm et al. 2007, Grovenburg et al. 2011, 2012) and on habitat types that varied the 
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most across fawn buffers. Class metrics included patch density (PD; number of patches/100 ha of 

the habitat category), %habitat (percent of the buffer comprised of the habitat category of 

interest), and landscape shape index (LSI; total edge associated with the corresponding habitat 

category, divided by the minimum total length of edge possible). Landscape metrics included the 

number of patches (NP; total number of patches in the area), landscape shape index (LSI; total 

length of edge in the landscape, divided by the minimum total length of edge possible), and the 

interspersion and juxtaposition index (IJI; index of patch adjacency and relates to the mixing of 

patch types on the landscape). We used Pearson’s correlation coefficients to evaluate potential 

collinearity between landscape variables. Variables with correlation coefficients greater than 0.7 

were not included in the same models.   

We used daily low temperature (°F), daily average wind speed (mph), and daily rain 

totals (inches) from Weather Underground (Weather Underground 2018) for our weather 

variables based on findings from other studies (Grovenburg et al. 2012, Warbington et al. 2017). 

We accessed the weather data from the closest (38 miles north) weather station (Pittsfield 

Municipal, Pittsfield MA) to our study area that provided continuous historical data from 2012-

2015.  

Analysis 

We used cox-proportional hazard models and the survival package in program R 

(Therneau 2015 and R Core Team 2017) to estimate survival and predation to 90 days and to 

determine the relative importance of landscape scale, as well as the effects of landscape, 

biological and weather variables on predicting survival. We choose 90 days because the most 

accurate data occurred during this time frame, as we switched to monitoring fawns three days a 
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week after 90 days as well as the fact that after 119 days, fawns are accessible to hunters and are 

therefore considered recruited into the population at this time (Shuman et al. 2017). 

  Model set 1 consisted of 19 a-priori models constructed of all possible combinations of 

habitat variables, excluding combinations in which variables were correlated. We ran these 19 a-

priori models for each of the four buffers (15, 30, 60 and 100 ha). Model set 2 consisted of 16 a-

prior models, or all possible combinations of biological covariates and model set 3 consisted of 8 

a-prior models of all possible combinations of weather variables. Biological covariates included 

fawn sex, birth weight, whether a fawn was born a twin, and the year of capture. We initially ran 

model set 1 for each of the selected buffers (15, 30, 60 and 100 ha) to determine the most 

supported landscape scale and variables related to fawn survival using Akaike’s Information 

Criterion corrected for small sample size (Burnham and Anderson 2002). We considered 

competing models to be those with ≤ 2.0 AICc units from the top model (Burnham and Anderson 

2002). We also used AICc model selection to determine the most supported model from model 

set 2 (biological) and model set 3 (weather). Finally, we used AICc model selection to determine 

the overall most supported model based on the top ranked models from each model set and the 

global model.   

Results 

 Fawns were successfully captured from 56 of the 103 does with VIT’s (54%), which 

included 28 singletons, 24 twins and one triplet for a total of 79 fawns. One fawn was removed 

from the analysis due to missing data on capture location, which prevented calculations of 

covariates, bringing the total number in the analysis to 78 fawns. Reasons for unsuccessful 

captures resulted from does dispersing from the study area, premature expulsion of the 

transmitters, the inability to locate the VIT’s in less than 4 hours, and the inability to locate 
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fawns. Doe parturition dates occurred from May 20th through July1st with peak fawning 

occurring on June 2nd (n=11) (2012-2015). Mean birth weight was significantly different among 

years (F3 = 3.67, P=0.016), with a mean birth weight of 3.4kg (SD=0.11) in 2012, 3.2kg 

(SD=0.12) in 2013, 3.6kg (SD=0.11) in 2014, and 3.1kg (SD=0.10) in 2015. Mean birth weight 

also was significantly different among twins (3.2kg, SD=0.39) and singletons (3.4kg, SD=0.68) 

(F1 = 4.69, P=0.033) but did not differ between sexes.  

