1-18-2017

Effects of ART in HIV Infected Population on Body Habitus Change: A Multilevel Meta-analysis

Nusrat Nuireen Habib
University of Connecticut, nusrat.habib@uconn.edu

Recommended Citation
https://opencommons.uconn.edu/gs_theses/1045

This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact opencommons@uconn.edu.
Effects of ART on HIV Infected Population on Body Habitus Change: A Multilevel Meta-analysis

Nusrat Nuireen Habib

M.B.B.S., ZH Women’s Medical College & Hospital, Dhaka, Bangladesh, 2012.

A Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science
at the
University of Connecticut
2017
Master of Science Thesis

Effects of ART on HIV Infected Population on Body Habitus Change: A Multilevel Meta-analysis

Presented by
Nusrat Nuireen Habib, M.B.B.S.

Major Advisor __
Dr. Tania B. Huedo-Medina

Associate Advisor __
Dr. Michael M. Copenhaver

Associate Advisor __
Dr. Amy Gorin

University of Connecticut
2017
ACKNOWLEDGEMENTS

Gratitude to all my advisory committee members for their relentless support. I would like to thank Dr. Tania B. Huedo-Medina from bottom of my heart, without whom this journey would have been impossible. As my major advisor, she always inspired me enhancing knowledge in this research field. I got encouragement doing meta-analysis and learned different statistical application techniques from her. She taught me how to become compassionate and respectful to others. With her advice and mentorship, I got confident in my work. I became more patient and gained mental strength to face difficulties while performing research. Thank you for inspiring me to try to become an effective researcher. I am so grateful to Dr. Michael M. Copenhaver for being a wonderful teacher. His research on HIV guided me to select my research topic. Under his mentorship, I learned behavioral health issues those motivated me to think in depth on HIV related adverse health conditions and inspired me to intervene different antiretroviral drug actions on HIV patients. My special thanks to Dr. Amy G. Gorin for her enormous support. I am very fortunate to work with a very friendly and helpful person like Dr. Gorin. Working with her helped me becoming knowledgeable on behavioral and psychosocial factors regarding obesogenic patients. My curiosity grew to know how body fat constituents are changing in HIV patients after ART administration. Thank you again for everything.

Special thanks to my parents supporting me and I believe their blessings lead my life up-to this point. Thanks to my friends for their encouragement and cooperation. At last, I would like to thank my dear husband Sha Mamun for his love and motivation which made me brave and strong in decision making of my career path.
TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

Global Facts on HIV

FDA approved HIV-medicines with their mode of action

Immunological Response

Defining Body Habitus Change

Assessment Techniques

Significance/Rationale

Research Purpose

Research Objectives/Aims

METHODOLOGY

Systematic Search Procedure

Identification Criteria

Quality Assessment

DATASET PREPERATION

STATISTICAL ANALYSIS

RESULTS

DISCUSSION

Risk of Bias

Strengths and Limitations

CONCLUSIONS

RESEARCH CONTRIBUTIONS

REFERENCES

FIGURES

Figure 1: Study identification and selection process using PRISMA diagram

Figure 2: Meta Regression plot for TG in PI regimen

Figure 3: Meta Regression plot for LDL in NRTI regimen

Figure 4: Meta Regression plot for LDL in PI regimen

Figure 5: Meta regression plot for Limb fat in LPV/r combination HAART category 1.
Figure 6: Meta Regression plot for Trunk-fat in LPV/r combination HAART category 1
Figure 7: Meta regression plot for Cholesterol in NNRTI combination HAART category 3.
Figure 8: Forest plot for Trunk Fat favors NRTI regimen
Figure 9: Forest plot for Limb Fat Favors Combination ART category 3.
Figure 10: Forest plot for Total body fat favors NRTI
Figure 11: Forest plot for HDL favors Combination ART category 1
Figure 12: Forest plot for HDL favors Combination ART category 2
Figure 13: Forest plot for HDL favors Combination ART category 3.
Figure 14: Cochrane Risk of Bias Table

TABLES
Table 1: Summary of Included Literatures
Table 2: Publication Bias for NRTI
Table 3: Publication Bias PI
Table 4: Publication Bias Combined Drug Category 1
Table 5: Publication Bias Combined Drug Category 2
Table 6: Publication Bias for ART Combined Drug Category 3
Table 7: Overall Effect Sizes (RE) and Homogeneity assumptions for NRTI alone
Table 8: Overall Effect Sizes (RE) and Homogeneity assumptions for PI alone
Table 9: Overall effect sizes (RE) and homogeneity assumptions for LPV/r combination category
Table 10: Overall effect sizes (RE) and homogeneity assumptions for PI combination category
Table 11: Overall effect sizes (RE) and homogeneity assumptions for NNRTI combination category
Table 12: Multilevel MA model results on different outcomes in different ART treatment levels
Table 13: Multilevel MA model results including moderator analysis
Table 14: List of moderators with no significant results
Table 15: List of moderators unable to analyze due to lack of study reports

APPENDIX
Appendix 1: Comprehensive Literature Search Strategy
Appendix 2: Data Extraction Coding Form
ABSTRACT

Importance: Different ART treatments to HIV patients has been shown to be effective in improving a variety of disease outcomes, including CD-4 cell count improvements and viral suppressions. In addition to these improvements, investigators are also interested to evaluate the association between ART treatments and the body habitus changes of the HIV patients. It is unclear that which body habitus change outcomes are more greatly associated with what type of ART treatments and how those effects could vary depending on context and sample characteristics.

Objective: To obtain overall effect sizes for the body habitus change outcome variables (weight, body mass index, trunk fat, limb fat and lipid parameters) and explain the variability among different ART treatments/interventions (NRTI, NNRTI, PI and combination HAART medicines) considering all treatments clustered within the current literatures using multilevel approach for meta-analysis.

Data Sources: Five electronic databases (PubMed, Scopus, CINAHL, PYCHINFO and Cochrane Controlled Trials register) were searched starting on July 6, 2015 using a comprehensive Boolean Search Strategy.

Study Selection: Studies were included if pre-and post- intervention measurements of body habitus changes were reported and NRTI, NNRTI, PI, and combination HAART medicines LPV/r vs ABC/3TC + LPV/r; LPV/r +ZDV/3TC vs LPV/r NVP; PI compared alone or, in combination with other ARTs and NNRTI compared alone or, in combination with other ARTs were used as treatments to HIV patients. Data from 20 studies (N = 376) were included.
Data Extraction and Synthesis: Two independent researchers identified studies that met the inclusion criteria and coded methodological, participant, and treatment characteristics using a pilot tested structured coding form. Inter-rater agreement was evaluated using Cohen’s kappa coefficient statistic and effect size was calculated as standardized mean difference as all outcome variables were continuous.

Main Outcomes and Measures: Weighted mean effect size under random-effects assumption were obtained and modeled after pooling the individual standardized mean differences for each study on the five-body habitus change outcomes.

Results: There were significant beneficial effects of the LPV/r combination category on weight and BMI \([d+ = 0.44, 95\% \text{ CI} (0.18 \text{ to } 0.71)]; [d+ = 0.94, 95\% \text{ CI} (0.53 \text{ to } 1.3)]\) respectively. PI combination category has beneficial effect \([d+ = 0.44, 95\% \text{ CI} (0.2601 \text{ to } 0.6311)]\) for limb fat. Level of HDL significantly increased in all three combination categories but more in favor of NNRTI combination category with large impact \([d+ = 0.85, 95\% \text{ CI} (0.54 \text{ to } 1.15)], \text{p-value of } <0.0001.\) Multilevel analysis results inferred that estimates for HDL were statistically significantly different in three combination HAART treatment categories (i.e., LPV/r, PI and NNRTI combined HAART categories) with p= <0.0001, p=0.01 and p= <0.0001 respectively. Estimates for LDL were significantly different in NNRTI alone, LPV/r and NNRTI combined HAART categories. For trunk and limb-fat, variations were statistically significantly different between PI alone and NNRTI combined HAART, with corresponding p=<0.0001. Moderation analysis indicated that, level of LDL decreases by 0.004 units when length of intervention or, week increases. Limb fat increases by 0.06 units as more recent the publication is. HDL, LDL and TG decreases by 0.06, 0.005 and 0.07 units due to advancement of research.
Level of HDL and LDL decreases 0.006 and 0.01 units as number of female patients increases in the sample, meaning that, chances of increased HDL and LDL level is less in large female patients. Level of blood cholesterol and TG decreases 0.17 and 0.07 units due to the aging process. Proportion of white population has significant moderation effect on trunk fat, limb fat, cholesterol with no significant effects on weight, BMI, LDL, HDL and TG and methodological quality modified only limb fat. Trunk fat, limb fat and cholesterol increases 0.64, 0.73 and 0.50 units when proportion of white population increases. Methodological quality (MQ) score has moderated limb fat by 0.18 units indicating that due to good quality research/ high quality score, limb fat is increasing for the betterment of body balance.

Conclusions and Relevance: LPV/r combined HAART is more effective with moderate increase of weight and BMI. PI combined HAART has significant impact on limb fat improvement which could be used to maintain body proportion in HIV patients as limb fat loss is a major concern. NNRTI combined treatment category showed large impact on HDL which might be prescribed as HDL reduces cardiovascular risk.
INTRODUCTION

Global Facts on HIV

Human Immunodeficiency Virus (HIV) infection is a slow progressive infectious health condition that weakens human immune system. Approximately 36.9 million people are now living with HIV worldwide. The Centers for Disease Control and Prevention (CDC) report stated that 1.2 million people are living with HIV in the United States. Chances of new HIV infection remains static but the number of people living with HIV has increased over the past decades since the epidemic began. The majority of new HIV infected populations are men having sex with men (MSM), accounting for 78% in 2010. The prevalence of new HIV infections among women was reduced 21% from 2008 to 2010. Racial context reflects that HIV is more likely within African Americans, who made up 44% of new HIV infections in 2010 (1). HIV infection is not curable; however, effective treatment with HIV-medications can suppress viral replication and increase CD4 cell counts, which reduces HIV-associated mortality, morbidity and hospitalizations with subsequent improvements in health quality.

FDA approved HIV-medicines with their mode of action

UNAIDS 2014 report regarding the accessibility of antiretroviral therapy (ART) highlighted that 76% of HIV infected populations undergo ART globally to reduce chances of spreading HIV to their sexual partners (2). The Food and Drug Administration (FDA) has classified ART into eight categories, including nucleoside reverse-transcriptase inhibitors (NRTIs), non-nucleoside reverse-transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), combination forms of ART, fusion inhibitors, pharmacokinetic enhancers, entry inhibitors, and integrase inhibitors with their subclasses
(3). For this study, we considered only NRTIs, NNRTIs, PIs and combination of HAART following FDA provided classifications those are made up of two or more medicines from one or, more HIV medicine classes such as two NRTIs, three NRTIs, two NRTIs plus one NNRTI, two NNRTIs plus one PI, NRTI plus NNRTI plus PI and Ritonavir boosted Lopinavir (LPV/r) considering widely prescribed HIV medicines by the practitioners to treat HIV patients.

HIV-medicines vary in their mode of action to minimize chances of viral replication. Nucleoside reverse transcriptase inhibitor (NRTI) inhibits viral reverse transcriptase by targeting RNA dependent DNA polymerase chains. Non-nucleoside reverse transcriptase inhibitor (NNRTI) inhibits the reverse transcriptase without intracellular phosphorylation. In addition, protease inhibitor (PI) binds with proteins, inhibits structural protein formation, and prevents the spread of viral infection (4). Healthcare providers use combination of any three types of ART or, HAART as standard of care treatment to combat against HIV-infection (5 -6). There is no known explanation for HAART’s mode of action.

Immunological Response

Immunologic and virologic responses may vary from one study to another due to the selection of different ARTs by the healthcare providers and there is a lack of written protocol/direction selecting medicines according to stages of HIV. One study examined adult antiretroviral naïve HIV patients who received HAART containing protease inhibitors with a median follow up of 18 months. Researchers did not find significant viral and immunological cell differences before and after HAART intervention (7). A
multicenter randomized clinical trial compared two subclasses of NRTIs along with NNRTI (emtricitabine plus didanosine and efavirenz vs. stavudine plus didanosine and efavirenz). At week 24, mean CD-4 cell count increased 156 cells/microliters for the emtricitabine group vs 119 cells/microliter for the stavudine group (39). To determine the strength of the association between the degree of the effects of HAART, one study conducted a meta regression analysis to assess changes in CD4 cells, viral RNA and progression of AIDS as outcome measures. The result explained no significant changes for CD-cell counts and viral load considering 24, 48 and 96 weeks as treatment time points along with no significant relationship between CD4 cell count changes and progression to AIDS or death (61). Above scientific evidence provided information on immunologic response at varying time points due to different antiviral treatments. Further research is needed addressing time frame for each antiviral treatment.

Defining Body Habitus Change

The benefits of antiretroviral therapy require life-long commitment, which causes varying degrees of bodily changes having both positive and negative effects. In 1999, researchers used the term “Body Habitus Abnormalities” to assess anthropometric and metabolic changes in HIV patients due to HAART in a Multicenter AIDS Cohort Study, where they collected data based on the Third National Health and Nutritional Examination Survey and reported on body habitus alteration/change (8). Metabolic and anthropometric parameters usually started to change abnormally within 2 years of HAART introduction, causing imbalance in lipid profile and site-specific alteration in body fat, resulting in subcutaneous fat loss from limbs, buttocks, face and fat deposition
in the intra-abdominal region or trunk with a clinical evidence in 20-35% of HIV-infected patients (6, 9-12). This imbalance of body constituents is associated with metabolic instability leading to hyperlipidemia and truncal or central fat accumulation that causes central obesity (13-14). Recent studies provided evidence that, obesity is progressing as an epidemic in HIV infected patients (62-64) and increasing more rapidly due to the use of new forms of antiviral therapies (65). Patients living with HIV infection along with increased body mass index due to obesity are more vulnerable towards health-related risks and may cause rapid abnormal change in the body habitus due to having two disease conditions together.

Research teams used models to visualize the actual mechanism of body fat/body habitus changes. Pro-inflammatory cytokines such as tumor necrosis factor alfa acts as a mediator in the pathogenesis of body fat changes caused by viral infection and the development of a persistent inflammatory state (15). In addition, the action of viral proteins with paracrine and endocrine actions on adipose tissue alters adipose differentiation and function. As adipose tissue receives hormonal and neuronal signals, subcutaneous and visceral parts of human body differ functionally, metabolically and genetically due to the adipocyte dysfunction which is responsible for developing chronic conditions and severity in body habitus alterations (4, 15-16).

Body fat changes due to HIV infection are also associated with length of intervention period considering different antiviral treatments as interventions, type of treatments as physicians prescribe different HIV medicines such as ART alone or in combination, and patient demographic characteristics such as age, sex and ethnicity. One prospective cohort study aimed to assess body fat changes in anti-retroviral naïve HIV-
infected adults who received HAART including two NRTIs plus at least one PI with 18 months follow up period and found that the chances of central obesity is 7.7 per 100 patients in one year. (7). To measure limb fat, trunk fat and metabolic features, a multicenter randomized study considered combination HIV medicines comparing ritonavir-boosted lopinavir plus zidovudine/lamivudine (ZDV/3TC/LPV/r) with ritonavir-boosted lopinavir plus nevirapine (NVP/LPV/r) in HIV treatment naïve patients. Data analysis explain that, trunk fat increased in both treatment groups but limb fat increased in ritonavir-boosted lopinavir plus nevirapin (NVP/LPV/r) group and decreased in the other group (50). An observational study included 74 HIV-infected patients with a follow-up period of 24 months, where subjects divided into NNRTI and PI treatment groups by targeting weight, BMI and percentages of body fat to understand degrees of body habitus changes. Results from the study reveal that body weight and BMI increased significantly in PI group at 12 months with no change in NNRTI group. Total body fat decreased more than 20% comprising 16% patients on PI treatment group and 18% on NNRTI group concluding that body fat changes were minor and more common on PI (17). A prospective observational research study assessed ethnicity and gender differences in HIV patients receiving antiviral therapy with imbalance in limb and trunk fat or, lipodystrophy. Results section suggested that, white HIV male patient loss peripheral fat and gained central or, trunk fat, on the other hand, black females were more prone to lipodystrophy. Sex comparison showed that, female HIV patients gained central fat and males reported loss of limb fat (66). Researchers investigated association in body habitus changes with treatment length. Gender and ethnic difference only point out body fat constituents but not metabolic factors and anthropometrics targeting body mass index
and weight in HIV patients. In addition, to our knowledge no study considered individual age as risk factor which needs to be addressed very carefully as aging is an important natural process which can lead to fatal health conditions.

Assessment Techniques

Dual-energy x-ray absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI) and ultrasonography (USG) are different techniques used to measure body fat in general. DEXA and CT scans are the gold standard methods to measure body fat (18). DEXA imaging is feasible and used in HIV clinics for the assessment of total fat, trunk fat and limb fat in kilograms, while CT scan method used to evaluate visceral, subcutaneous and total abdominal fat in square centimeters. Height, weight, waist circumference and body mass index may provide additional information as recent observational studies documented on nutritional alteration due to ART in HIV patients resulting weight gain which might act as stimulating factor enhancing cardiovascular risk (19-20).