Cause-Specific Mortality 

A total of 56 fawn mortality events were recorded during the study: 12 during 2012, 13 

during 2013, 9 during 2014 and 22 during 2015. Of the 35 fawns predated upon from 2012-2015, 

40% were classified as bobcat (N=14), 11% as coyote (N=4), 37% as bear (N=13) and 11% as 

unknown predation (N=4) (Table 2.1).  Fawn mortality events classified as natural included five 

during 2012, one during 2013, none during 2014 and one during 2015. A total of five fawns from 

2012 to 2015 were classified as poached, as well as another two mortality events as human 

caused. Farming equipment was another common source of mortality, with five total mortality 

events occurring during 2012-2015. Of the fawns that survived past the 90 days, only one was 

harvested during the subsequent hunting season (Table 2.1).  

Survival Analysis 

 

Landscape Covariates 

The landscape model and scale that best predicted survival was percent forest at 15 ha 

(Table 2.2). We estimated two competing top models, however models were nested, with the 

second model only adding an additional parameter (forest patch density (PD)), and therefore 

model averaging was not warranted (Arnold 2010). Percent forest occurred in eight of the 18 

models, all of which made up the top eight models, suggesting overwhelming support for the 
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effect of forest cover on fawn survival.  Model {%forest 15 ha} had the lowest AICc value and 

the weight of evidence was 2.6 times greater than the second-best model and 2.9 times better 

than the third-best model. Cox-proportional hazard ratios suggest that percent forest within the 

15ha buffer increased the hazard ratio such that for every 1% increase in forest cover survival 

decreased by 10% (HR=1.022, 95% CI = (1.012,1.031) (Table 2.3 and Figure 2.3).  The amount 

of forest within the 15ha buffer ranges from 0 to 100 % in this study.   

Biological Covariates 

For model set 2 we identified three competing top models (i.e. within 2 AICc units) with 

all three of the top models including weight and sex (Table 2.4). Competing models were nested, 

only adding an additional parameter when compared to the top model, therefore we did not 

model average between the top three models. Weight and sex were in the top eight models 

suggesting strong support for their effects on fawn survival. Weight of evidence for 

model{weight+sex} was 2.6 times higher than the second model and 2.8 times higher than the 

third model. Cox proportional hazard ratios suggest that males are associated with an increase in 

the hazard and therefore a decrease in survival days by 95% (HR= 1.96, 95% CI = 1.08-3.50) 

(Table 2.5 and Figure 2.4). Survival increased with weight (HR=0.39, 95% CI = 0.21-0.72) such 

that for every 1kg increase in weight, fawn survival increased by 61% (Table 2.5 and Figure 2.5). 

Both covariates are significant, with hazard ratios not overlapping 1.  

Weather Covariates 

For model set 3, we identified four top models which included the null model suggesting 

that weather variables likely have little to no effect on fawn survival (Table 2.6). Top models 

included all the covariates; daily low temperature, daily rain and average wind with the null 

model only 1.92 AICc’s from the top model. We therefore excluded model set three from further 

consideration. 
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Overall Survival Model 

Ranking of the models from model set 1 and 2 as well as the global model and null model 

resulted in competing models between the global model and the most supported landscape model 

(Table 2.7). Weight of evidence for both models suggest week support for the top ranked model 

with an evidence ratio of 1.5 (W1/W2). We reported survival estimates from the most 

parsimonious model of percent forest cover in 15ha buffers.    

Survival rates 

 Overall 90 day survival from the most supported cox-proportional hazard model was 0.36 

(95% CI = 0.25-0.52).  Survival was 94% (95% CI = 0.84-1.00) during the first week, 86% (95% 

CI = 0.73-1.00) during the second week and declined to 50% (95% CI = 0.377-0.675) by day 39 

(Figure 2.2). 