Significance/Rationale

The current evidence points out that investigators are not only focusing on CD-4 cell count improvements and viral suppressions, but also trying to minimize abnormal body composition changes such as changes in weight, body mass index, body fat and lipid profile those can increase the risk of cardiovascular diseases due to different ART use. There are controversies about the clinical practice associated with HIV-medicine selection among health care providers along with the prevalence of body habitus abnormalities. Facts related to body habitus change targeting weight, body mass index,
body fat specially trunk and limb fat, and lipid parameters need to be addressed carefully for individual ART or ART alone and different combinations of ART or HAART. Abnormal fat deposition is not associated with effect of ART alone but examiners also established the relation of trunk fat accumulation with the use of some PIs and limb fat loss with the use of NRTI (21-24). However, combination form of HIV medicines or HAART has shown dramatic immunological cell improvement than ART alone in HIV patients which also leading to abnormal body fat changes along with metabolic abnormalities in parallel way. Previous published direct and indirect meta-analysis explained the effects of HIV-medicines comparing NNRTI based HAART versus PI based HAART considering viral suppression, death or disease progression and withdrawals as outcomes to measure difference before and after treatment intervention in HIV-patients. Direct data analysis suggested that NNRTI based HAART is more effective than PI based HAART for viral suppression with no difference in disease progression for both treatment groups (25). Besides, a systematic review investigated the role of efavirenz (subclass of NNRTI) plus NRTI and efavirenz plus PI on body habitus abnormalities to measure body fats (limb-fat, trunk-fat, visceral, sub-cutaneous and total body fat) along with BMI and weight, where they included nine potential studies (26). In five non-comparative clinical trials, body fat alteration was very low while weight gain was significantly high when patients treated with efavirenz composed of non-thymidine analogues following 144 weeks of treatment. In addition, limb fat gain was higher in non-thymidine analogue than thymidine analogue treated patients. In four comparative trials, limb fat increased in efavirenz treated group along with trunk fat increase in both efavirenz and PI treated groups.
No proven HIV medicines used by the health care providers those could reduce the chance of body habitus abnormalities. The prevalence of excess trunk fat accumulation and loss of limb fat have shown to be significantly associated with disproportionate body fat relation in HIV patients after antiviral treatment. Evidence based research on abnormal fat deposition with weight gain along with obesity prevalence in HIV patients directed us to further investigate on weight, body mass index, body fat constituents and lipid profiles, considering all as an interlinked condition targeting HIV patients receiving antiviral medications. No previous meta-analysis has conducted considering body fat change or, body habitus change. With the urge to intervene more on impacts of HIV medicines on body habitus change this meta-analytic research explored degrees of body habitus changes targeting NRTIs, NNRTIs, PIs and combined forms of HAART as different treatment intervention options in HIV-infected patients and how those effects could vary depending on context and sample characteristics. We will answer what works best, for who and under what circumstances. In addition, this research will direct health care providers to select appropriate HIV medicine for patients maintaining body balance along with minimizing chances of cardiovascular risks.

Research Purpose

The purpose of this study was to evaluate the effects of different ART treatments on body habitus/ body composition among HIV positive patients-meta analyzing the scientific evidence.

Research Objectives/Aims

1. To obtain overall effect sizes of different ART treatments on-
 - Weight, body mass index, trunk fat and limb fat as primary outcome variables.
• Lipid parameters such as LDL, HDL, Total cholesterol and Triglyceride as secondary outcome variables.

2. To explore variability among different ART treatments/interventions considering all treatments clustered within the studies using multilevel approach for meta-analysis.

3. To explain variability and heterogeneity of different ART treatments in all outcome variables along with moderator analysis using study, treatment, and sample characteristics.

We hypothesized that, first, different ART treatment interventions will have impacts/effects, (considering Becker’s d equation to calculate effect sizes considering post treatment mean value minus pre-treatment mean value divided by standard deviation of the pre-estimated value for specific outcome) on each outcome variable favoring ART medicines as research hypothesis (d≠0) and ART medications on body habitus change has no effects as null hypothesis (d=0). Second, the studies will illustrate significant variability based on the Q statistics (Q is calculated as the weighted sum of the squared differences between individual study effects and a pooled effect across studies) and the I² index (I² statistics describe the percentage of variation across studies due to variability).

Third, for multilevel approach, our research hypothesis is that, different ART treatments will be statistically significantly different (χ² statistics, Q) from each other indicating p<0.05 for individual outcome. Fourth, multilevel model will explain the amount of significant heterogeneity by treatment and will explain the degree of variability (using Q as unexplained residual variance and I² as index of unexplained variance) of different effect sizes by treatment irrespectively when we include different moderators into our model.
METHODOLOGY

Systematic Search Procedure

We searched five electronic databases (PubMed, Scopus, CINAHL, PYCHINFO and Cochrane Controlled Trials register) from July 6 to September 8, 2015. With the assistance of an expert librarian in a Public University library, we used specific key words such as “Clinical trial”, “HIV”, “Anti-Retroviral Agents”, “Body Mass Index”, “Body fat” with medical subject headings. Detail information regarding “Boolean Search Terms” provided in appendix-1. A hand search of references from included studies was conducted to identify any missing study along with the citations published on Journals of AIDS, Current HIV Research.

Identification Criteria

To identify unique studies eligible for our study, we selected papers based on their abstract and full-text if available. Studies were included based on the pre-defined criteria:

- **Population of interest:** HIV-infected patients 16 years or older with no previous history of anti-retroviral exposure.

- **Interventions:** Studies those had pre-post intervention measurements. Stated following treatments as interventions- Nucleoside Reverse Transcriptase Inhibitor (NRTIs) or, Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTIs) or, Protease Inhibitor (PIs) or, Combination of Antiretroviral Therapy (HAART) following FDA-Approved HIV-medicines (two NRTIs, three NRTIs, two NRTIs plus one NNRTI (Atripla), two NNRTIs plus one PI, NRTI plus NNRTI, NNRTI plus PI and Ritonavir boosted Lopinavir (LPV/r) or, Kaletra).
• **Comparisons:** Compared combined ART such as LPV/r plus NRTI vs NNRTI plus LPV/r or, LPV/r plus other combined ART vs LPV/r alone or, comparisons between PI plus NRTI vs PI plus NNRTI vs NRTI plus NNRTI or, NRTI vs NNRTI vs PI or, comparisons in between subclasses of NRTI, NNNRTI or PI.

• **Outcomes:** Body habitus change considering weight, body mass index, trunk fat and limb fat as primary outcomes considering DEXA technique as benchmark to measure trunk and limb fat; and lipid parameters such as LDL, HDL, Cholesterol and Triglyceride as secondary outcomes.

This research excluded studies if assessed on HIV-negative individuals, children, adolescent population and pregnant women. Studies were excluded those stated on patients taking medication for hypertension and diabetes mellitus, those could act as potential confounding variables.

Quality Assessment

Two independent researchers (NH and YC) provided decisions with appropriate justifications for final study selection process based on the selection criteria and based on the screening process of title, abstract and full manuscript. Total twenty unique trials were included for this meta-analysis Figure-1, representing the PRISMA flow diagram of the final study selection process. A comprehensive coding form and manual was created by research team consist of HIV researcher, biostatistician and a physician. The coding form includes approximately 200 variables for each study. Structured coding form was pilot tested by (NH and MC) and was reviewed by third expert (TBHM). Content coding form (*provided in appendix 2*) included information based on study information;
demographic characteristics; ethnicity; anthropometrics such as height, weight, waist circumference, waist-hip ratio, total body fat %, trunk fat, limb fat; metabolic parameters; lipid parameters such as LDL, HDL, cholesterol, triglyceride; route of HIV transmission: homosexual, heterosexual, blood contamination; stages of HIV infection following CDC stages; number of patients at the beginning and end of trial along with specific criteria for lost follow up; intervention characteristics; methodological quality; type of HIV medicines used as treatment interventions and risk of bias Table-1 explained information on study characteristics, number of patients, duration, demographics and type of ART used as ART treatments along with comparison groups of twenty included literatures. Two independent researchers (NH and YC) collected data separately. After data collection inconsistencies were resolved by an expert professional (TBHM)
DATASET PREPERATION

Included studies showed multiple treatment comparisons and comparisons varied from one study to another. We dummy coded and created sub category of HIV medicines for appropriate analysis purposes those attached in Appendix-3. We created sub classes for combination ART regimens. NRTI which compared alone with other ART was categorized as category 1. NNRTI alone, that compared with other ART considered as category 2. PI alone compared with other drugs considered as category 3. We found that, five studies considered and compared ritonavir boosted Lopinavir (LPV/r which is FDA approved HIV medicines under combination category) with other types of ART and we coded them as LPV/r containing combination category 4. PI medicines used in combination with ART and compared with combination ART drugs as PI containing combination ART category 5. NNRTI used along with combination ART and compared with different ART drugs as NNRTI containing combination ART category 6.

STATISTICAL ANALYSIS

Inter rater reliability (IRR) was calculated for all continuous and categorical variables using IBM SPSS Statistical Version 22 (28). The kappa (κ) coefficient was 0.94, resembling 94% agreement for categorical variables and agreement for Pearson’s correlation coefficient $r = 0.98$ for numerical variables (29-30). For publication bias, we assessed asymmetries by using Begg, Egger, trim and fill statistical tests along with funnel plots. Publication bias was calculated and graphical statistics were plotted using R version 3.2.2 “metafor” package.
Using effect size calculator created by Huedo-Medina, effects for targeted outcomes were calculated (31). Standardized mean change following Becker’s d equation shown below, was used to calculate the effect sizes as all outcome variables were continuous where standardized mean changes were the difference between the post-test and pre-test means for one sample, divided by the pre-test or post-test standard deviation. Standardized mean change was considered as effect size index that follows a normal distribution with a range from negative infinity to positive infinity which allows results from several designs to be compared and combined directly (32).

Becker’s d equation: \[d = \frac{M_{post} - M_{pre}}{SD_{pre}} \]

To interpret effects on targeted outcomes, standardized d value can be classified as 0.25, 0.5 and 0.8 representing small, medium and large effects following Cohen’s classification. (Citation) Weighted mean effect size was calculated which weighted by the inverse of the variance of each study. As all included studies were not identical in their methods, we calculated random effects using random effects model assuming if, data is coming from different populations which controls for different samples and accounts for within and between study variances (33). To test heterogeneity, Q statistics and I2 index were calculated where Q represents significance of heterogeneity and I2 calculates the magnitude of heterogeneity for each treatment. (Ref)

As this meta-analysis included 20 randomized trials with varying type of ART regimens, we assumed that all different ART treatment options are nested within studies and considered multilevel modeling approach. Statisticians described that for multiple-treatment study, two or, more treatment groups could be compared with one single group considering as control (38). For multilevel modeling, we created subsample from the
original dataset for studies those reported same outcome of interest. As multilevel modeling is designed to analyze variables from different levels, using statistical model that properly includes the various dependency issues (39), the purpose of conducting this multilevel meta-analysis was to observe within and between variations in both study levels and treatment levels for each outcome variable. For analysis, we used “metafor” package in R software (40). We used mixed effects models for the multilevel meta-analysis that controls for multiple comparisons using maximum likelihood (ML) method. To estimate degree of overall effect size change by each treatment, we consider B-coefficient which indicates how much the overall effect size decreased or, increased moving from the reference combination to the target combination. We considered chi-square statistics to measure over all treatment variation when $p<0.05$. Q and its p value infer if the unexplained variance is still significant. We used “mods” command in R software for moderation analysis to assess the relationship between study level covariates and effect sizes. The goal of the analysis was to examine to what extent the moderators included in the model influence the size of the average true effect (34). In addition to testing the impact of covariates for statistical significance, it is important to quantify the magnitude of their relationship with effect size. For this purpose, we used an index based on the percent reduction in true variance, analogous to the R^2 index with primary studies (35). To represent the relationship graphically we also performed plots using the moving constant technique explained by T. B. Huedo-Medina and the research team (36-37). Using restricted maximum likelihood (REML) method we added “Number of weeks” or, intervention period as moderator.
RESULTS

Total participants were 2,592 HIV-infected positive population. Out of 2,592; 62 people lost follow up, 829 withdraw the treatment, 976 discontinued, 135 patients reported toxicity and number of death report was 12. Mean age was 40.99 ± 3.07 (mean ±SD) years, 80.4% were male and 19.6% were female. Out of 20, 6 studies reported on ethnicity, among 1010 participants, 35.97% were black, 64.03% were non-Hispanic white. Mean CD-4 cell count was 363.57 ± 188.16 with intervention period of 84.4 weeks. No significant asymmetry found for publication bias when begg’s and egger’s tests were performed to assess both inferential and graphical statistics which is provided in Table (2-6).

Random effects assumptions explained that body composition components weight increased for individual NRTI and PI treatment groups, LPV/r combination therapy but significantly (p = 0.0009) increased in LPV/r combination category [d+ = 0.44, 95% CI (0.18 to 0.71)]. Body mass index increased in HIV patients when they were treated with individual NRTI and all three combination forms of HIV treatments (LPV/r, PI and NNRTI combination HAART) but significantly (p = <0.0001) increased in LPV/r combination therapy category [d+ = 0.94, 95% CI (0.53 to 1.3)] only. Trunk fat increased significantly (p=0.005) in NRTI alone treatment group with mild effect [d+ = 0.27, 95% CI (0.06 to 0.49)] and limb-fat increased in all treatment groups but significantly increased (p = <0.0001) in PI combination therapy with moderate efficacy [d+ = 0.44, 95% CI (0.26 to 0.63)].

For lipid parameters, HDL increased for all treatment groups but significantly increased when patients received all combination ART or, HAART (LPV/r, PI and
NNRTI) with moderate to high efficacy \([d+ = 0.75, 95\% \text{ CI (0.40 to 1.09)}], [d+ = 0.42, 95\% \text{ CI (0.06, 0.78)}] \text{ and } [d+ = 0.85, 95\% \text{ CI (0.54 to 1.15)}] \text{ respectively. Level of LDL or, bad cholesterol reduced in NRTI and PI alone treatment groups and PI combination HAART group but did not reduced significantly after interventions. To observe the overall effect sizes either favoring the baseline or, favoring different ART interventions, we used forest plots to draw graphical relations provided in Figure (8-13).}

Our result on multilevel analysis clarifies that estimates for HDL were statistically significantly different in combination ART (LPV/r, PI and NNRTI) with \(p= <0.0001, p=0.0130, p= <0.0001\) respectively. For LDL, estimates were significantly different in NNRTI, LPV/r combined ART and NNRTI combined HAART. In addition, multivariate estimates for triglyceride were statistically significantly different for both alone and in combination HAART with \(p<=0.0001\) for NRTI, \(p= <0.0001\) for NNRTI, \(p=0.0038\) for LPV/r combined HAART, \(p= <0.0001\) for PI combined HAART and \(p= <0.0001\) for NNRTI combined HAART, except for PI alone category. For trunk and limb-fat, variations were statistically significantly different in PI group and NNRTI combination HAART group, with corresponding \(p=<0.0001\). Detail information is provided in Table-12.

From the result output, it represents that intervention period or “number of weeks” act as a strong moderator for LDL \([β= -0.0049), 95\% \text{ CI (-0.0079, -0.0018)}]\) with significance level of \(p= <0.0001\) indicating that if patients receiving treatment for long time LDL is reduced by 0.0049 units. For body fat constituents, our moderator analysis revealed that, level of trunk and limb fat increases \([β= (0.0033), 95\% \text{ CI (-0.0020, 0.0086)}]\) and \([β= (0.0025), 95\% \text{ CI (-0.0040, 0.0090)}]\) as length of HIV
medication/number of week increases, but not significantly. Figure (2-7) for meta-regression plots provided moderation pattern with solid dark red regression line and 95% confidence band under mixed-effects assumptions.

To evaluate the progress of research focusing on body habitus change considering limb fat loss/lipoatrophy a big concern due to prolong ART use, we considered “Publication Year” as moderator variable and found that, limb fat increased 0.063 units and we could interpret that, due to the research advancement limb fat increased [(β=0.0639), 95% CI (0.006, 0.12)] with p= <0.0001 when patients received HIV treatment. For lipid parameters, Publication Year has significant moderation effects on HDL, LDL and TG variables [(β =-0.06), 95% CI (-0.01, -0.02)], [(β =-0.005) 95% CI (-0.007, -0.001)] and [(β =-0.069), 95% CI (-0.11, -0.02)] with p=<0.0001, p=0.002 and p<0.0001 respectively. We did not find significant effects on weight and BMI while we use “Publication Year” as moderator into our model.

Female patients act as a strong moderator variable for HDL and LDL. Mixed effects models explained that, level of HDL and LDL decreases [(β=−0.06), 95% CI (−0.01, −0.0015)], [(β=−0.01), 95% CI (−0.019, −0.005)] significantly (p=<0.0001), if the number of female population increases, followed by no significant moderation effects on weight, BMI, trunk fat, limb fat, cholesterol and TG.

Average mean age of HIV patients also acts as a strong moderator variable for cholesterol [(β=−0.17), 95% CI (−0.23, −0.10)] and TG [(β=−0.07) 95% CI (−0.11, −0.04)], pointing that, level of blood cholesterol and TG decreases due to the aging process.

Methodological quality score has significant (p=<0.0001) moderation effect on Limb fat variable only and we can explain that, level of limb fat increases [(β = 0.18),
95% CI (0.005, 0.36)] in the studies those followed appropriate methodology or, maintained research quality. Criteria to assess quality of a study need to be addressed carefully to improve methodological quality score which might act as a strong moderator to impact on other targeted outcome variables. In-detail information is provided in Table-13. List of moderators with no significant results and variables unable to use as moderators due to lack of study reports are also provided in Table (14-15).

DISCUSSION

This meta-analysis of randomized clinical trials was uniquely able to assess changes in weight, body mass index, trunk fat limb fat and lipid parameters considering both individual (NRTI, NNRTI, PI) treatment category and three combination HAART following FDA approved classifications of HIV medicines.

Five studies provided pre-post data on weight. Overall, effect sizes indicated that body weight tends to increase in NRTI alone group, PI and LPV/r combination HAART groups in mild to moderate extents after intervention but did not increased significantly. Out of twenty, six studies quantified body mass index data after ART therapy with no study reports on overweight or, obesity. For waist circumference, seven studies reported baseline information on waist circumference but only three studies reported on post ART intervention data. We could not be capable to get different ART effects on waist circumference and waist-hip ratio due to lack of study reports. Body mass index increased after intervention in NRTI alone group, LPV/r combination, PI combination and NNRTI combination HAART categories but did not increased significantly. We, therefore, can state that decent increase of weight and BMI is beneficial for HIV infected
patients as wasting is a huge concern in HIV patients. It could have been alarming if we get significant increase on weight and BMI, which could be indicative and supportive of the prevalence of overweight and obesity in HIV-patients.

For trunk-fat, eleven studies reported on pre-post assessments. Trunk fat did not increase significantly after intervention for all ART regimens except for individual NRTI. Total ten studies reported on limb-fat. Our study results showed significant increase on limb-fat when patients were NRTI alone and PI combination HAART category. For total body fat measure, eight studies provided post data and we found that, total body fat increased significantly in NRTI and LPV/r combination HAART categories.

For lipid parameters, HDL which is considered ‘good cholesterol’ increased in all ART regimens, but significantly increased in NNRTI combination ART with high efficacy. LDL decreased after intervention in NRTI and PI alone treatment categories. Triglyceride levels decreased significantly after intervention those received PI alone group. In the moderator analysis, we found that the number of weeks has negative effect on LDL, indicating that, as number of weeks increased, the level of LDL decreased significantly in NRTI and PI alone groups. We can establish our first and second hypothesis that, all treatment groups have impacts on weight, BMI, trunk fat, limb fat, lipids as part of body habitus and able to explain the variability.

For the multilevel meta-analysis, impacts of NRTI alone, PI alone and LPV/r combination HAART categories differ significantly for weight and three combination groups differ significantly for body mass index (BMI). Effect size for HDL was statistically significantly different while patients were receiving LPV/r, PI and NNRTI combination HIV medications. For LDL, effect size was significantly different between
LPV/r and NNRTI combination therapy categories and NNRTI alone category. In addition, effect size was significantly different in LPV/r combination and NNRTI combination HAART categories for cholesterol. For triglyceride, impacts of all ART groups were significantly different except PI alone group. LPV/r and NNRTI combination form of antiviral medications were statistically significantly different from each other for trunk and limb fat. Thus, we can comply our third hypothesis that, formed ART treatments groups were statistically significantly different from each other considering all outcome variables.

We included treatment period or, length of intervention as weeks, publication year, mean age, female gender, proportion of white population, methodological quality as potential moderators to perceive how much they modify the result when included into our multilevel moderation model. From results, we can infer that intervention period has a significant moderation effect on LDL only. Publication year displayed significant moderation effect on limb fat, HDL, and triglyceride. In addition, female gender modified HDL and LDL significantly, mean age of HIV patients has significant moderation effects on cholesterol and triglyceride, proportion of white population has significant moderation effect on trunk fat, limb fat, cholesterol and methodological quality modified only limb fat. From our study, we were not able to clarify moderation effects on weight, BMI, considering variables as potential moderators and unable to stablish our fourth research hypothesis.

We collected information if studies conveyed information on mode of HIV infection. Total seven studies reported on route of HIV transmission. As different mode of HIV spread, six studies reported on homosexual character/patients having sex with
same gender, five studies reported on heterosexuality, three studies reported proportion of population used drugs. As risk characteristics/comorbid health status, we considered high blood pressure as one of major cardiovascular disease condition, diabetes and smoking habits. Three studies reported on diabetes, one study reported on smoking and no studies reported on blood pressure measures. It could have been interesting to perceive the moderation effects of specific moderators on weight, BMI, body fats and lipid parameters to help reduce the chances of chronic associated health fatalities in HIV patients as HIV itself leads to life threatening conditions in the long run if not treated properly.

Risk of Bias

Out of twenty included studies, nine reported on random sequence generation and allocation concealment. For blinding of participants, 10 studies reported on open label resembling of “high risk of bias”; three studies reported on single blinding; two studies reported on double blinding; 4 studies did not report on blinding of participants and reported as “unclear”. One study was blinded at the beginning but un-blinding done by data safety and monitoring board. Two studies reported on blinding of outcomes, two studies reported on incomplete outcome data, one study on selective reporting and no studies reported on other bias category considering Cochrane criteria for judging Risk of Bias (24). Cochrane risk of bias is provided in Figure-14. Study design and protocol can be improved and addressed properly as randomization, allocation, blinding are important constructs in investigating the effects of methodological quality.

Strengths and Limitations

This is the first meta-analysis that considered body habitus change targeting weight, body mass index, trunk fat and limb fat along with lipid parameter change after antiviral
treatment considering randomized clinical trials. We consider randomized controlled trials (RCTs) the best experimental design with less vulnerability to bias. This is an extension of classical meta-analysis that considered multilevel approach, which explains variability within and between studies in addition to help distinguishing differences in treatment levels considering different moderators for individual outcome variable. Moreover, this study considered FDA approved drug classifications which were last updated in 2015 and this helped our research team to create a sub class for combination forms of antiviral medicines or, HAART.

One possible limitation is due to time constraints, we were not able to collect raw data, as this would require too much time to contact study authors and few studies reported median value but not the mean value and we calculated the mean which might not be reliable to some extent. Secondly, three studies reported switching ART due to drug dose adverse effects during the intervention period and we could not be able to control that while analyzing data. Thirdly, we could not include five potential studies due to lack of appropriate data representations, as we did not hear back from authors requesting to get information of our variables of interest. It could have different impact on our result output along with the increase quantity of total sample size. In addition, due to lack of proper drug dose information, we could not include and compare ART regimens across specific dosages. This study might have been more informative if we could include different ART regimens along with dose information to observe specific drug dose effects on different outcomes before and after intervention.
CONCLUSIONS

Our research team tried to explain degree of body habitus change by providing the extent of efficacy of each ART on weight, body mass index, limb fat, trunk fat and lipid parameters. Per our results, we can conclude that, different ART treatment interventions had different impacts on each outcome variable. LPV/r containing combination therapy is more beneficial for weight and BMI improvement. HIV patients those received combination ART along with protease inhibitors (PIs) had moderate beneficial effect on limb fat improvement than those were in other ART medications. For HDL, all three combination forms of ART are efficacious, but combination form of HIV medicines along with NNRTI exhibited high efficacy for HDL. For multilevel approach, each outcome variable was statistically significantly dissimilar from different treatment groups along with the significant heterogeneity by treatments. We also explained the degree of variability including publication year, number of weeks, number of female, methodological quality and average mean age as moderators and identified the statistic of residual variance and degree of residual variance those are still unexplained.

In future direction, this study aims to conduct a network meta-analysis considering multiple ART regimens for comparing both direct comparisons of interventions with randomized trials and indirect comparisons across trials based on a common comparator.
RESEARCH CONTRIBUTIONS

This study provided evidence to the HIV care providers addressing impacts of different antiretroviral medications in HIV patients emphasizing body habitus change as a sophisticated issue. Careful ART treatment is needed by establishing specific treatment protocol depending on severity of HIV infection while conducting ART interventions to minimize ART related fatal conditions and maintain body balance in HIV patients.
REFERENCES

1. Center for Disease Control and Prevention (CDC). Accessed from
 http://www.cdc.gov/hiv/statistics/overview/atalglance.html

2. UNAIDS, UNAIDS report shows that 19 million of the 35 million people living with HIV
today do not know that they have the virus. Geneva, 16 July 2014, accessed from
 /20140716prgapreport

3. HIV Treatment: FDA-Approved HIV Medicines. Accessed from
 https://aidsinfo.nih.gov/education-materials/fact-sheets/21/58/fda-approved-hiv-medicines#

4. Lichtenstein KA. Redefining lipodystrophy syndrome: risks and impact on clinical decision

5. Hayden RM. Severe weight gain, lipodystrophy, dyslipidemia, and obstructive sleep apnea
 in a human immunodeficiency virus infected patient following highly active antiretroviral

 Journal of the International Association of Physicians in AIDS Care. 2008; Volume 7
 Number 6.

 Anthropometrics and examiner reported body habitus abnormalities in the multicenter

patients initiating combination antiretroviral therapy. HIV Clinical Trials 2008; 9(5); 314-323.

28. IBM Corp. IBM SPSS statistics for windows. 2013.

http://handbook.cochrane.org/chapter_8/table_8_5_d_criteria_for_judging_risk_of_bias_in_the_risk_of.htm

lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS. 2004 Apr 30; 18(7):1029-36.

59. Marit G. A. van Vonderen, Michiel A. van Agtmael, Elly A. M. Hassink, Ana Milinkovic, Kees Brinkman, Suzanne E. Geerlings, Matti Ristola, Arne van Eeden, Sven A. Danner, Peter Reiss, for the MEDICLAS study group Zidovudine/Lamivudine for HIV-1 Infection Contributes to Limb Fat Loss May 21, 2009 http://dx.doi.org/10.1371/journal.pone.0005647.

FIGURES

Figure 1: Study identification and selection process using PRISMA diagram

Records identified through five different databases search (k = 376)
- PubMed = 360
- Scopus = 16
- CINAHL = 0
- PSYCHINFO = 0
- Cochrane Central register of Controlled Trials =0

Records after duplicates removed (k = 375)

Records screened (k = 375)

Records excluded (k=350)
- Non-randomized design (k=275)
- Randomized design:
 - Not compared between ART drugs (k=32)
 - Study population children (k=1)
 - Compared healthy population (k=1)
- Review article (k=36)
- Case report (k=2)
- Conference paper (k=3)

Full-text articles excluded, with reasons (k = 12)
- Not compared between ART drugs (k=1)
- Study compared HIV positive with HIV-negative controls (k=2)
- Inappropriate data (k=5)
- Outcome measures did not meet inclusion criteria (k=4)

Studies contain ritonavir boosted Lopinavir (LPV/r) and compared in between two groups (k=5):
- LPV/r vs ABC/3TC + LPV/r (1)
- LPV/r +ZDV/3TC vs LPV/r NVP (1)
- ZDV/3TC/LPVr vs NVP/LPVr (2)
- LPV/r vs LPV/r+ZDV/3YC (1)

Studies contain PI and compared as follows (k= 8):
- NNRTI+PI/r vs NRTI+PI/r vs NNRTI+NRTI (1)
- NFV/ddl/d4T vs NFV/ddl/3TC vs SQV-r/ddl/3TC (1)
- ATV/r+ABC/3TC vs ATV/r+TDF/FTC vs EFV+ABC/3TC vs EFV+TDF/FTC (2)
- PI/NNRTI+NRTI vs PI/NNRTI+NRTI vs NRTI (1)
- PI vs NNRTI vs PI+NNRTI (1)
- PI+ NNRTI vs NRTI (1)
- Darunavir/r mono therapy vs Darunavir triple therapy (1)

Studies contain NNRTI and compared as follows (k= 1):
- NRTI+NNRTI vs NRTI+NNRTI

Studies compared in between NRTI subclasses (k=6)
Figure 2: Meta Regression plot for TG in PI regimen.

Figure 3: Meta Regression plot for LDL in NRTI regimen.
Figure 4: Meta Regression plot for LDL in PI regimen.

Figure 5: Meta regression plot for Limb fat in LPV/r combination category 1.
Figure 6: Meta Regression plot for Trunk-fat in LPV/r combination HAART category 1.

Figure 7: Meta regression plot for Cholesterol in NNRTI combination HAART category 3.
Figure 8: Forest plot for Trunk Fat favors NRTI regimen

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>Trunk Fat</th>
<th>NRTI</th>
<th>d[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carr et al.2002.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.23 [-0.04, 0.50]</td>
</tr>
<tr>
<td>Carr et al.2002.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.51 [0.21, 0.81]</td>
</tr>
<tr>
<td>Milinkovic et al.2007.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.20 [-0.69, 0.28]</td>
</tr>
<tr>
<td>Milinkovic et al.2007.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.09 [0.45, 1.73]</td>
</tr>
<tr>
<td>Milinkovic et al.2007.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.19 [-0.75, 0.36]</td>
</tr>
<tr>
<td>Moyle et al.2006.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.44 [0.15, 0.73]</td>
</tr>
<tr>
<td>Moyle et al.2006.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.55 [0.26, 0.85]</td>
</tr>
<tr>
<td>Valantin et al.2008.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.42 [-0.03, 0.87]</td>
</tr>
<tr>
<td>Yang et al.2005.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.15 [-0.70, 0.40]</td>
</tr>
<tr>
<td>Yang et al.2005.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.10 [-0.67, 0.47]</td>
</tr>
</tbody>
</table>

RE Model

0.28 [0.06, 0.50]

Figure 9: Forest plot for Limb Fat Favors NNRTI Combination HAART category 3.

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>LIMB FAT</th>
<th>COMB3 ART</th>
<th>d[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duquiere et al.2005.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.48 [0.00, 0.96]</td>
</tr>
<tr>
<td>McComsey et al.2011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.41 [0.13, 0.69]</td>
</tr>
<tr>
<td>McComsey et al.2011.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.57 [0.27, 0.87]</td>
</tr>
<tr>
<td>McComsey et al.2013.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.55 [-0.10, 1.21]</td>
</tr>
<tr>
<td>McComsey et al.2013.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.89 [0.22, 1.56]</td>
</tr>
</tbody>
</table>

RE Model

0.52 [0.34, 0.69]
Figure 10: Forest plot for Total body fat favors NRTI

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>Total Fat</th>
<th>NRTI</th>
<th>d[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carr et al.2002.4</td>
<td></td>
<td></td>
<td></td>
<td>0.20 [0.07, 0.47]</td>
</tr>
<tr>
<td>Carr et al.2002.5</td>
<td></td>
<td></td>
<td></td>
<td>0.57 [0.26, 0.88]</td>
</tr>
<tr>
<td>Millinkovic et al.2007.18</td>
<td></td>
<td></td>
<td></td>
<td>-0.51 [-1.02, 0.00]</td>
</tr>
<tr>
<td>Millinkovic et al.2007.19</td>
<td></td>
<td></td>
<td></td>
<td>0.84 [0.25, 1.43]</td>
</tr>
<tr>
<td>Millinkovic et al.2007.20</td>
<td></td>
<td></td>
<td></td>
<td>0.56 [-0.03, 1.16]</td>
</tr>
<tr>
<td>Moyle et al.2006</td>
<td></td>
<td></td>
<td></td>
<td>0.44 [0.15, 0.73]</td>
</tr>
<tr>
<td>Moyle et al.2006.1</td>
<td></td>
<td></td>
<td></td>
<td>0.64 [0.34, 0.94]</td>
</tr>
<tr>
<td>Moley et al.2003.9</td>
<td></td>
<td></td>
<td></td>
<td>0.81 [-0.32, 1.54]</td>
</tr>
<tr>
<td>Shiay et al.2005.6</td>
<td></td>
<td></td>
<td></td>
<td>-0.00 [-0.55, 0.38]</td>
</tr>
<tr>
<td>Shiay et al.2005.7</td>
<td></td>
<td></td>
<td></td>
<td>0.43 [-0.05, 0.92]</td>
</tr>
<tr>
<td>Yang et al.2005</td>
<td></td>
<td></td>
<td></td>
<td>-0.42 [-0.99, 0.16]</td>
</tr>
<tr>
<td>Yang et al.2005.1</td>
<td></td>
<td></td>
<td></td>
<td>0.18 [-0.75, 0.40]</td>
</tr>
<tr>
<td>RE Model</td>
<td></td>
<td></td>
<td></td>
<td>0.26 [0.02, 0.50]</td>
</tr>
</tbody>
</table>

Figure 11: Forest plot for HDL favors LPV/r Combination HAART category 1

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>HDL</th>
<th>COMB ART</th>
<th>d[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnerdino et al.2013.2</td>
<td></td>
<td></td>
<td></td>
<td>0.54 [0.21, 0.88]</td>
</tr>
<tr>
<td>Barnerdino et al.2013.3</td>
<td></td>
<td></td>
<td></td>
<td>0.11 [-0.19, 0.42]</td>
</tr>
<tr>
<td>Blumer et al.2008.4</td>
<td></td>
<td></td>
<td></td>
<td>0.42 [-0.28, 1.12]</td>
</tr>
<tr>
<td>Blumer et al.2008.5</td>
<td></td>
<td></td>
<td></td>
<td>0.95 [0.12, 1.79]</td>
</tr>
<tr>
<td>Feeoney et al.2012.16</td>
<td></td>
<td></td>
<td></td>
<td>0.50 [0.00, 1.00]</td>
</tr>
<tr>
<td>Feeoney et al.2012.17</td>
<td></td>
<td></td>
<td></td>
<td>1.54 [0.83, 2.26]</td>
</tr>
<tr>
<td>Vonderen et al.2009.10</td>
<td></td>
<td></td>
<td></td>
<td>1.23 [0.63, 1.83]</td>
</tr>
<tr>
<td>Vonderen et al.2009.11</td>
<td></td>
<td></td>
<td></td>
<td>1.14 [0.61, 1.67]</td>
</tr>
<tr>
<td>RE Model</td>
<td></td>
<td></td>
<td></td>
<td>0.75 [0.41, 1.10]</td>
</tr>
</tbody>
</table>
Figure 12: Forest plot for HDL favors PI Combination HAART category 2