Discussion 

 

Cause-specific mortality  

 Our study provides an analysis of white-tailed deer fawn survival in an area of the 

northeastern United States with 3 sympatric predators (black bears, bobcats and coyotes). We 

estimated a survival rate of 36% on average across the four-year study based on the most 

supported cox-proportional hazard model. This survival rate is comparable to the estimated 

survival of soft released rehabilitated fawns in Connecticut (30.8%) (Scott and Gregonis 2015) 

and the survival rate of 27% in the southeastern US with the same primary three predators 

(Shuman et al 2017). It is also comparable to other 2-predator systems in the southeastern United 

States (Saalfeld and Ditchkoff 2007, Kilgo et al. 2012, Chitwood et al. 2015), and also the fawn 

survival of 40% in Maine (Long et al. 1998). In comparison, fawn survival rates from the 

Midwest are generally higher at 87% in Minnesota and South Dakota (Grovenburg et al. 2011), 

94%-54% in north-central South Dakota (Grovenburg et al. 2012), 77% in Southwestern Lower 
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Michigan (Burroughs et al. 2006), and 59% in Southern Illinois (Rohm et al. 2007). Based on 

classification of mortality sources within this study, predation was the greatest source of 

mortality in northwest Connecticut (62.5%), with the largest source of predation from bobcats 

(40%) and bears (37%), with only 11% of predation events classified as coyote. Our estimates of 

survival are greater than some of the 2-predator system studies, but similar to findings from 

research on another three predator system in the south-eastern U.S. (Shuman et al. 2017). 

Research supports risk- reducing effects associated with multiple predator systems, resulting in 

lower consumption than expected based on the independent effects of each predator (Sih et al. 

1998).  

Landscape Scale 

 While habitat characteristics are known to affect deer distributions and abundance 

(Anderson et al. 2011) the impact of habitat on fawn survival has only been recently investigated 

at limited scales. We found that 15ha buffers best predicted the effects of landscape covariates on 

fawn survival. Our research is the first to use varying buffers around birth sites to determine the 

most appropriate landscape scale for studying fawn survival. One other study conducted in 

Louisiana considered the importance of the proximity to certain land cover types by calculating 

the distance to the nearest cover type or edge in 100 meter increments from fawn locations 

(Shuman et al. 2017). Some studies ignore landscape variables all together (Carstensen et al. 

2009, Warbington et al. 2017), potentially missing out on key factors affecting fawn survival, 

particularly if these landscapes are heterogeneous or predator rich. Research focusing on fine 

scale cover variability at birth sites received weak support suggesting that mitigating the effects 

of predation is likely more complicated than just managing for increased hiding cover (Chitwood 

et al. 2015). Our results along with the weak support of characteristics at bedsites suggest that 

habitat at scales larger than the location of the fawn likely influences fawn predation risks, as 
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larger spatial scales capture predator distribution and abundance (Tolon et al. 2012). Home range 

of the fawn may be a biologically appropriate way to define the spatial scale, but high mortality 

within short time hindered us and others from attaining the appropriate data for home range 

estimation (Rohm et al. 2007, Grovenburg et al. 2012, Gulsby et al. 2017).  

Habitat covariates 

Model selection results from model set 1 as well as comparisons between models sets 

indicate that variability in fawn survival is best predicted by percent forest in 15ha buffers 

around birth sites. Buffers with increased survival were characterized by low forest cover when 

compared to buffers with mortality events. We found similar results to Grovenburg et al. (2012), 

that surviving fawns had less forest cover in their home-ranges than fawns that died, and 

opposite findings compared to fawn survival in Southern Illinois where areas with high survival 

had few relatively large irregular forest patches (Rohm et al. 2007).  Homogeneous landscapes 

may force does to increase home range size to include more areas of cover, resulting in reduced 

maternal care and defense (Grovenburg et al. 2009, 2012). Landscapes defined by high 

interspersion of habitat types and edges allow deer to acquire the necessary resources while 

occupying a small geographic area (Kie et al. 2002). Homogenous landscapes increase 

movement rates and distances for does and subsequently fawns (at later life stages), increasing 

fawn susceptibility to predation. Our study and others (Rohm et al. 2007, Grovenburg et al. 2012, 

Gulsby et al. 2017) highlight the positive influence of landscape heterogeneity on mitigating 

predation resulting in increased survival. 