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>HDL</th>
<th>COMB2 ART</th>
<th>d [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duuvier et al. 2005.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.92 [0.60, 1.25]</td>
</tr>
<tr>
<td>Duuvier et al. 2005.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.45 [0.02, 0.88]</td>
</tr>
<tr>
<td>Shlay et al. 2007.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.13 [-0.04, 0.29]</td>
</tr>
<tr>
<td>Valanti et al. 2008.13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.26 [-0.09, 0.60]</td>
</tr>
<tr>
<td>RE Model</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.43 [0.07, 0.78]</td>
</tr>
</tbody>
</table>

Standardized Mean Difference

Figure 13: Forest plot for HDL favors NNRTI Combination ART category 3

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Baseline</th>
<th>HDL</th>
<th>COMB3 ART</th>
<th>d [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duuvier et al. 2005.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.20 [0.62, 1.78]</td>
</tr>
<tr>
<td>Saag et al. 2004.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.94 [0.67, 1.21]</td>
</tr>
<tr>
<td>Saag et al. 2004.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.61 [0.35, 0.87]</td>
</tr>
<tr>
<td>RE Model</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.85 [0.55, 1.16]</td>
</tr>
</tbody>
</table>

Standardized Mean Difference
Figure 14: Cochrane Risk of Bias Table
Table 1: Summary of Included Literatures

<table>
<thead>
<tr>
<th>Author, year of publication</th>
<th>Study duration</th>
<th>Number of patients assessed</th>
<th>Demographics</th>
<th>Number of intervention groups along with treatment type</th>
</tr>
</thead>
</table>
| Bernardino et al. 2012 | 96 weeks | 88 | Median age: 44.8 years
Male: 59 (67%); Female: 29 (33%)
Ethnicity: Not reported
CD4 cell count: 697 median
Toxicity reported: 13 | A. LPV/r monotherapy
B. ABC/3TC + LPV/r triple therapy
Total two groups |
| Blumer et al. 2008 | 12 weeks | 20 | Median age: 42 years
Male: 20 (100%)
Ethnicity: Not reported
CD4 cell count: 200 median
Toxicity reported: 2 | A. LPV/r + ZDV/3TC
B. LPV/r + NVP
Total two groups |
| Carr et al. 2002 | 24 weeks | 111 | Median age: 43.5
Male: 105 (94.59%); Female: 6(0.05%)
Ethnicity: Not reported
CD4 cell count: 578.5
Toxicity reported: 4 | A. Stavudine/Zidovudine
B. Abacavir
Total two groups |
| Duvivier et al. 2008 | 48 weeks | 117 | Median age: 37.3 years
Male: 87(74%); Female: 30(26%)
Black: 42%
CD4 cell count: 207 median
CDC stage not reported | A. NRTI containing regimen: PI/r plus two NRTI
Or. NNRTI plus two NRTIs
B. NRTI-sparing regimen: NNRTI plus boosted PI/r.
Total three groups. |
| Feeney et al. 2012 | 144 weeks | 48 | Median age: 59.5 years
Male: 48(100%)
White race: 81%
CD4 cell count: 212.5 median
CDC stage reported
Toxicity reported: 10 | A: NRTI containing regimen ZDV/3TC with LPV/r
B: NRTI-sparing regimen NVP with LPV/r.
Total two groups. |
<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Sample Size</th>
<th>Description</th>
<th>Age Information</th>
<th>Treatment Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolta et al. 2011</td>
<td>48 weeks</td>
<td>136</td>
<td>DEXA data contain subsample of 63 patients</td>
<td>Mean age: 36 years, Male: 89(65.44%); Female: 47(34.56%), Ethnicity: Not reported, CD4 cell count: 238.5 mean</td>
<td>A. LPV/r Monotherapy, B. LPV/r+ZDV/3TC, Total two groups</td>
</tr>
<tr>
<td>Lowe et al. 2007</td>
<td>96 weeks</td>
<td>19</td>
<td>Median age: 43.73 years, Male: 16 (84.21%); Female: 3(15.79%), Ethnicity: Not reported, CD4 cell count: 173.33 median</td>
<td>Mean age: 43 years, Male: 105 (94.59%); Female: 6(5.41%), Toxicity reported: 44</td>
<td>A. NFV/ddl, B. NVP/ddl/3TC, C. SQV-rtv/ddl/3TC, Total three groups</td>
</tr>
<tr>
<td>Martin et al. 2004</td>
<td>72 weeks</td>
<td>111</td>
<td>Median age: 43.5, Male: 105 (94.59%); Female: 6(5.41%), Ethnicity: Not reported, CD4 cell count: 578.5</td>
<td>Mean age: 43.5, Male: 105 (94.59%); Female: 6(5.41%), Ethnicity: Not reported, CD4 cell count: 578.5</td>
<td>A. ZDV/d4T, B. Abacavir, Total two groups</td>
</tr>
<tr>
<td>McComsey et al. 2011</td>
<td>96 weeks</td>
<td>269</td>
<td>Median age: 38 years, Male: 229(85%); Female: 40(15%), White (Non-Hispanics): 47%</td>
<td>Median age: 38 years, Male: 229(85%); Female: 40(15%), White (Non-Hispanics): 47%</td>
<td>A. EFV+TDF-FTC, B. EFV+ABC-3TC, C. ATV-rtv + TDF-FTC, D. ATV-rtv + ABC-3TC, Total four groups</td>
</tr>
<tr>
<td>McComsey et al. 2013</td>
<td>96 weeks</td>
<td>56</td>
<td>Median age: 39 years, Male: 49(87%); Female: 7(13%), White (Non-Hispanics): 39%</td>
<td>Median age: 39 years, Male: 49(87%); Female: 7(13%), White (Non-Hispanics): 39%</td>
<td>A. ABC/3TC, B. TDF/FTC, C. EFV, D. ATV/r, Total four groups</td>
</tr>
<tr>
<td>Milinkovic et al. 2007</td>
<td>24 weeks</td>
<td>58</td>
<td>Median age: 43 years, Male: 54 (93.10%); Female: 4(6.90%), Ethnicity: Not reported, CD4 cell count: 587 median, Toxicity reported: 1</td>
<td>Median age: 43 years, Male: 54 (93.10%); Female: 4(6.90%), Ethnicity: Not reported, CD4 cell count: 587 median, Toxicity reported: 1</td>
<td>A. d4T40, B. d4T30, C. TDF, Total three groups</td>
</tr>
<tr>
<td>Moyle et al. 2006</td>
<td>48 weeks</td>
<td>105</td>
<td>Mean age: 42.5 years, Male: 95 (90.47%); Female: 10(9.53%), Ethnicity: not reported, CD4 cell count: 503.5</td>
<td>Mean age: 42 years, Male: not reported, Toxicity reported: 4</td>
<td>A. Tenofovir DF, B. Abacavir, Total Two groups</td>
</tr>
<tr>
<td>Moyle et al. 2003</td>
<td>48 weeks</td>
<td>30</td>
<td>Mean age: 42 years, Male: not reported, White:</td>
<td>Mean age: 42 years, Male: not reported, White:</td>
<td>A. d4T with ABC, B. PI or NRTI with ABC</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Duration</td>
<td>Participants</td>
<td>CD4 Cell Count</td>
<td>Toxicity Reported</td>
<td>Treatment Regimen</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Saag et al. 2004</td>
<td>60 weeks</td>
<td>571</td>
<td>540.5</td>
<td>1</td>
<td>CD4 cell count: 540.5 Toxicity reported: 1 C. d4T and PI or NNRTI with ABC+AZT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total three groups</td>
</tr>
<tr>
<td>Shlay et al. 2007</td>
<td>248 weeks</td>
<td>422</td>
<td>Mean age: 38</td>
<td>56</td>
<td>CD4 cell count: 237 Median A. ddI+d4T B. ABC+3TC Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 333 (79%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female: 89(21%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black: 60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD4 cell count:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shlay et al. 2005</td>
<td>128 weeks</td>
<td>96</td>
<td>Mean age: 36.5</td>
<td></td>
<td>CD4 cell count: 610 Median A. Darunavir/r monotherapy B. Darunavir/r triple therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td>Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 69(71.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Female: 27(28.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Black: 63.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valantin et al. 2012</td>
<td>96 weeks</td>
<td>156</td>
<td>Median age: 45</td>
<td></td>
<td>CD4 cell count: 212.5 Median A. NRTI maintaining group B. NRTI sparing regimen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td>NNRTI and PI Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 121 (77.6%); Female: 35(22.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Race: Not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline CD4 cell counts: Not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valantin et al. 2008</td>
<td>96 weeks</td>
<td>100</td>
<td>Median age: 44.5</td>
<td></td>
<td>CD4 cell count: 212.5 Median A. ZDV/3TC/LPV/r B. NVP/LPV/r Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 79(79%); Female: 21 (21%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Homosexuals: 51%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD4 cell count: 610 Median</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CDC stage reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toxicity reported: 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vonderen et al. 2009</td>
<td>96 weeks</td>
<td>50</td>
<td>Median age: 40.5</td>
<td></td>
<td>CD4 cell count: 212.5 Median A. ZDV/3TC/LPV/r B. NVP/LPV/r Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 50(100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>White: 81%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang et al. 2005</td>
<td>72 weeks</td>
<td>29</td>
<td>Mean age: 42.45</td>
<td></td>
<td>CD4 cell count: 552.5 Mean A. ER B. IR Total two groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Male: 21 (72.41%); Female: 8 (27.59%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ethnicity: Not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CD4 cell count: 552.5 mean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Publication Bias for NRTI

<table>
<thead>
<tr>
<th>Outcome</th>
<th>S</th>
<th>Begg’s</th>
<th>Egger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>3</td>
<td>1</td>
<td>0.5259</td>
</tr>
<tr>
<td>BMI</td>
<td>3</td>
<td>0.3333</td>
<td>0.1745</td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>10</td>
<td>0.7275</td>
<td>0.2908</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>8</td>
<td>0.7195</td>
<td>0.3846</td>
</tr>
<tr>
<td>Total Body fat</td>
<td>12</td>
<td>0.7373</td>
<td>0.3638</td>
</tr>
<tr>
<td>Trunk fat</td>
<td>10</td>
<td>0.7275</td>
<td>0.2908</td>
</tr>
<tr>
<td>Limb fat</td>
<td>8</td>
<td>0.7195</td>
<td>0.3846</td>
</tr>
<tr>
<td>Total Body fat</td>
<td>12</td>
<td>0.7373</td>
<td>0.3638</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>11</td>
<td>1</td>
<td>0.9925</td>
</tr>
<tr>
<td>HDL</td>
<td>12</td>
<td>0.6384</td>
<td>0.3821</td>
</tr>
<tr>
<td>LDL</td>
<td>13</td>
<td>0.5900</td>
<td>0.7326</td>
</tr>
<tr>
<td>TG</td>
<td>13</td>
<td>0.9524</td>
<td>0.0956</td>
</tr>
</tbody>
</table>

Table 3: Publication Bias PI

<table>
<thead>
<tr>
<th>Outcome</th>
<th>S</th>
<th>Begg’s</th>
<th>Egger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>Won’t run</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td>No data</td>
<td></td>
</tr>
<tr>
<td>Trunkfat</td>
<td></td>
<td>Won’t run</td>
<td></td>
</tr>
<tr>
<td>Limbfat</td>
<td></td>
<td>Won’t run</td>
<td></td>
</tr>
<tr>
<td>Total Body fat</td>
<td></td>
<td>Won’t run</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>3</td>
<td>1</td>
<td>0.4416</td>
</tr>
<tr>
<td>HDL</td>
<td>3</td>
<td>1</td>
<td>0.2044</td>
</tr>
<tr>
<td>LDL</td>
<td>3</td>
<td>1</td>
<td>0.4297</td>
</tr>
<tr>
<td>TG</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Publication Bias Combined Drug Category 1

<table>
<thead>
<tr>
<th>Outcome</th>
<th>S</th>
<th>Begg’s</th>
<th>Egger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>4</td>
<td>0.75</td>
<td>0.7444</td>
</tr>
<tr>
<td>BMI</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Trunkfat</td>
<td>8</td>
<td>0.9049</td>
<td>0.9076</td>
</tr>
<tr>
<td>Limbfat</td>
<td>4</td>
<td>1</td>
<td>0.3024</td>
</tr>
<tr>
<td>Total Body fat</td>
<td>6</td>
<td>0.0167</td>
<td>0.0386</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>8</td>
<td>0.1789</td>
<td>0.008</td>
</tr>
<tr>
<td>HDL</td>
<td>8</td>
<td>0.1789</td>
<td>0.0452</td>
</tr>
<tr>
<td>LDL</td>
<td>8</td>
<td>0.0610</td>
<td>0.012</td>
</tr>
<tr>
<td>TG</td>
<td>8</td>
<td>0.0610</td>
<td>0.0021</td>
</tr>
</tbody>
</table>
Table 5: Publication Bias Combined Drug Category 2

<table>
<thead>
<tr>
<th>Outcome</th>
<th>S</th>
<th>Begg’s</th>
<th>Egger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>WON’T RUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>5</td>
<td>0.0833</td>
<td>0.0473</td>
</tr>
<tr>
<td>Trunkfat</td>
<td>6</td>
<td>0.4694</td>
<td>0.0290</td>
</tr>
<tr>
<td>Limbfat</td>
<td>10</td>
<td>0.2912</td>
<td>0.3144</td>
</tr>
<tr>
<td>Total Body Fat</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>5</td>
<td>0.2333</td>
<td>0.2940</td>
</tr>
<tr>
<td>HDL</td>
<td>4</td>
<td>0.7500</td>
<td>0.3432</td>
</tr>
<tr>
<td>LDL</td>
<td>6</td>
<td>0.2722</td>
<td>0.5953</td>
</tr>
<tr>
<td>TG</td>
<td>6</td>
<td>0.4694</td>
<td>0.2602</td>
</tr>
</tbody>
</table>

Table 6: Publication Bias for ART Combined Drug Category 3

<table>
<thead>
<tr>
<th>Outcome</th>
<th>S</th>
<th>Begg’s</th>
<th>Egger’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>BMI</td>
<td>5</td>
<td>0.8167</td>
<td>0.4433</td>
</tr>
<tr>
<td>Trunkfat</td>
<td>2</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>Limbfat</td>
<td>2</td>
<td>0.2333</td>
<td>0.2625</td>
</tr>
<tr>
<td>Total Body Fat</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>3</td>
<td>1</td>
<td>0.2712</td>
</tr>
<tr>
<td>HDL</td>
<td>3</td>
<td>0.3333</td>
<td>0.5442</td>
</tr>
<tr>
<td>LDL</td>
<td>3</td>
<td>0.3333</td>
<td>0.0548</td>
</tr>
<tr>
<td>TG</td>
<td>3</td>
<td>1</td>
<td>0.6178</td>
</tr>
</tbody>
</table>
Table 7: Overall Effect Sizes (RE) and Homogeneity assumptions for NRTI alone

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>d (95% CI)</th>
<th>Random-Effects</th>
<th>Homogeneity of effect sizes</th>
<th>F (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>P-value</td>
</tr>
<tr>
<td>Weight</td>
<td>3</td>
<td>0.20 (0.03, 0.37)</td>
<td>0.23</td>
<td>0.88</td>
<td>0</td>
</tr>
<tr>
<td>BMI</td>
<td>3</td>
<td>0.20 (0.03, 0.37)</td>
<td>0.07</td>
<td>0.96</td>
<td>0</td>
</tr>
<tr>
<td>Trunk fat<sup>a</sup></td>
<td>10</td>
<td>0.27 (0.06, 0.49)</td>
<td>23.39</td>
<td>0.005</td>
<td>65.74</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>8</td>
<td>0.18 (-0.27, 0.65)</td>
<td>40.21</td>
<td><0.0001</td>
<td>87.60</td>
</tr>
<tr>
<td>Total Body Fat<sup>a</sup></td>
<td>12</td>
<td>0.26 (0.02, 0.50)</td>
<td>34.69</td>
<td>0.003</td>
<td>72.71</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>11</td>
<td>-0.04 (-18, 0.09)</td>
<td>17.26</td>
<td>0.06</td>
<td>39.34</td>
</tr>
<tr>
<td>HDL</td>
<td>12</td>
<td>0.002 (-0.11, 0.12)</td>
<td>15.29</td>
<td>0.16</td>
<td>25.00</td>
</tr>
<tr>
<td>LDL</td>
<td>13</td>
<td>-0.13 (-0.24, 0.02)</td>
<td>17.50</td>
<td>0.13</td>
<td>14.35</td>
</tr>
<tr>
<td>TG</td>
<td>13</td>
<td>-0.02 (-0.12, 0.07)</td>
<td>0.002</td>
<td>0.002</td>
<td>0.02</td>
</tr>
</tbody>
</table>