A large portion of the mortality events were classified as predation, particularly from 

bobcats and black bears. Certain landscape features and cover types have the potential to 

influence the hunting efficiency of predators (Dijak and Thompson 2000). Our observed increase 
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in the hazard associated with forest cover may be a representation of landscape conditions in 

which bobcats and black bears are the most efficient. Conversely our relatively low coyote 

depredation could be attributed to low hunting efficiency in forested cover (Rohm et al. 2007, 

Grovenburg et al. 2012). Research suggests that bobcats are more likely to select for forest cover 

compared to other habitat classes, and in some cases were twice as likely to select forest cover 

over other habitats (Nielsen and Woolf 2002, Tucker et al. 2008). Bobcats are an opportunistic 

predator, however fawns move little during the first few weeks of life, potentially making 

detection far easier in forested areas with little to no understory (Litvaitis et al. 1986).  While 

bobcats are considered habitat generalists, bobcat may avoid row crop areas (Tucker et al. 2008). 

We found moderate support for a correlation between forest cover and percent agriculture 

(cultivated crops and hay pasture) (-0.67, p-value = 2.2e-16) based on the Pearson correlation 

coefficient, such that an increase in forest cover corresponds to a decrease in agriculture (Figure 

2.6). Interestingly, while not in our most supported models, the percent agriculture within the 

15ha buffer model was significant in predicting survival and a post hoc run of a single variable 

model indicates that percent agriculture reduces the hazard ratio, therefore increasing survival by 

1.53% for every 1% increase in agriculture (HR = 0.98, 95% CI = 0.97 – 0.99). Agriculture in 

this region is often hay fields, which may provide increased concealment for fawns and 

agricultural fields are generally associated with lower predator abundance than forested areas.  

Predation by black bear was the second greatest cause of mortality in our study. Black 

bear distributions in our intermixed ecosystem were best predicted by human housing density 

and not related to forest cover (Evans et al. 2017). However, black bear densities in our study 

area are some of the highest in the state (Evans et al. 2017), likely leading to increased 
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encounters with fawns and therefore increased predation events (Shuman et al. 2017). Again, the 

low concealment in Connecticut forests also likely increases black bear encounters with fawns.  

Biological covariates 

 While models with biological covariates explained little when ranked against models of 

landscape covariates, the highest ranking biological model contained covariates that are 

significant on survival. Weight and fawn sex best predicted risk to fawn survival with weight 

increasing survival, and male fawns exhibiting lower survival then females. Fawn weight is 

related to doe weight, and is viewed as an indication of overall health and access to resources 

either related to social hierarchy or food availability (Therrien et al. 2008, Taillon et al. 2012, 

Michel et al. 2015). Fawns with low birth mass spend more time and energy feeding, which then 

increases the time does spend foraging for resources and results in reduced fitness and survival 

of fawns (Therrien et al. 2008). When resources are limited, adult does are more likely to favor 

their own survival over that years reproductive success, generally resulting in lower than normal 

fawn growth rates and survival (Therrien et al. 2007, Hewitt 2011). The increased feeding time 

of low birth mass fawns could potentially increase visibility of does and thus predation risk 

(Therrien et al. 2008, Panzacchi et al. 2010). We also found significant evidence that survival is 

lower in male fawns then female fawns, which conflicts with previous research finding no sex 

differences (Rohm et al. 2007, Saalfeld and Ditchkoff 2007, Kilgo et al. 2012). Male fawn 

activity is higher than female fawn activity, which could increase their visibility to predators, 

particularly in forested landscapes with low concealment (Jackson et al. 1972, Warbington et al. 

2017). Independence is achieved earlier in male fawns, and results in increased distance and 

decreased association with adult does when compared to female fawns (Schwede et al. 1994). 