^a Significant Outcomes

Table 8: Overall Effect Sizes (RE) and Homogeneity assumptions for PI alone

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>d (95% CI)</th>
<th>Random-Effects</th>
<th>Homogeneity of effect sizes</th>
<th>F (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>P-value</td>
</tr>
<tr>
<td>Weight<sup>a</sup></td>
<td>2</td>
<td>0.32 (-0.08, 0.72)</td>
<td>5.99</td>
<td>0.01</td>
<td>83.32</td>
</tr>
<tr>
<td>BMI</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk fat</td>
<td>2</td>
<td>0.46 (0.29, 0.63)</td>
<td>0.49</td>
<td>0.48</td>
<td>0</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>2</td>
<td>0.27 (0.11, 0.43)</td>
<td>0.24</td>
<td>0.61</td>
<td>0</td>
</tr>
<tr>
<td>Total Body Fat</td>
<td>No data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>2</td>
<td>0.06 (-0.10, 0.22)</td>
<td>0.18</td>
<td>0.67</td>
<td>0</td>
</tr>
<tr>
<td>HDL</td>
<td>3</td>
<td>0.05 (-0.13, 0.24)</td>
<td>3.89</td>
<td>0.14</td>
<td>48.75</td>
</tr>
<tr>
<td>LDL<sup>a</sup></td>
<td>3</td>
<td>-0.30 (-0.76, 0.15)</td>
<td>18.13</td>
<td>0.0001</td>
<td>90.30</td>
</tr>
<tr>
<td>TG<sup>a</sup></td>
<td>3</td>
<td>-0.05 (-0.42, 0.31)</td>
<td>13.42</td>
<td>0.0012</td>
<td>85.71</td>
</tr>
</tbody>
</table>

^a Significant Outcomes
Table 9: Overall effect sizes (RE) and homogeneity assumptions for LPV/r combination category

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>d (95% CI)</th>
<th>Homogeneity of effect sizes</th>
<th>F (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random-Effects</td>
<td>Q</td>
<td>P-value</td>
</tr>
<tr>
<td>Weight<sup>a</sup></td>
<td>4</td>
<td>0.44 (0.18, 0.71)</td>
<td>3.34</td>
<td>0.0009</td>
</tr>
<tr>
<td>BMI<sup>a</sup></td>
<td>2</td>
<td>0.94 (0.53, 1.34)</td>
<td>0.01</td>
<td><.0001</td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>8</td>
<td>0.01 (-0.31, 0.34)</td>
<td>29.34</td>
<td>0.91</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>4</td>
<td>0.10 (-0.31, 0.52)</td>
<td>15.24</td>
<td>0.61</td>
</tr>
<tr>
<td>Total Body Fat<sup>a</sup></td>
<td>6</td>
<td>0.39 (0.12, 0.65)</td>
<td>12.76</td>
<td>0.003</td>
</tr>
<tr>
<td>Cholesterol<sup>a</sup></td>
<td>8</td>
<td>0.64 (0.21, 1.07)</td>
<td>42.30</td>
<td>0.003</td>
</tr>
<tr>
<td>HDL<sup>a</sup></td>
<td>8</td>
<td>0.75 (0.40, 1.09)</td>
<td>25.78</td>
<td><.0001</td>
</tr>
<tr>
<td>LDL<sup>a</sup></td>
<td>8</td>
<td>0.69 (0.20, 1.18)</td>
<td>45.93</td>
<td>0.005</td>
</tr>
<tr>
<td>TG<sup>a</sup></td>
<td>8</td>
<td>0.56 (0.14, 0.98)</td>
<td>38.61</td>
<td>0.008</td>
</tr>
</tbody>
</table>

^a Significant Outcomes

Table 10: Overall effect sizes (RE) and homogeneity assumptions for PI combination category

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>d (95% CI)</th>
<th>Homogeneity of effect sizes</th>
<th>F (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random-Effects</td>
<td>Q</td>
<td>P-value</td>
</tr>
<tr>
<td>Weight<sup>a</sup></td>
<td>1</td>
<td>(FE)</td>
<td>2.73</td>
<td><.0001</td>
</tr>
<tr>
<td>BMI<sup>a</sup></td>
<td>5</td>
<td>0.36 (0.19, 0.54)</td>
<td>2.35</td>
<td><.0001</td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>6</td>
<td>0.61 (0.42, 0.80)</td>
<td>12.59</td>
<td><.0001</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>10</td>
<td>0.44 (0.26, 0.63)</td>
<td>0.13</td>
<td>0.93</td>
</tr>
<tr>
<td>Total Body Fat</td>
<td>2</td>
<td>0.02 (-0.49, 0.53)</td>
<td>41.63</td>
<td>0.91</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>5</td>
<td>0.05 (-0.91, 1.10)</td>
<td>18.63</td>
<td>0.01</td>
</tr>
<tr>
<td>HDL<sup>a</sup></td>
<td>4</td>
<td>0.42 (0.06, 0.78)</td>
<td>74.65</td>
<td>0.70</td>
</tr>
<tr>
<td>LDL</td>
<td>6</td>
<td>-0.14 (-0.87, 0.59)</td>
<td>21.29</td>
<td>0.77</td>
</tr>
<tr>
<td>TG</td>
<td>6</td>
<td>0.06 (-0.37, 0.49)</td>
<td>40.21</td>
<td>0.00</td>
</tr>
</tbody>
</table>

^a Significant Outcomes
Table 11: Overall effect sizes (RE) and homogeneity assumptions for NNRTI combination category

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>d (95% CI)</th>
<th>Random-Effects</th>
<th>Homogeneity of effect sizes</th>
<th>F (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>2</td>
<td>-0.01 (-0.57, 0.54)</td>
<td>21.72</td>
<td>0.95</td>
<td>95.40</td>
</tr>
<tr>
<td>BMI</td>
<td>5</td>
<td>0.23 (-0.11, 0.57)</td>
<td>28.89</td>
<td>0.18</td>
<td>83.50</td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>2</td>
<td>0.46 (0.26, 0.67)</td>
<td>0.03</td>
<td><.0001</td>
<td>0.00</td>
</tr>
<tr>
<td>Limb-fat</td>
<td>5</td>
<td>0.51 (0.34, 0.69)</td>
<td>1.90</td>
<td><.0001</td>
<td>0.00</td>
</tr>
<tr>
<td>Total body fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol(^a)</td>
<td>3</td>
<td>1.09 (0.74, 1.43)</td>
<td>5.38</td>
<td><.0001</td>
<td>66.18</td>
</tr>
<tr>
<td>HDL(^a)</td>
<td>3</td>
<td>0.85 (0.54, 1.15)</td>
<td>4.92</td>
<td><.0001</td>
<td>59.59</td>
</tr>
<tr>
<td>LDL</td>
<td>3</td>
<td>0.54 (0.37, 0.70)</td>
<td>1.32</td>
<td><.0001</td>
<td>0.00</td>
</tr>
<tr>
<td>TG(^a)</td>
<td>3</td>
<td>0.41 (0.10, 0.72)</td>
<td>6.18</td>
<td>0.008</td>
<td>70.28</td>
</tr>
<tr>
<td>SAT</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAT</td>
<td>4</td>
<td>0.29 (0.12, 0.47)</td>
<td>2.02</td>
<td>0.0010</td>
<td>0.00</td>
</tr>
<tr>
<td>TAT</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Significant Outcomes
Table 12: Multilevel MA model results on different outcomes in different ART treatment levels

<table>
<thead>
<tr>
<th>Outcome</th>
<th>k</th>
<th>B-coefficient (95% CI) ART treatment levels</th>
<th>χ^2 statistics (Q) p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>12</td>
<td>NRTI alone: 0.02 (0.03, 0.38)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI alone: 0.33 (0.17, 0.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPV/r comb: 0.43 (0.18, 0.68)</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>15</td>
<td>LPV/r comb: 0.94 (0.53, 1.34)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI comb: 0.62 (0.28, 0.97)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 0.02 (0.07, 0.9)</td>
<td></td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>26</td>
<td>PI alone: 0.47 (0.30, 0.64)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 0.85 (0.01, 1.69)</td>
<td></td>
</tr>
<tr>
<td>Limb-fat</td>
<td>27</td>
<td>PI alone: 0.27 (0.1145, 0.4397)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 1.05 (0.21, 1.89)</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>29</td>
<td>LPV/r comb: 0.92 (0.29, 1.54)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 1.65 (0.95, 2.35)</td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>31</td>
<td>LPV/r comb: 0.90 (0.47, 1.32)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI comb: 0.56 (0.11, 1.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 1.09 (0.69, 1.49)</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>34</td>
<td>NNRTI: -1.08 (-1.99, 0.18)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPV/r comb: 0.94 (0.41, 1.47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 0.93 (0.26, 1.61)</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>34</td>
<td>NRTI alone: 3.57 (2.16, 4.98)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI alone: 1.30 (0.79, 1.81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LPV/r comb: 1.002 (0.32, 1.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI comb: -1.83 (-2.75, -0.92)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNRTI comb: 1.28 (0.81, 1.76)</td>
<td></td>
</tr>
</tbody>
</table>
Table 13: Multilevel MA model results including moderator analysis

<table>
<thead>
<tr>
<th>Moderator Variable</th>
<th>Outcome</th>
<th>k</th>
<th>B-coefficient (95%CI)</th>
<th>Homogeneity of effect sizes</th>
<th>I² (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q-statistic</td>
<td>P-value</td>
</tr>
<tr>
<td>Weeks</td>
<td>Weight</td>
<td>12</td>
<td>-0.002 (-0.008, 0.004)</td>
<td>19.84</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>BMI</td>
<td>15</td>
<td>0.002 (-0.003, 0.008)</td>
<td>32.22</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Trunk fat</td>
<td>26</td>
<td>0.003 (-0.002, 0.008)</td>
<td>30.40</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Limb-fat</td>
<td>27</td>
<td>0.003 (-0.004, 0.009)</td>
<td>32.99</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Cholesterol</td>
<td>29</td>
<td>-0.002 (-0.007, 0.004)</td>
<td>37.42</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>HDL</td>
<td>31</td>
<td>-0.001 (-0.003, 0.0007)</td>
<td>88.54</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>LDL*</td>
<td>34</td>
<td>-0.004 (-0.007, -0.002)</td>
<td>17.50</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>TG</td>
<td>34</td>
<td>0.0006 (-0.002, 0.003)</td>
<td>22.86</td>
<td>0.0018</td>
</tr>
<tr>
<td>Publication Year</td>
<td>Weight</td>
<td>12</td>
<td>-0.02 (-0.1, 0.06)</td>
<td>19.75</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>BMI</td>
<td>15</td>
<td>0.04 (-0.002, 0.07)</td>
<td>36.55</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Trunk fat</td>
<td>26</td>
<td>-0.02 (-0.07, 0.03)</td>
<td>32.35</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Limb-fat*</td>
<td>27</td>
<td>0.06 (0.006, 0.12)</td>
<td>41.51</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Cholesterol</td>
<td>29</td>
<td>-0.07 (-0.15, 0.0007)</td>
<td>5077</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>HDL*</td>
<td>31</td>
<td>-0.06 (-0.01, -0.02)</td>
<td>103.76</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>LDL*</td>
<td>34</td>
<td>-0.005 (-0.007, -0.001)</td>
<td>21.90</td>
<td>0.0026</td>
</tr>
<tr>
<td></td>
<td>TG*</td>
<td>34</td>
<td>-0.07 (-0.1, -0.02)</td>
<td>40.13</td>
<td><0.0001</td>
</tr>
<tr>
<td>Female</td>
<td>Weight</td>
<td>12</td>
<td>-0.003 (-0.04, 0.03)</td>
<td>19.48</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>BMI</td>
<td>15</td>
<td>0.007 (-0.016, 0.0006)</td>
<td>46.22</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Trunk fat</td>
<td>26</td>
<td>-0.0019 (-0.014, 0.01)</td>
<td>29.62</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Limb-fat</td>
<td>27</td>
<td>0.0048 (-0.008, 0.02)</td>
<td>36.31</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Cholesterol</td>
<td>29</td>
<td>-0.006 (-0.01, -0.001)</td>
<td>101.60</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>HDL*</td>
<td>31</td>
<td>-0.019 (-0.019, -0.001)</td>
<td>41.79</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>LDL*</td>
<td>34</td>
<td>-0.01 (-0.019, -0.005)</td>
<td>22.63</td>
<td>0.0020</td>
</tr>
<tr>
<td></td>
<td>TG</td>
<td>34</td>
<td>0.0012 (-0.004, 0.006)</td>
<td>22.63</td>
<td>0.0020</td>
</tr>
<tr>
<td>Average mean age</td>
<td>Weight</td>
<td>12</td>
<td>-0.04 (-0.58, 0.49)</td>
<td>19.48</td>
<td>0.003</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>----</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>BMI</td>
<td>15</td>
<td>0.03 (-0.04, 0.09)</td>
<td>32.54</td>
<td><0.0001</td>
<td>45.13%</td>
</tr>
<tr>
<td>Trunk fat</td>
<td>26</td>
<td>0.02 (-0.03, 0.08)</td>
<td>31.24</td>
<td><0.0001</td>
<td>54.08%</td>
</tr>
<tr>
<td>Limb-fat*</td>
<td>27</td>
<td>0.04 (-0.007, 0.10)</td>
<td>42.06</td>
<td><0.0001</td>
<td>50.53%</td>
</tr>
<tr>
<td>Cholesterol*</td>
<td>29</td>
<td>-0.17 (-0.23, -0.10)</td>
<td>117.09</td>
<td><0.0001</td>
<td>44.92%</td>
</tr>
<tr>
<td>HDL</td>
<td>31</td>
<td>-0.03 (-0.06, 0.01)</td>
<td>84.20</td>
<td><0.0001</td>
<td>50.30%</td>
</tr>
<tr>
<td>LDL</td>
<td>34</td>
<td>0.001 (-0.06, 0.07)</td>
<td>21.87</td>
<td>0.0027</td>
<td>82.04%</td>
</tr>
<tr>
<td>TG*</td>
<td>34</td>
<td>-0.07 (-0.11, -0.04)</td>
<td>47.43</td>
<td><0.0001</td>
<td>40.19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prop of white</th>
<th>Weight</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>15</td>
<td>-0.41 (-1.67, 0.84)</td>
<td>32.28</td>
<td><0.0001</td>
<td>45.22%</td>
<td></td>
</tr>
<tr>
<td>Trunk-fat*</td>
<td>26</td>
<td>0.64 (0.35, 0.92)</td>
<td>89.16</td>
<td><0.0001</td>
<td>18.71%</td>
<td></td>
</tr>
<tr>
<td>Limb-fat*</td>
<td>27</td>
<td>0.73 (0.24, 1.23)</td>
<td>56.86</td>
<td><0.0001</td>
<td>41.35%</td>
<td></td>
</tr>
<tr>
<td>Cholesterol*</td>
<td>29</td>
<td>0.50 (0.02, 0.97)</td>
<td>47.85</td>
<td><0.0001</td>
<td>73.02%</td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>31</td>
<td>0.24 (-0.08, 0.57)</td>
<td>82.53</td>
<td><0.0001</td>
<td>51.75%</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>34</td>
<td>0.45 (-0.08, 1.0)</td>
<td>25.75</td>
<td>0.0006</td>
<td>80.70%</td>
<td></td>
</tr>
<tr>
<td>TG*</td>
<td>34</td>
<td>0.40 (0.07, 0.74)</td>
<td>32.28</td>
<td><0.0001</td>
<td>51.16%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MQ</th>
<th>Weight</th>
<th>12</th>
<th>0.07 (-0.17, 0.33)</th>
<th>19.87</th>
<th>0.002</th>
<th>56.59%</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>15</td>
<td>0.081 (-0.10, 0.26)</td>
<td>32.26</td>
<td><0.0001</td>
<td>46.61%</td>
<td></td>
</tr>
<tr>
<td>Trunk-fat</td>
<td>26</td>
<td>0.003 (-0.002, 0.008)</td>
<td>30.40</td>
<td><0.0001</td>
<td>55.97%</td>
<td></td>
</tr>
<tr>
<td>Limb-fat*</td>
<td>27</td>
<td>0.18 (0.005, 0.36)</td>
<td>38.73</td>
<td><0.0001</td>
<td>56.39%</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td>29</td>
<td>-0.14 (-0.36, 0.06)</td>
<td>41.61</td>
<td><0.0001</td>
<td>75.85%</td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>31</td>
<td>-0.11 (-0.24, 0.01)</td>
<td>86.68</td>
<td><0.0001</td>
<td>49.35%</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>34</td>
<td>-0.09 (-0.30, 0.12)</td>
<td>22.88</td>
<td>0.0018</td>
<td>81.83%</td>
<td></td>
</tr>
<tr>
<td>TG</td>
<td>34</td>
<td>-0.07 (-0.22, 0.07)</td>
<td>23.05</td>
<td>0.0017</td>
<td>61.76%</td>
<td></td>
</tr>
</tbody>
</table>
Table 14: List of moderators with no significant results

<table>
<thead>
<tr>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of black population</td>
</tr>
<tr>
<td>Proportion of Latino/Hispanic population</td>
</tr>
<tr>
<td>Proportion of Asian population</td>
</tr>
<tr>
<td>Proportion of other population</td>
</tr>
<tr>
<td>Mean body fat%</td>
</tr>
<tr>
<td>Mean sub-cutaneous adipose tissue</td>
</tr>
<tr>
<td>Mean visceral adipose tissue</td>
</tr>
<tr>
<td>Mean total adipose tissue</td>
</tr>
<tr>
<td>Mean fasting blood glucose</td>
</tr>
<tr>
<td>Mean fasting insulin level</td>
</tr>
<tr>
<td>Mean CD4 cell counts</td>
</tr>
<tr>
<td>Mean RNA level</td>
</tr>
<tr>
<td>Proportion of population reported Homosexuality as HIV route of transmission</td>
</tr>
<tr>
<td>Proportion of population reported Heterosexuality as HIV route of transmission</td>
</tr>
<tr>
<td>Proportion of population reported to ART adherence</td>
</tr>
<tr>
<td>Proportion of population reported on toxicity</td>
</tr>
<tr>
<td>Type of intervention settings</td>
</tr>
<tr>
<td>Number of intervention and comparison groups used</td>
</tr>
<tr>
<td>Participants assigned in intervention and comparison groups</td>
</tr>
<tr>
<td>Number of patients switched due to adverse drug reaction</td>
</tr>
</tbody>
</table>
Table 15: List of moderators unable to analyze due to lack of study reports

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Height of population</td>
</tr>
<tr>
<td>Mean waist-hip ratio of population</td>
</tr>
<tr>
<td>Mean BMI Over Weight</td>
</tr>
<tr>
<td>Mean BMI for Obese class1, class2, class3</td>
</tr>
<tr>
<td>Mean mid arm area</td>
</tr>
<tr>
<td>Mean mid-thigh area</td>
</tr>
<tr>
<td>Mean Hgba1C %</td>
</tr>
<tr>
<td>Proportion of population reported on drug use as HIV route of transmission</td>
</tr>
<tr>
<td>Proportion of population reported on blood transfusion as HIV route of transmission</td>
</tr>
<tr>
<td>Proportion of population reported on asymptomatic conditions</td>
</tr>
<tr>
<td>Proportion of population reported on symptomatic conditions</td>
</tr>
<tr>
<td>Proportion of population having Hepatitis B</td>
</tr>
<tr>
<td>Proportion of population having hepatitis C</td>
</tr>
<tr>
<td>Number of facilitator/provider</td>
</tr>
<tr>
<td>ART dosage used</td>
</tr>
<tr>
<td>Proportion of population having diabetes</td>
</tr>
<tr>
<td>Proportion of population having high blood pressure</td>
</tr>
<tr>
<td>Proportion of population having smoking habit</td>
</tr>
<tr>
<td>Type of intervention settings</td>
</tr>
<tr>
<td>Number of intervention and comparison groups used</td>
</tr>
<tr>
<td>Participants assigned in intervention and comparison groups</td>
</tr>
</tbody>
</table>
APPENDIX

Appendix 1: Comprehensive Literature Search Strategy

Searches run July 6-7, 2015
Total 506 citations after removing duplicates.
To get your total # for the flow diagram, add the original results + the additional from revised search. Then subtract 2 duplicates.

PubMed Search
1940's to present
Results: 427

(HIV OR "HIV"[Mesh] OR "Acquired Immunodeficiency Syndrome"[Mesh]) AND (Overweight OR "Overweight"[Mesh] OR BMI OR "body mass" OR "Body Mass Index"[MeSH] OR "Waist Circumference"[MeSH] OR "Weight Gain"[Mesh] OR "weight gain" OR anthropometric[ti] OR obesity OR "Obesity"[Mesh] OR obese OR "abdominal fat" OR adiposity OR "body fat") AND (HAART OR "Antiretroviral Therapy, Highly Active" OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals" OR "Anti-Retroviral Agents"[Mesh]) AND ("quasi-experimental" OR RCT OR "randomized controlled trial"[pt] OR (clinical[tiab] AND trial[tiab]) OR "clinical trials as topic"[mesh] OR "clinical trial" [pt] OR random*[tiab] OR "random allocation"[mesh] OR "therapeutic use"[sh]) AND Humans[mesh] NOT (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers OR smoking[ti] OR dyslipidemi*[ti] OR dyslipidaemi*[ti] OR hypertriglycerideraemi*[ti])

Revised September 8, 2015: 360 after removing citations from original search

loss" OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers OR smoking[ti])

Scopus search:

1823 to Present.
Citations: 131.
Limits: Article

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat")
OR
Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals")

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)
OR
Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive
impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

OR

Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking OR dyslipidemi* OR dyslipidaemi* OR hypertriglyceridaemi*

Revised search: after removing original: 16

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat" OR lipohypertrophy)

OR

Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals" OR NNRTI OR PI OR "protease inhibitor")

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)

OR

Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

OR

Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR
editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking

CINAHL:
1981 to Present.
Citations: 2
Limits: Research article, Human, Exclude MEDLINE records.

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat")
OR
Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals")

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)
OR
Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)
OR
Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking OR dyslipidemi* OR dyslipidaemi* OR hypertriglyceridaemi*

Revised search: 0 studies after removing the original.

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat" OR lipohypertrophy)

OR

Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals" OR NNRTI OR "protease inhibitor" OR PI)

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)

OR

Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

OR

Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking
PsycINFO

1872 to Present
Citations: 4
Limits: Human

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat")

OR

Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals")

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)

OR

Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

OR

Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking OR dyslipidemi* OR dyslipidaemi* OR hypertriglyceridaemi*

Revised search: 0 after removing the original studies.
Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2 part 1: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat" OR lipohypertrophy)

OR

Concept 2 part 2 (in article title): anthropometric

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals" OR NNRTI OR "protease inhibitor" OR PI)

AND

Concept 4 part 1: ("quasi-experimental" OR RCT OR "clinical trial" OR random*)

OR

Concept 4 part 2: (clinical AND trial)

NOT

Concept 5 part 1: (pregnan* OR wasting OR "weight loss" OR fever OR hepatitis OR carcino* OR neoplasms* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

OR

Concept 5 part 2 (in article title): rat OR rats OR mice OR mouse OR dog OR dogs OR cats OR "cross-sectional study" OR "case report" OR comment OR editorial OR letter OR "case control" OR "case study" OR "case series" OR "follow-up study" OR "observational study" OR "prospective cohort" OR "cohort study" OR "longitudinal study" OR "retrospective study" OR "non-randomized" OR review OR smoking

Cochrane Library: 2 studies.
Current information only.
Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat" OR anthropometric)
AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals")

NOT

Concept 4: (pregnan* OR wasting OR "weight loss" OR Lipodystroph* OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

Revised search: 0 studies after removing the original studies.

Concept 1: (HIV OR "Acquired Immunodeficiency Syndrome")

AND

Concept 2: (Overweight OR BMI OR "body mass" OR "Waist Circumference" OR "weight gain" OR obesity OR obese OR "abdominal fat" OR adiposity OR "body fat" OR anthropometric OR lipo hypertrophy)

AND

Concept 3: (HAART OR ART OR Antiretroviral* OR "Anti-retroviral" OR "Anti-retrovirals" OR NNRTI OR PI OR "protease inhibitor")

NOT

Concept 4: (pregnan* OR wasting OR "weight loss" OR fever OR hepatitis OR carcinogen* OR neoplasm* OR cancer OR cancers OR "chronic liver disease" OR "liver fibrosis" OR "fatty liver disease" OR atherosclerosis OR "urinary metabolites" OR "urinary abnormalities" OR "renal impairment" OR "renal dysfunction" OR "bone mineral density" OR "skeletal muscle toxicity" OR "muscular dystrophy" OR "skeletal muscle disease" OR anemia OR tuberculosis OR "neurological disorder" OR "neurocognitive impairment" OR "lung disease" OR "alveolar disease" OR "genetic disease" OR "genetic abnormalities" OR biomarkers OR markers)

Appendix 2: Data Extraction Coding Form
EFFECTS OF HIV-MEDICINES AMONG HIV POSITIVE PATIES ON BODY HABITUS CHANGE
A MULTILEVEL META-ANALYSIS
Developed August 30, 2015
Code ID: Nusrat=1, Ben=2, Dr. Huedo-medina=4

Study Information:
Study_ID: __________ (ID number 001, last name of First Author, Year of Publication without gaps)
Pub_YR: __________ (Publication Year)
Data_Coll_Yr: __________ (Year of data collection)
Lang: __________ (Language of report)
Journal: __
Impact_Scr: __________ (Impact score of the journal; use ISI Web of Knowledge journal citation reports)
Fund_Srce: __________ (Funding Source) 0 = No funding 1 = Government 2 = Academic/University
3 = Private 4 = Both public and private
5 = Other Specific Funding grant: __________
Notes: ___
Region: __________ 0 = Not reported 1 = United states 2 = Europe (city: ______)
3 = Central America/North America (Mexico, Canada, Caribbean city then specify: ____________)
4 = Africa (city: __________) 5 = Asia 6 = Australia 7 = Other/Multiple specify
(_____________)
City_usa: ______________________ (USA only) Zip_usa: ________________ (Zip-code; US only)

Demographic characteristics:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of participants</td>
<td>Mean_age_IN1</td>
<td>Mean_age_IN2</td>
<td>Mean_age_IN3</td>
<td>Mean_age_IN4</td>
</tr>
<tr>
<td>Mean/median</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
</tr>
<tr>
<td>SD of age</td>
<td>SD_age_IN1</td>
<td>SD_age_IN2</td>
<td>SD_age_IN3</td>
<td>SD_age_IN4</td>
</tr>
<tr>
<td>Number/proportion of female</td>
<td>Num/Prop_fem1</td>
<td>Num/Prop_fem2</td>
<td>Num/Prop_fem3</td>
<td>Num/Prop_fem4</td>
</tr>
<tr>
<td>Number/proportion of male</td>
<td>Num/Prop_male1</td>
<td>Num/Prop_male2</td>
<td>Num/Prop_male3</td>
<td>Num/Prop_male4</td>
</tr>
<tr>
<td>Ethnicity if reported yes=1; no=0</td>
<td>Prop_Whi</td>
<td>Prop_Bl</td>
<td>Prop_LH</td>
<td>Prop_As</td>
</tr>
<tr>
<td>Number/ proportion of white</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
</tr>
<tr>
<td>Number/Proportion Latino/Hispanic</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
</tr>
<tr>
<td>Number/Proportion of Other/Mixed</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
<td>___________</td>
</tr>
</tbody>
</table>

Notes on sample characteristics relevant to coding
Anthropometric measurements in international units at baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean height (cm)</td>
<td>Mean_ht_IN1</td>
<td>Mean_ht_IN2</td>
<td>Mean_ht_IN3</td>
<td>Mean_ht_IN4</td>
</tr>
<tr>
<td>SD of height</td>
<td>Ht_SD_IN1</td>
<td>Ht_SD_IN2</td>
<td>Ht_SD_IN3</td>
<td>Ht_SD_IN4</td>
</tr>
<tr>
<td>Mean weight (kg)</td>
<td>Mean_wt_total</td>
<td>Mean_wt_IN1</td>
<td>Mean_wt_IN2</td>
<td>Mean_wt_IN3</td>
</tr>
<tr>
<td>SD of weight</td>
<td>Wt_SD_IN1</td>
<td>Wt_SD_IN2</td>
<td>Wt_SD_IN3</td>
<td>Wt_SD_IN4</td>
</tr>
<tr>
<td>Mean BMI (kg/m²)</td>
<td>Mean_BMI_total</td>
<td>Mean_BMI_IN1</td>
<td>Mean_BMI_IN2</td>
<td>Mean_BMI_IN3</td>
</tr>
<tr>
<td>SD of BMI</td>
<td>SD_BMI_IN1</td>
<td>SD_BMI_IN2</td>
<td>SD_BMI_IN3</td>
<td>SD_BMI_IN4</td>
</tr>
<tr>
<td>Mean Waist circumference (cm)</td>
<td>Mean_WC_IN1</td>
<td>Mean_WC_IN2</td>
<td>Mean_WC_IN3</td>
<td>Mean_WC_IN4</td>
</tr>
<tr>
<td>SD of Waist circumference</td>
<td>SD_WC_IN1</td>
<td>SD_WC_IN2</td>
<td>SD_WC_IN3</td>
<td>SD_WC_IN4</td>
</tr>
<tr>
<td>Mean Waist-hip ratio</td>
<td>Mean_WHR_IN1</td>
<td>Mean_WHR_IN2</td>
<td>Mean_WHR_IN3</td>
<td>Mean_WHR_IN4</td>
</tr>
<tr>
<td>SD of Waist-hip ratio</td>
<td>SD_WHR_IN1</td>
<td>SD_WHR_IN2</td>
<td>SD_WHR_IN3</td>
<td>SD_WHR_IN4</td>
</tr>
<tr>
<td>BMI-Obese-Class1</td>
<td>BMI_over_IN1</td>
<td>BMI_over_IN2</td>
<td>BMI_over_IN3</td>
<td>BMI_over_IN4</td>
</tr>
<tr>
<td>BMI-Obese-Class2</td>
<td>Obese1_IN1</td>
<td>Obese1_IN2</td>
<td>Obese1_IN3</td>
<td>Obese1_IN4</td>
</tr>
<tr>
<td>BMI-Obese-Class3</td>
<td>Obese2_IN1</td>
<td>Obese2_IN2</td>
<td>Obese2_IN3</td>
<td>Obese2_IN4</td>
</tr>
<tr>
<td>Mean body fat %</td>
<td>Mean_bodyfat_IN1</td>
<td>Mean_bodyfat_IN2</td>
<td>Mean_bodyfat_IN3</td>
<td>Mean_bodyfat_IN4</td>
</tr>
<tr>
<td>SD of body fat %</td>
<td>SD_bodyfat_IN1</td>
<td>SD_bodyfat_IN2</td>
<td>SD_bodyfat_IN3</td>
<td>SD_bodyfat_IN4</td>
</tr>
<tr>
<td>Method of body fat % assessment</td>
<td>Mean Trunk Fat %</td>
<td>Trunkfat_IN1</td>
<td>Trunkfat_IN2</td>
<td>Trunkfat_IN3</td>
</tr>
<tr>
<td>Mean Limb Fat %</td>
<td>Limbfat_IN1</td>
<td>Limbfat_IN2</td>
<td>Limbfat_IN3</td>
<td>Limbfat_IN4</td>
</tr>
<tr>
<td>Mean Sub-cutaneous Adipose Tissue area (cm²)</td>
<td>Mean_SAT_IN1</td>
<td>Mean_SAT_IN2</td>
<td>Mean_SAT_IN3</td>
<td>Mean_SAT_IN4</td>
</tr>
<tr>
<td>SD Sub-cutaneous Adipose Tissue area (cm²)</td>
<td>SD_SAT_IN1</td>
<td>SD_SAT_IN2</td>
<td>SD_SAT_IN3</td>
<td>SD_SAT_IN4</td>
</tr>
<tr>
<td>Mean Visceral Adipose Tissue area (cm²)</td>
<td>Mean_VAT_total</td>
<td>Mean_VAT_IN1</td>
<td>Mean_VAT_IN2</td>
<td>Mean_VAT_IN3</td>
</tr>
<tr>
<td>SD Visceral Adipose Tissue area (cm²)</td>
<td>SD_VAT_IN1</td>
<td>SD_VAT_IN2</td>
<td>SD_VAT_IN3</td>
<td>SD_VAT_IN4</td>
</tr>
<tr>
<td>Mean Total Adipose Tissue Area (cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD Total Adipose Tissue Area (cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean mid arm area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of mid arm area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean mid-thigh area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD of mid-thigh area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Metabolic parameter, HIV risk assessment at baseline (Mean ±SD)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean fasting Blood Glucose (mmol/L)</td>
<td>Mean_fbloodglu_IN1</td>
<td>Mean_fbloodglu_IN2</td>
<td>Mean_fbloodglu_IN3</td>
<td>Mean_fbloodglu_IN4</td>
</tr>
<tr>
<td>SD of Fasting Blood glucose</td>
<td>SD_bdglu_IN1</td>
<td>SD_bdglu_IN2</td>
<td>SD_bdglu_IN3</td>
<td>SD_bdglu_IN4</td>
</tr>
<tr>
<td>Mean fasting Insulin (mcIU/mL)</td>
<td>Mean_finsul_IN1</td>
<td>Mean_finsul_IN2</td>
<td>Mean_finsul_IN3</td>
<td>Mean_finsul_IN4</td>
</tr>
<tr>
<td>SD of fasting insulin</td>
<td>SD_finsul_IN1</td>
<td>SD_finsul_IN2</td>
<td>SD_finsul_IN3</td>
<td>SD_finsul_IN4</td>
</tr>
<tr>
<td>Mean HgbA1C as %</td>
<td>Mean_hgba1c_IN1</td>
<td>Mean_hgba1c_IN2</td>
<td>Mean_hgba1c_IN3</td>
<td>Mean_hgba1c_IN4</td>
</tr>
<tr>
<td>SD of HgbA1C</td>
<td>SD_hgba1c_IN1</td>
<td>SD_hgba1c_IN2</td>
<td>SD_hgba1c_IN3</td>
<td>SD_hgba1c_IN4</td>
</tr>
<tr>
<td>Mean CD4 cell counts (cells/mm³)</td>
<td>Mean_cd4_IN1</td>
<td>Mean_cd4_IN2</td>
<td>Mean_cd4_IN3</td>
<td>Mean_cd4_IN4</td>
</tr>
<tr>
<td>SD of CD4 cell counts (cells/mm³)</td>
<td>SD_cd4_IN1</td>
<td>SD_cd4_IN2</td>
<td>SD_cd4_IN3</td>
<td>SD_cd4_IN4</td>
</tr>
<tr>
<td>Mean RNA level (log₁₀ copies/mL)</td>
<td>Mean_rna_IN1</td>
<td>Mean_rna_IN2</td>
<td>Mean_rna_IN3</td>
<td>Mean_rna_IN4</td>
</tr>
<tr>
<td>SD of RNA level (log₁₀ copies/mL)</td>
<td>SD_rna_IN1</td>
<td>SD_rna_IN2</td>
<td>SD_rna_IN3</td>
<td>SD_rna_IN4</td>
</tr>
</tbody>
</table>