We think our observed increase in the hazard ratio with respect to male fawns is associated with 

increased activity and decreased association with adult does increasing their susceptibility to 
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predation and reducing overall survival, particularly in a predator dense system (Warbington et 

al. 2017).  

 The importance of landscape heterogeneity on fawn survival is evident based on our 

research and others (Rohm et al. 2007, Grovenburg et al. 2012). Landscape heterogeneity likely 

influences predator distributions, abundance and hunting efficiency. With predation as the 

leading cause of mortality in our study, understanding how landscape features either mitigate or 

exasperate predation risk is important. Our findings suggest that percent forest cover, associated 

with homogenous landscapes, at a larger scale than fawn location likely influences predator 

distributions, and lead to a reduction in concealment and fitness of does and subsequently fawns 

associated with increased movements to access resources.   

Management Implications 

 Our research provides the first estimates of fawn survival for white-tailed deer in 

Connecticut, with the exception of estimates of survival for rehabilitated fawns (Scott and 

Gregonis 2015)Estimating fawn survival and understanding what factors influence survival is 

important for managers who set harvest regulations on white-tailed deer. Most of the eastern 

United States is faced with overabundant deer populations and understanding what factors are 

hindering or promoting survival and recruitment allow for improved management actions. 

Predator densities will likely remain high in Connecticut, with no current strategies to mitigate 

their impacts on prey species. We found that predation on fawns will be greater in areas of 

mature, closed-canopy forests, which make up most of the forested landscape in Connecticut, 

where only moderately intense forest harvest is occurring (Foster et al. 2002). Continued 

research on the degree to which forests and other landscape variables impact fawn survival are 

encouraged to improve management.  
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Table 2.1.  Cause specific-mortality of white-tailed deer fawns from 2012-2015 in Litchfield

 County, Connecticut.  
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Table 2.2. Four top ranked cox-proportional hazard models and the null model for white-tailed

 deer fawns in Litchfield County, Connecticut for model set 1 (landscape). 

 

 

Table 2.3. Coefficients, standard errors, hazard ratios and 95% confidence intervals for

 covariates from the most supported model from model set 1 predicting risk to white

 tailed deer fawn survival in Litchfield County, Connecticut. 

 

 

Table 2.4.  Four top ranked cox-proportional hazard models and the null model of white-tailed

 deer fawns in Litchfield County, Connecticut for model set 2 (survival).  
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Table 2.5. Coefficients, standard errors, hazard ratios and 95% confidence intervals for

 covariates in top model from model set 2 predicting risk to white- tailed deer fawn

 survival in Litchfield County, Connecticut. 

 

Table 2.6.  Top ranked cox-proportional hazard models of white-tailed deer fawns in Litchfield

 County, Connecticut for model set 3 (weather).  

 

Table 2.7. Model comparison between the most supported models from both model set 1

 (landscape) and model set 2 (biological), including the global and null model for cox

 proportional hazard survival models for white-tailed deer fawns in Litchfield County,

 Connecticut between. 
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Figures 

 

 

Figure 2.1.  White-tailed deer fawn birth sites (black dots), with 15, 30, 60 and 100 ha buffers

 for landscape variable analysis in Litchfield County, Connecticut using a condensed

 version of National Land Cover Data (2011) using general land cover categories. 
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Figure 2.2. Cumulative survival and 95% confidence band based on the most parsimonious cox-

 proportional hazard model for white-tailed deer fawn survival in north-western

 Connecticut from 2012-2015. 
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Figure 2.3. Simulated effects, of percent forest cover on the hazard ratio from the most

 supported cox- proportional hazard model and most supported model from model set 1