Lipid profile at baseline (Mean ±SD)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Cholesterol (mmol/l)</td>
<td>Mean_chol_IN1</td>
<td>Mean_chol_IN2</td>
<td>Mean_chol_IN3</td>
<td>Mean_chol_IN4</td>
</tr>
<tr>
<td>SD of Cholesterol</td>
<td>SD_chol_IN1</td>
<td>SD_chol_IN2</td>
<td>SD_chol_IN3</td>
<td>SD_chol_IN4</td>
</tr>
<tr>
<td>Mean LDL Cholesterol (mmol/l)</td>
<td>Mean_ldl_IN1</td>
<td>Mean_ldl_IN2</td>
<td>Mean_ldl_IN3</td>
<td>Mean_ldl_IN4</td>
</tr>
<tr>
<td>SD of LDL Cholesterol</td>
<td>SD_ldl_IN1</td>
<td>SD_ldl_IN2</td>
<td>SD_ldl_IN3</td>
<td>SD_ldl_IN4</td>
</tr>
<tr>
<td>Mean HDL Cholesterol (mmol/l)</td>
<td>Mean_hdl_IN1</td>
<td>Mean_hdl_IN2</td>
<td>Mean_hdl_IN3</td>
<td>Mean_hdl_IN4</td>
</tr>
<tr>
<td>SD of HDL Cholesterol</td>
<td>SD_hdl_IN1</td>
<td>SD_hdl_IN2</td>
<td>SD_hdl_IN3</td>
<td>SD_hdl_IN4</td>
</tr>
<tr>
<td>Mean Triglyceride (mmol/l)</td>
<td>Mean_tg_IN1</td>
<td>Mean_tg_IN2</td>
<td>Mean_tg_IN3</td>
<td>Mean_tg_IN4</td>
</tr>
<tr>
<td>SD of Triglyceride</td>
<td>SD_tg_IN1</td>
<td>SD_tg_IN2</td>
<td>SD_tg_IN3</td>
<td>SD_tg_IN4</td>
</tr>
</tbody>
</table>

Proportion of population on different characteristics

<table>
<thead>
<tr>
<th>HIV route of transmission reported: No=0, Yes=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention/Comparison groups</td>
</tr>
<tr>
<td>IN1</td>
</tr>
<tr>
<td>Homosexual</td>
</tr>
<tr>
<td>Heterosexual</td>
</tr>
<tr>
<td>Drug users</td>
</tr>
<tr>
<td>Blood Transmission</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Proportion of population on different characteristics in HIV diagnosis at baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to AIDS No=0, Yes=1, Unknown=2</td>
<td>AIDS_IN1</td>
<td>AIDS_IN2</td>
<td>AIDS_IN3</td>
<td>AIDS_IN4</td>
</tr>
<tr>
<td>AIDS(CDCstage3)</td>
<td>Symp_IN1</td>
<td>Symp_IN2</td>
<td>Symp_IN3</td>
<td>Symp_IN4</td>
</tr>
<tr>
<td>Symptomatic(CDCstage2)</td>
<td>Asymp_IN1</td>
<td>Asymp_IN2</td>
<td>Asymp_IN3</td>
<td>Asymp_IN4</td>
</tr>
<tr>
<td>Asymptomatic(CDCstage1)</td>
<td>HebB_IN1</td>
<td>HebB_IN2</td>
<td>HebB_IN3</td>
<td>HebB_IN4</td>
</tr>
<tr>
<td>Hepatitis B virus</td>
<td>HebC_IN1</td>
<td>HebC_IN2</td>
<td>HebC_IN3</td>
<td>HebC_IN4</td>
</tr>
<tr>
<td>Hepatitis C virus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention /Comparison Condition:

Number of Participants in intervention and comparison groups in different events

<table>
<thead>
<tr>
<th>Intervention/Comparison groups</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants at the beginning</td>
<td>Part_begIN1</td>
<td>Part_IN2</td>
<td>Part_IN3</td>
<td>Part_IN4</td>
</tr>
<tr>
<td>Participants at the end</td>
<td>Part_end_IN1</td>
<td>Part_end_IN2</td>
<td>Part_end_IN3</td>
<td>Part_end_IN4</td>
</tr>
<tr>
<td>Lost Follow Up/missing visits</td>
<td>Lost_fu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of F/U</td>
<td>Num_fu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants withdraw after randomization/withdraw consent</td>
<td>Withdraw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of participants discontinued</td>
<td>Partc_discont</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total participant adherence in %</td>
<td>%adherence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other reason for missing participants</td>
<td>Other_reasn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of deaths</td>
<td>Num_death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicity If reported yes=1; no=0</td>
<td>Toxic_rep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of toxicity: Specify (ex: hepatic toxicity, rash due to ART medication)</td>
<td>Type_toxic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of participants having toxic effect</td>
<td>Part_toxic_effect</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intervention and comparison conditions
Specify name of intervention conditions (ex: if specific drug of NRTI is given in the study write the name in full or short form): __________________________ IN_con_1; IN_con_2; IN_con_3; IN_con4; IN_con_5.

<table>
<thead>
<tr>
<th>Intervention settings</th>
<th>IN_setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
</tr>
<tr>
<td>0= not reported</td>
<td>3= Hospital settings</td>
</tr>
<tr>
<td>1= private office</td>
<td>4= Multi-center: specify</td>
</tr>
<tr>
<td>2= HIV clinic/ center</td>
<td>5= Other: specify</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of intervention and comparison groups used</th>
<th>IN_com_groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
</tr>
<tr>
<td>1= one control/comparison + one experimental group</td>
<td></td>
</tr>
<tr>
<td>2= one control/comparison + two experimental groups</td>
<td></td>
</tr>
<tr>
<td>3= one control/comparison + three experimental groups</td>
<td></td>
</tr>
<tr>
<td>4= one control/comparison + four experimental groups</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants assignment in both conditions</th>
<th>Assign_IN</th>
<th>Assign_com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0= non-random assignment of individuals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1= random assignment of individuals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2= not clear/other: specify</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composition of both conditions</th>
<th>Comp_IN</th>
<th>Comp_com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0= targeted to individual (e.g. randomized as individual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1= targeted to groups, other specify:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2= unclear</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of participants switch from intervention conditions to comparison /control conditions due to drug reaction</th>
<th>Numb_switch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Duration of intervention period: Specify in days, weeks, months.</th>
<th>Period_IN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total number of facilitators in the study</th>
<th>Numb_facil</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Method of delivery</th>
<th>method_del</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
</tr>
<tr>
<td>0= delivery by a nurse</td>
<td></td>
</tr>
<tr>
<td>1= delivery by a primary care provider</td>
<td></td>
</tr>
<tr>
<td>2= Delivery by a medical physician</td>
<td></td>
</tr>
<tr>
<td>3= Multiple/ other, specify:</td>
<td></td>
</tr>
<tr>
<td>4= Unclear</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose in intervention and comparison conditions</th>
<th>dose_report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories:</td>
<td></td>
</tr>
<tr>
<td>0= not reported; 1= yes reported</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amount of dose in intervention and comparison conditions: If unit varies, write unit within bracket.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1_dose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length of follow up write specifically in days, weeks, months and years.</th>
<th>IN1_fu</th>
<th>IN2_fu</th>
<th>IN3_fu</th>
<th>IN4_fu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of follow up in different conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>IN1</th>
<th>IN2</th>
<th>IN3</th>
<th>IN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes reported (1=yes, 0=no) If unreported == ""</td>
<td>diab_report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes in proportions</td>
<td>diab_IN1</td>
<td>Prop_Diab_IN2</td>
<td>Prop_Diab_IN3</td>
<td>Prop_Diab_IN4</td>
</tr>
<tr>
<td>BP reported (1=yes, 0=no)</td>
<td>bp_report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion having High blood pressure</td>
<td>BP_IN1</td>
<td>Prop_BP_IN2</td>
<td>Prop_BP_IN3</td>
<td>Prop_BP_IN4</td>
</tr>
</tbody>
</table>

LIFESTYLE VARIABLES

<table>
<thead>
<tr>
<th>Smokers/smoke rs (≤6 months) (0=no, 1=yes; if missing = "")</th>
<th>Smoking_report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of smoker</td>
<td>PROP_SMOKE_1 N1</td>
</tr>
</tbody>
</table>

Notes on risk characteristics relevant to coding

Methodological Quality Control

<table>
<thead>
<tr>
<th>MQ1___ Random assignment</th>
<th>0 = Violated randomization and/or nonequivalence of comparison group was not addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Quasi-experimental design; arbitrary assignment; sequential; how:</td>
<td></td>
</tr>
<tr>
<td>2 = Random assignment of groups of individuals. What unit:</td>
<td></td>
</tr>
<tr>
<td>3 = Matching individuals on some variable What variable(s):</td>
<td></td>
</tr>
<tr>
<td>4 = True randomization (i.e., participants had equal chance of receiving intervention)</td>
<td></td>
</tr>
<tr>
<td>MQ2___ Quality control 0 = No standardization of treatment is specified</td>
<td></td>
</tr>
<tr>
<td>1 = Treatment standardized by manual, specific training, content coding, video as main intervention strategy, etc</td>
<td></td>
</tr>
<tr>
<td>MQ3___ Pretest post-test design (at least one measure pre-post) 0 = No</td>
<td></td>
</tr>
<tr>
<td>MQ4___ Follow-up rate (i.e., largest FU rate at any delayed post-test, overall)</td>
<td></td>
</tr>
<tr>
<td>MQ5___ Follow-up length (i.e., final assessment interval)</td>
<td></td>
</tr>
<tr>
<td>MQ10___ Withdrawal/Drop-outs (**This category applies to cases that withdrew after randomization)</td>
<td></td>
</tr>
<tr>
<td>0 = Not reported or all non-completers were excluded from analyses</td>
<td></td>
</tr>
<tr>
<td>1 = Enumerated and/or compared with completed cases (e.g., intent-to-treat; baseline differences)</td>
<td></td>
</tr>
<tr>
<td>MQ11___ Attrition (**This category applies to cases lost to follow-up after treatment)</td>
<td></td>
</tr>
<tr>
<td>0 = Cases lost to follow-up are not considered in outcome reporting</td>
<td></td>
</tr>
<tr>
<td>1 = Enumerated and considered in outcome reporting (e.g., included in all possible analyses, imputed the mean for lost cases, compared with non-attrition at baseline)</td>
<td></td>
</tr>
<tr>
<td>MQ12___ Independent/Double-blinding</td>
<td></td>
</tr>
<tr>
<td>0 = Follow-up non-blind, unspecified, or questionnaire only</td>
<td></td>
</tr>
<tr>
<td>1 = Follow-up assessment completed by independent interviewer blind to group assign</td>
<td></td>
</tr>
<tr>
<td>MQ13___ Analyses</td>
<td></td>
</tr>
<tr>
<td>0 = No inferential statistical analysis; inappropriate, or unspecified</td>
<td></td>
</tr>
<tr>
<td>1 = Appropriate statistical analyses of group or time points differences (e.g., comparing two groups/measures using at least a t or F test but did not control for other characteristics)</td>
<td></td>
</tr>
<tr>
<td>2 = 85-100% completed 1 = 70 – 84% completed 0 = <70%</td>
<td></td>
</tr>
</tbody>
</table>
MQ6____ Anonymity attempted (if face-to-face interviews, mark as '0')
(0 = No/NR, 1 = Yes)

MQ7____ Low reactivity of measure completion (If they do not mention, code "")
0 = no, intervention and measurement staff same and face-to-face interviews used
1 = yes, used different personnel for intervention and measurement (face-to-face) or measurement technique not highly reactive (written rather than oral questions, even if given by same person as intervention)

MQ8____ Collateral verification of self-report
0 = No collateral verification, not reported
1 = At least some collateral interviewed; if known, _______%

MQ9____ Used objective measures (at FUP, not just baseline or for inclusion criteria)
0 = No objective measure used or unspecified (i.e., self-report only)
1 = Objective measures used in more than 50% of the cases

MQ10____ List of HIV drugs: Specify subtype of NRTI
NNRTI drugs in combination: Specify subtype NNRTI
Protease inhibitors: Specify subtype pi
Combination of HIV medicines: Specify combination subtype comb

MQ12____ Controlled for baseline and/or other characteristics in appropriate statistical analyses of group differences (e.g., compared two groups using at least a t or F test) (i.e. test to compare groups at FUP that controls for baseline, or no baseline differences found through test and thus no need to control for post comparison)

MQ13____ Pilot testing 0 = None previous pilot testing of the intervention.
1 = There was a previous pilot testing of the intervention.

MQ14____ Intervention content matched to sample
(0 = No/NR, 1 = Yes)

MQ15____ Incentives Offered (0 = No, 1 = Yes)

MQ16____ Incentives Offered (0 = No, 1 = Yes)

MQ17____ Total Methodological Quality Score (out of 22 pts)
Appendix 3: Main HIV medicines with subclasses

<table>
<thead>
<tr>
<th>Main ART Drug</th>
<th>Combined subclass</th>
<th>Dummy code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined (type12)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>Combined (type1+type12)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>Combined HIV medicine type 12+ type 11</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>Combined HIV medicine type 12+ NNRTI type 4</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>NNRTI+PI/r</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NRTI+PI/r</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NNRTI+NRTI</td>
<td>Comb3 (as they contain NNRTI with NRTI)</td>
<td>6</td>
</tr>
<tr>
<td>NRTI (type 7&4)+ Combined HIV medicine LPV/r (Type 14)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>NNRTI (type4)+Combined HIV medicine LPV/r (type 14)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>Combined (type12)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>Combined (type11+type 12)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>PI+NRTI(type 2+type4)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>PI+NRTI(type 2+type5)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>PI (type7)+NRTI(type2+type5)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NNRTI(Type 2)+Combination HIV medicine TDF/FTC (Type12)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>NNRTI(Type 2)+Combination HIV medicine ABC/3TC (Type1)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>PI+Combination HIV medicine TDF/FTC (Type12)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>PI+Combination HIV medicine ABC/3TC (Type1)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NNRTI(Type 2)+Combination HIV medicine TDF/FTC (Type12)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>NNRTI(Type 2)+Combination HIV medicine ABC/3TC (Type1)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>PI+Combination HIV medicine TDF/FTC (Type12)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>PI+Combination HIV medicine ABC/3TC (Type1)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NRTI (type 5+ Type 1)</td>
<td>NRTI</td>
<td>1</td>
</tr>
<tr>
<td>PI/NNRTI+NRTI(ABC Type1)</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NRTI (Type5+ Type 1 + Type 7)+PI/NNRTI</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NRTI (type2+3)and NNRTI (type2)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>NRTI (type5&2) and NNRTI (type2)</td>
<td>Comb3 (as they contain NNRTI type2)</td>
<td>6</td>
</tr>
<tr>
<td>PI</td>
<td>PI</td>
<td>3</td>
</tr>
<tr>
<td>NNRTI</td>
<td>NNRTI</td>
<td>2</td>
</tr>
<tr>
<td>PI+NNRTI</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NRTI</td>
<td>NRTI</td>
<td>1</td>
</tr>
<tr>
<td>NNRTI+PI</td>
<td>Comb2 (as they contain PI)</td>
<td>5</td>
</tr>
<tr>
<td>NNRTI(Type4&7)+Combination HIV medicine LPV/r(Type14)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
<tr>
<td>NNRTI(Type 4)+Combination HIV medicine LPV/r(Type14)</td>
<td>Comb1 (as they contain LPV/r as combined treatment)</td>
<td>4</td>
</tr>
</tbody>
</table>
Appendix 4: R syntax

Run the Library in R

Library ("metafor")

#Overall effect sizes

#Regimen NRTI on outcome variable WEIGHT:
model1 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==1), data=HIVdata, method="REML")
model1

#Regimen NRTI on outcome variable BMI:
model2 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==2), data=HIVdata, method="REML")
model2

#Regimen NRTI on outcome variable TRUNKFAT:
model3 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==3), data=HIVdata, method="REML")
model3

#Regimen NRTI on outcome variable LIMBFAT:
model4 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==4), data=HIVdata, method="REML")
model4

#Regimen NRTI on outcome variable TOTAL BODY FAT:
model5 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==5), data=HIVdata, method="REML")
model5

#Regimen NRTI on outcome variable CHOLESTEROL:
model6 <-
rma(d.ex., var_d.ex., subset=(trt==1&Outcome==6), data=HIVdata, method="REML")
model6

#Regimen NRTI on outcome variable HDL:
model7 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==7), data=HIVdata, method="REML")
model7

#Regimen NRTI on outcome variable LDL:
model8 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==8), data=HIVdata, method="REML")
model8

#Regimen NRTI on outcome variable TG:
model9 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==9), data=HIVdata, method="REML")
model9

#Regimen NRTI on outcome variable SAT:
model10 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==10), data=HIVdata, method="REML")
model10

#Regimen NRTI on outcome variable VAT:
model11 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==11), data=HIVdata, method="REML")
model11

#Regimen NRTI on outcome variable TAT:
model12 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==12), data=HIVdata, method="REML")
model12

#Regimen NNRTI on outcome variable WEIGHT:
###Special note:
No studies reported data on WEIGHT, BMI, Trunkfat, Limbfat, Total bodyfat, SAT, VAT, TAT. Only provided on HDL, LDL, TG for NNRTI regimen.