 (landscape) predicting white tailed deer fawn mortality in north-western Connecticut

 from 2012-2015. The extent of the predictions was limited to the range of observed

 values. The dotted line represents the value at which hazards are equal (y = 1), light grey

 ribbons represent the lower (0.075) and upper (93.5) quantiles whereas dark blue ribbons

 represent the central 50% of values. 
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Figure 2.4.  Survival curves for male and female fawns based on the most supported cox

 proportional hazards model from model set 2 (biological) with 95% confidence bands for

 fawn survival in north western Connecticut from 2012-2015. 
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Figure 2.5. Simulated effects of fawn birth weight (kg) on the hazard ratio from the most

 supported cox- proportional hazard from model set 2 (biological) predicting white-tailed

 deer fawn mortality in north-western Connecticut from 2012-2015. The extent of the

 predictions was limited to the range of observed values. The dotted line represents the

 value at which hazards are equal (y = 1), light grey ribbons represent the lower (0.075)

 and upper (93.5) quantiles whereas dark blue ribbons represent the central 50% of values. 
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Figure 2.6. Relationship between percent agriculture and percent forest cover within the 15ha

 buffer around fawn birth sites from north-western Connecticut with a Pearson correlation

 coefficient of -0.67 (p-value 2.2e-16).  
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Abstract 

 Aerial surveys are a common tool used to estimate population size of large mammals 

across large geographic areas. However, biased estimates occur due to the influences of terrain, 

vegetation, animal activity and various other factors affecting detection probability. Sightability 

models attempt to account for these biases by conducting repeated flights over collard animals, 

recording information on variables likely to affect detection probability. Informed estimates of 

detection probability are then used to estimate population size. We attempted to calibrate a 

sightability model for the Connecticut landscape, accounting for animal behavior, group size, 

cover type, understory, and weather conditions. We used AICc model selection to determine the 

best detection probability model and used this to estimate population size in deer management 

zone 5 in Connecticut. Preliminary results indicate that deciduous and conifer cover observed 

from the helicopter are the most important factors affecting sightability with conifer hindering 

sightability and deciduous cover increasing sightability of deer. Preliminary estimates of 790 

deer (481, 1,496) per 6.42 square miles, along with large variance estimates (44,880) associated 

with operational flights indicate the need to increase replications of operational flights in future 

years to improve abundance estimate accuracy and precision. The continuation of sightability 

flights and the incorporation of additional cover types will only improve the model for future 

years and increase its applicability across the Connecticut landscape.  

Introduction 

 Aerial surveys are typically used when population estimates of large mammals are 

needed over large geographic areas, however these counts are often biased low (Zabransky et al. 

2016). Biased estimates of population size are due to the influence of terrain, vegetation, animal 

activity and other factors on detection probability (Caughley 1974, Samuel et al. 1987, 

Zabransky et al. 2016). Accounting for these potential biases is important, as policy and 
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management decisions are based on population size, requiring accurate and precise estimates 

(Haroldson et al. 2003, Jacques et al. 2014). A common method to correct for bias in estimates is 

the use of sightability models or modified Horvitz-Thompson estimators, first used for 

estimating elk population size in Idaho (Samuel et al. 1987). Sightability models are generally 

developed by conducting repeated flights over collared animals, taking measurements of the 

variables likely to influence detection. Variable selection methods are used to determine the best 

model at predicting detection probability (Giudice et al. 2012). Population size is estimated by 

summing the quotients of complete counts of groups observed during a survey divided by their 

detection probability as determined through the sightability model (Walsh et al. 2011). Recent 

advances in the sightability model include accounting for correlation between stratum-specific 

estimates when a common detection model is used across all strata (Fieberg and Giudice 2008, 

Walsh et al. 2011). 

 Aerial surveys and sightability models have been used for a wide range of taxa and across 

various geographic locations (Haroldson et al. 2003, Buckland et al. 2012, Fieberg and Lenarz 

2012, Habib et al. 2012, Jacques et al. 2014, Zabransky et al. 2016), however we are not aware 

of research on the creation of a sightability model for white-tailed deer in the forested region of 

New England. We had the opportunity to calibrate a sightability model for white-tailed deer in a 

portion of north-eastern Connecticut. Previous correction factors for aerials surveys in 

Connecticut, established in a coastal region, was estimated to be 2.2 based on the ratio of marked 

to un-marked deer observed during the aerial surveys (Kilpatrick et al. 2001). Factors such as 

land cover, animal behavior and group size are all known to influence detection and were not 

accounted for in previous correction estimates. Furthermore, advancements in technology allow 

for the use of GPS collars (global positioning system) to locate deer on the landscape during 
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flights to better understand the role of certain variables on detection probability of marked deer. 

Our objective was to use the Sightability package in program R (Fieberg 2012, R Core Team 

2017) and GPS collared deer to determine which factors (cover type, group size, animal behavior 

and understory presence) best predict detection probability of white-tailed deer during aerial 

surveys. We then plan to use the best model based on AICc model selection to estimate 

population size across deer management zones (DMZ) in Connecticut.  

Methods 

 Twenty-five to 35 adult female white-tailed deer were collared by the Connecticut 

Department of Energy and Environmental Protection making up our sightability sample size 

between 2017 and 2018. We conducted sightability trials and operational surveys for white-tailed 

deer in the same Deer Management Zone (5). Flights took place on different days and followed 

different sampling designs. We used information collected on collared deer to create a predictive 

sightability model while operational surveys were standard aerial counts of deer on randomly 

selected transects consistent with the simple estimate survey design (Caughley 1977) with no 

attempt to locate marked individuals (Giudice et al. 2012).  

 Surveys began in year two of the study (December 2017), when snow depth (>4”) and 

weather conditions, notably wind speed (<15mph), permitted. Both operation and sightability 

flights were conducted using an R44 helicopter, flying 70m above ground level at 16-24 km/hour 

flying east-west transects when wind direction and speed permitted. GPS collars were set to take 

locations every fifteen minutes and download fixes every four hours just prior to flights. We 

created one square mile rectangular survey plots over GPS collared deer locations during the 

morning of sightability flights using ArcGIS (Environmental Systems Research Institute 2014). 

Transects were placed, 500ft apart, within each survey plot and four transects were selected to 
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fly for each GPS collared deer that maximized the chances of detecting that deer (Figure 3.1).  

Flights consisted of a pilot and an observer, both experienced with conducting white-tailed deer 

aerial surveys (Griffin et al. 2013, Zabransky et al. 2016). Individuals responsible for 

determining survey plots and transects were not involved in the sightability flights to reduce bias 

(Giudice et al. 2012). When a group of deer was observed the primary observer recorded the 

GPS location, along with the cover type (conifer, deciduous, mixed forest, open, residential) and 

understory presence (0 or 1) within a nine- meter radius around the first observed deer, as well as 

that deer’s behavior (active or inactive), total group size and the presence of collared deer. We 

also noted the wind speeds, snow cover (inches) and cloud cover (%) during the flights. If we did 

not observe the collared deer in the survey plot upon completion of the transects, the primary 

observer used telemetry to locate the animal. If the animal was in the test plot the primary 

observer recorded the same information as for the observed deer, noting that the collared deer 

was not sighted during the initial flight. 

 For operational flights we used ArcGIS to overlay transects spaced 1 km apart over 

DMZ 5, resulting in a total of 37 potential transects. We randomly selected the first transect and 

then evenly selected five more transects for a total of six transects (Figure 3.2). We randomly 

trimmed transects in ArcGIS so that they were roughly 10 miles in length to complete the survey 

in one day. The flights consisted of a pilot and primary observer. If a group of deer was detected, 

the primary observer would record the GPS location as well as the same variables recorded 

during the sightability trials including weather conditions during the flight. 

Sightability Model 

 We used the c to determine the best predictors of detection probability as well as to 

estimate abundance in DMZ 5. Sightability models are binary logistic-regression models, with 
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detection probability based on the sightability flights and covariates (Fieberg 2012). The fitted 

detection model is used to adjust counts of animals missed during surveys. A modified Horvitz-

Thompson estimator is used to estimate abundance (Fieberg 2012). Due to limited sightability 

data (29 total observations), we looked at the relative importance of cover type (conifer, 

deciduous, and mixed), behavior, snow cover (inches), and understory presence as single 

covariate models. We used AICc model selection to determine the best model (Arnold 2010, 

Burnham et al. 2011). We intended to include group size as a covariate for model selection, 

however the relationship between this covariate and detection probability was not linear, and 

therefore the limited data meant that this variable had to be excluded from model selection. 

Density was estimated by dividing the model estimate of abundance by the total area flown. We 

assumed a 500ft strip width for each of the six transects.  

Results 

 We surveyed a total of 29 collared deer between December 2017-Febuary 2018. The 

proportion of marked deer detected was 0.53 with 19 observed collared deer and 10 un-observed 

collared deer. We flew one operational flight and detected a total of 101 deer across the six 

transects. 

Sightability Models 

 Based on AICc model selection, we identified two possible competing models (i.e. within 

2 AICc units) that predicted sightability (Table 3.1). The most supported models included both 

conifer and deciduous cover types suggesting that cover type best predicts sightability, as 

opposed to animal behavior and understory presence (Table 3.2). The model averaged beta 

estimate for conifer was -2.89 (SE=1.21) therefore negatively influencing detection probability, 

while deciduous cover positively influenced sightability with a beta estimate of 2.74 (SE= 1.15) 

(Table 3.2).  
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Population Estimates 

 The sightability model estimated abundance at 790 deer (481, 1,496) per 6.42 square 

miles. Sampling variance was estimated at 44,880 while sightability variance was 8,102 and 

model variance was 2,307. 

Discussion 

 Preliminary results suggest that landcover determined from the air has a strong influence 

on detection probability of white-tailed deer in Connecticut. We demonstrated that dense conifer 

stands negatively impact detection while deciduous forests have a positive effect on detection 

probability. These results are comparable to other studies looking at vegetation and its impact on 

detection probability, even if vegetation types vary across geographic areas (Rice et al. 2009, 

Griffin et al. 2013). The importance of cover types on detection reinforces the need to develop 

sightability models across the landscapes in which they will be applied (Zabransky et al. 2016). 

Behavior of deer during the survey did not come out in the most supported models and group 

size did not exhibit a linear relationship with detection probability, even though other research 

suggests the importance of these covariates (Rice et al. 2009, Griffin et al. 2013, Jacques et al. 

2014).  However, animal activity did not affect detection for all studies (Samuel et al. 1987, 

Anderson et al. 1998), with Anderson et al. (1998) suggesting that activity might not influence 

detection probability during surveys with snow cover. Snow cover generally reduces movements 

of deer and therefore behavior likely varies little between observations during our winter 

surveys.  

Survey variance was high for our one operational survey. The high survey variance likely 

resulted in biased estimates of abundance and large confidence intervals around the current 

estimate, and thus the current estimate is not useable for management decisions. Only one 

operation flight was flown during the current year, however once the sightability model is 
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finalized, in future years most of flights will be operational flights. Future operational surveys 

need to occur over several days to ensure that a large proportion of the study area (i.e., deer 

management zone) is surveyed. Obtaining enough data such that vegetation classes can be 

incorporated into the estimate of detection probability is the most important step that would 

allow the sightability model to be applied across all the Connecticut deer management zones.  
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Tables 

 

Table 3.1. Candidate model set for white-tailed deer sightability in north-eastern Connecticut 

considered a priori with the number of parameters (K), AICc, ΔAICc, log likelihood, and 

cumulative model weights.  

 

 

 

 

Table 3.2. Model averaged parameter estimates, standard errors and p-values for most supported

 sightability models of white-tailed deer in north-eastern Connecticut.  
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Figures 

 

Figure 3.1. Example sightability flight transects in north-eastern Connecticut established by

 placing a 1 square mile rectangular buffer around the last known GPS location of white

 tailed deer. Transects were placed in the buffer, spaced 500ft apart, and four transects

 were selected that maximized the chances of detecting the collared deer during the 

 survey.  
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Figure 3.2. Operational flight transects, spaced 1km apart, in deer management zone 5, with six

 randomly selected transects for flights over white-tailed deer.  
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