That is why we got error messages. Only one study reported those outcome variable that is why result showing Fixed effects instead of Random effect.
model13 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==1), data=HIVdata, method="REML")
model13

#Regimen NNRTI on outcome variable BMI:

model14 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==2), data=HIVdata, method="REML")

model14

#Regimen NNRTI on outcome variable TRUNKFAT:

model15 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==3), data=HIVdata, method="REML")

model15

#Regimen NNRTI on outcome variable LIMBFAT:

model16 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==4), data=HIVdata, method="REML")

model16

#Regimen NNRTI on outcome variable TOTAL BODY FAT:

model17 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==5), data=HIVdata, method="REML")

model17

#Regimen NNRTI on outcome variable CHOLESTEROL:

model18 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==6), data=HIVdata, method="REML")

model18

#Regimen NNRTI on outcome variable HDL:

model19 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==7), data=HIVdata, method="REML")

model19

#Regimen NNRTI on outcome variable LDL:

model20 <- rma(d.ex., var_d.ex., subset=(trt==2&Outcome==8), data=HIVdata, method="REML")

model20

#Regimen NNRTI on outcome variable TG:
model21 <-
 rma(d.ex., var_d.ex., subset=(trt==2&Outcome==9), data=HIVdata, method="REML")
model21

#Regimen NNRTI on outcome variable SAT:
model22 <-
 rma(d.ex., var_d.ex., subset=(trt==2&Outcome==10), data=HIVdata, method="REML")
model22

#Regimen NNRTI on outcome variable VAT:
model23 <-
 rma(d.ex., var_d.ex., subset=(trt==2&Outcome==11), data=HIVdata, method="REML")
model23

#Regimen NNRTI on outcome variable TAT:
model24 <-
 rma(d.ex., var_d.ex., subset=(trt==2&Outcome==12), data=HIVdata, method="REML")
model24

#Regimen PI on outcome variable WEIGHT:
model25 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==1), data=HIVdata, method="REML")
model25

#Regimen PI on outcome variable BMI:
No data on BMI for PI regimen. That is why we got error message.
model26 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==2), data=HIVdata, method="REML")
model26

#Regimen PI on outcome variable TRUNKFAT:
model27 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==3), data=HIVdata, method="REML")
model27

#Regimen PI on outcome variable LIMBFAT:
model28 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==4), data=HIVdata, method="REML")
model28

RRegimen PI on outcome variable TOTAL BODY FAT:

No data on TBF. That is why we got error messages.

model29 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==5), data=HIVdata, method="REML")
model29

RRegimen PI on outcome variable CHOLESTEROL:

model30 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==6), data=HIVdata, method="REML")
model30

RRegimen PI on outcome variable HDL:

model31 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==7), data=HIVdata, method="REML")
model31

RRegimen PI on outcome variable LDL:

model32 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==8), data=HIVdata, method="REML")
model32

RRegimen PI on outcome variable TG:

model33 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==9), data=HIVdata, method="REML")
model33

RRegimen PI on outcome variable SAT:

No data on SAT, VAT and TAT for PI regimen. That is why we got error messages.

model34 <-
 rma(d.ex., var_d.ex., subset=(trt==3&Outcome==10), data=HIVdata, method="REML")
model34

RRegimen PI on outcome variable VAT:

#Regimen PI on outcome variable TAT:
model35 <- rma(d.ex., var_d.ex., subset=(trt==3 & Outcome==11), data=HIVdata, method="REML")
model35

#Regimen COMB1 on outcome variable WEIGHT:
model36 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==1), data=HIVdata, method="REML")
model36

#Regimen COMB1 on outcome variable BMI:
model37 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==2), data=HIVdata, method="REML")
model37

#Regimen COMB1 on outcome variable TRUNKFAT:
model38 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==3), data=HIVdata, method="REML")
model38

#Regimen COMB1 on outcome variable LIMBFAT:
model39 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==4), data=HIVdata, method="REML")
model39

#Regimen COMB1 on outcome variable TOTAL BODY FAT:
model40 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==5), data=HIVdata, method="REML")
model40

#Regimen COMB1 on outcome variable CHOLESTEROL:
model41 <- rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==6), data=HIVdata, method="REML")
model41
Regimen COMB1 on outcome variable HDL:
model43 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 7), data = HIVdata, method = "REML")
model43

Regimen COMB1 on outcome variable LDL:
model44 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 8), data = HIVdata, method = "REML")
model44

Regimen COMB1 on outcome variable TG:
model45 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 9), data = HIVdata, method = "REML")
model45

Regimen COMB1 on outcome variable SAT:
model46 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 10), data = HIVdata, method = "REML")
model46

Regimen COMB1 on outcome variable VAT:
model47 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 11), data = HIVdata, method = "REML")
model47

Regimen COMB1 on outcome variable TAT:
model48 <- rma(d.ex., var_d.ex., subset = (trt == 4 & Outcome == 12), data = HIVdata, method = "REML")
model48

Regimen COMB2 on outcome variable WEIGHT:
model49 <- rma(d.ex., var_d.ex., subset = (trt == 5 & Outcome == 1), data = HIVdata, method = "REML")
model49

Regimen COMB2 on outcome variable BMI:
model50<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==2),data=HIVdata,method="REML")
model50

#Regimen COMB2 on outcome variable TRUNKFAT:
No data on trunkfat,
model51<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==3),data=HIVdata,method="REML")
model51

#Regimen COMB2 on outcome variable LIMBFAT:
model53<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==4),data=HIVdata,method="REML")
model53

#Regimen COMB2 on outcome variable TOTAL BODY FAT:
model54<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==5),data=HIVdata,method="REML")
model54

#Regimen COMB2 on outcome variable CHOLESTEROL:
model55<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==6),data=HIVdata,method="REML")
model55

#Regimen COMB2 on outcome variable HDL:
model56<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==7),data=HIVdata,method="REML")
model56

#Regimen COMB2 on outcome variable LDL:
model57<-rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==8),data=HIVdata,method="REML")
model57

#Regimen COMB2 on outcome variable TG:
model58 <-
rma(d.ex., var_d.ex., subset=(trt==5&Outcome==9), data=HIVdata, method="REML")
model58

#Regimen COMB2 on outcome variable SAT:
No data on SAT.
model59 <-
rma(d.ex., var_d.ex., subset=(trt==5&Outcome==10), data=HIVdata, method="REML")
model59

#Regimen COMB2 on outcome variable VAT:
model60 <-
rma(d.ex., var_d.ex., subset=(trt==5&Outcome==11), data=HIVdata, method="REML")
model60

#Regimen COMB2 on outcome variable TAT:
model61 <-
rma(d.ex., var_d.ex., subset=(trt==5&Outcome==12), data=HIVdata, method="REML")
model61

#Regimen COMB3 on outcome variable WEIGHT:
model62 <-
rma(d.ex., var_d.ex., subset=(trt==6&Outcome==1), data=HIVdata, method="REML")
model62

#Regimen COMB3 on outcome variable BMI:
model63 <-
rma(d.ex., var_d.ex., subset=(trt==6&Outcome==2), data=HIVdata, method="REML")
model63

#Regimen COMB3 on outcome variable TRUNKFAT:
model64 <-
rma(d.ex., var_d.ex., subset=(trt==6&Outcome==3), data=HIVdata, method="REML")
model64

#Regimen COMB3 on outcome variable LIMBFAT:
model65<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==4),data=HIVdata,method="REML")
model65

#Regimen COMB3 on outcome variable TOTAL BODY FAT:

No data on TBF for COMB3 regimen

model66<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==5),data=HIVdata,method="REML")
model66

#Regimen COMB3 on outcome variable CHOLESTEROL:

model67<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==6),data=HIVdata,method="REML")
model67

#Regimen COMB3 on outcome variable HDL:

model68<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==7),data=HIVdata,method="REML")
model68

#Regimen COMB3 on outcome variable LDL:

model69<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==8),data=HIVdata,method="REML")
model69

#Regimen COMB3 on outcome variable TG:

model70<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==9),data=HIVdata,method="REML")
model70

#Regimen COMB3 on outcome variable SAT: No data on SAT.

model71<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==10),data=HIVdata,method="REML")
model71

#Regimen COMB3 on outcome variable VAT:
model72 <- rma(d.ex., var_d.ex., subset = (trt == 6 & Outcome == 11), data = HIVdata, method = "REML")

Regimen COMB3 on outcome variable TAT:

No data on TAT.

model73 <-
 rma(d.ex., var_d.ex., subset = (trt == 6 & Outcome == 12), data = HIVdata, method = "REML")

model73

R code for forest plot

NRTI for BMI

```r
model1 <-
  rma(d.ex., var_d.ex., subset = (trt == 1 & Outcome == 2), data = HIVdata, method = "REML",
  slab = paste(Author, Year, sep = ""))

par("usr")
forest(model1, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = .85, efac = 2, col = "dark red", border = "black")
op <- par(cex = 0.85, font = 2, col = "dark red")
op <- par(cex = 0.85, font = 2, col = "dark red")
text(0,5,"BMI")
text(c(-2,2),5,c("NRTI ","Baseline"))
text(-6,5,"Author Year",pos=4)
text(5,5,"d[95% CI]",pos=4)
par(op)
```

NRTI for cholesterol

```r
model1 <-
  rma(d.ex., var_d.ex., subset = (trt == 1 & Outcome == 6), data = HIVdata, method = "REML",
  slab = paste(Author, Year, sep = ""))

par("usr")
forest(model6, xlim = c(-5, 6), xlab = "Standardized Mean Difference", cex = .9, efac = 3, col = "dark red", border = "black")
op <- par(cex = 0.98, font = 2, col = "black")
op <- par(cex = 0.98, font = 2, col = "dark red")
text(0,13,"Cholesterol")
text(c(-2,2),13,c("Favors Baseline ","Favors Intervention"))
text(-5,13,"Author Year",pos=4)
text(4,13,"d[95% CI]",pos=4)
par(op)
```
NRTI for HDL

```
model1 <-
  rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==7), data=HIVdata, method="REML",
  slab= paste(Author, Year, sep=""))
par("usr")
forest(model14, xlim=c(-5,6), xlab="Standardized Mean Difference", cex=.90, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.90, font=2, col="dark red")
text (0,14,"LDL")
text (c(-2,2), 14, c("NRTI ", "Baseline"))
text(-5,14,"Author Year", pos=4)
text(4,14, "d[95% CI]", pos=4)
par (op)
```

NRTI for LDL

```
model1 <-
  rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==8), data=HIVdata, method="REML",
  slab= paste(Author, Year, sep=""))
par("usr")
forest(model14, xlim=c(-5,6), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text (0,15,"LDL")
text (c(-2,2), 15,c("NRTI ","Baseline"))
text(-5,15,"Author Year", pos=4)
text(4,15,"d[95% CI]", pos=4)
par (op)
```

NRTI for TG

```
model1 <-
  rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==9), data=HIVdata, method="REML",
  slab= paste(Author, Year, sep=""))
par("usr")
forest(model14, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text (0,15,"TG")
text (c(-2,2), 15,c("NRTI ","Baseline"))
text(-6,15,"Author Year", pos=4)
text(7.5,15,"d[95% CI]", pos=4)
par (op)
```
NRTI for trunk fat

model1 <-
 rma(d.ex., var_d.ex., subset=(trt==1&Outcome==3), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

par("usr")
forest(model1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=0.85, efac=2, col="dark red", border="black")

text(0,12, "Trunk Fat")
text(-6,12, "Author Year", pos=4)
text(5,12, "d[95% CI]", pos=4)
par(op)

NRTI for limb fat

model1 <-
 rma(d.ex., var_d.ex., subset=(trt==1&Outcome==3), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

par("usr")
forest(model1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=0.85, efac=2, col="dark red", border="black")

text(0,10, "Limb Fat")
text(-6,10, "Author Year", pos=4)
text(5,10, "d[95% CI]", pos=4)
par(op)

NRTI for Total fat

model1 <-
 rma(d.ex., var_d.ex., subset=(trt==1&Outcome==3), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

par("usr")
forest(model1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=0.85, efac=2, col="dark red", border="black")

text(0,14, "Total Fat")
text(-6,14, "Author Year", pos=4)
PI for Weight

```r
pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==1),data=HIVdata,method="REML",slab= paste(Author,Year,sep=""))
pi
PI for Weight
par("usr")
forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
```

```r
par(cex=0.85, font=2,col="black")
par(cex=0.85, font=2,col="dark red")
text (0,3.4,"Weight")
text(c(-2,2),3.4,c("Baseline","PI"))
text(-6,3.4,"Author Year",pos=4)
text(5,3.4,"d[95% CI]",pos=4)
par(op)
```

PI for BMI

```r
pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==2),data=HIVdata,method="REML",slab= paste(Author,Year,sep=""))
pi
par("usr")
forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
```

```r
par(cex=0.85, font=2,col="black")
par(cex=0.85, font=2,col="dark red")
text (0,3.4,"BMI")
text(c(-2,2),3.4,c("Baseline","PI"))
text(-6,3.4,"Author Year",pos=4)
text(5,3.4,"d[95% CI]",pos=4)
par(op)
```

PI for Trunk fat

```r
pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==3),data=HIVdata,method="REML",slab= paste(Author,Year,sep=""))
pi
par("usr")
forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
```
PI for Limb Fat

pi<-rma(d.ex, var_d.ex, subset=(trt==3 & Outcome==4), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

par("usr")
forest(pi,xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")

PI for Total Fat

pi<-rma(d.ex, var_d.ex, subset=(trt==3 & Outcome==5), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

par("usr")
forest(pi,xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
PI for cholesterol

pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==6),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

pi

par("usr")

forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")

op<-par(cex=0.85, font=2,col="black")

op<-par(cex=0.85, font=2,col="dark red")

text(0,3.4,"Cholesterol")

text(c(-2,2),3.4,c("Baseline","PI"))

text(-6,3.4,"Author Year",pos=4)

text(5,3.4,"d[95% CI]",pos=4)

par(op)

PI for HDL

pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==7),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

pi

par("usr")

forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")

op<-par(cex=0.85, font=2,col="black")

op<-par(cex=0.85, font=2,col="dark red")

text(0,5,"HDL")

text(c(-2,2),5.4,c("Baseline","PI"))

text(-6,5,"Author Year",pos=4)

text(5,5,"d[95% CI]",pos=4)

par(op)

PI for LDL

pi<-rma(d.ex.,var_d.ex.,subset=(trt==3&Outcome==8),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

pi

par("usr")

forest(pi,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")

op<-par(cex=0.85, font=2,col="black")

op<-par(cex=0.85, font=2,col="dark red")

text(0,5,"LDL")

text(c(-2,2),5.4,c("Baseline","PI"))

text(-6,5,"Author Year",pos=4)

text(5,5,"d[95% CI]",pos=4)

par(op)
PI for TG

\[
\text{pi<-rma(d.ex., var_d.ex., subset=(trt==3&Outcome==9), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))}
\]

\text{pi}
\par("usr")
\text{forest(pi, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")}
\text{op<-par(cex=0.85, font=2, col="black")}
\text{op<-par(cex=0.85, font=2, col="dark red")}
\text{text(0,5,"TG")}
\text{text(c(-2,2),5,c("Baseline","PI"))}
\text{text(-6.5,"Author Year",pos=4)}
\text{text(5,5,"d[95% CI]",pos=4)}
\par(op)

COMB1 for WEIGHT

\[
\text{COMB1<-rma(d.ex., var_d.ex., subset=(trt==4&Outcome==1), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))}
\]

\text{COMB1}
\par("usr")
\text{forest(COMB1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")}
\text{op<-par(cex=0.85, font=2, col="black")}
\text{op<-par(cex=0.85, font=2, col="dark red")}
\text{text(0,6,"WEIGHT")}
\text{text(c(-2,2),6,c("Baseline","PI"))}
\text{text(-6.6,"Author Year",pos=4)}
\text{text(5,6,"d[95% CI]",pos=4)}
\par(op)

COMB1 for BMI

\[
\text{COMB1<-rma(d.ex., var_d.ex., subset=(trt==4&Outcome==2), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))}
\]

\text{COMB1}
\par("usr")
\text{forest(COMB1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")}
COMB1 for TRUNK FAT
COMB1 <-
rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==3), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))
COMB1
par("usr")
forest(COMB1, xlim=c(-6, 7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text(c(-2, 2), 9.5, c("Baseline","COMB ART"))
text(-6, 9.5, "Author Year", pos=4)
text(5, 9.5, "d[95% CI]", pos=4)
par(op)

COMB1 for LIMB FAT
COMB1 <-
rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==4), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))
COMB1
par("usr")
forest(COMB1, xlim=c(-6, 7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text(c(-2, 2), 6, c("Baseline","COMB ART"))
text(-6, 6, "Author Year", pos=4)
text(5, 6, "d[95% CI]", pos=4)
par(op)

COMB1 for TOTAL FAT
COMB1 <-
rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==5), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))
COMB1
par("usr")
forest(COMB1,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,8,"TOTAL FAT")
text(c(-2,2),8,c("Baseline","COMB ART"))
text(-6,8,"Author Year",pos=4)
text(5,8,"d[95% CI]",pos=4)
par(op)

COMB1 for CHOLESTEROL

COMB1<-
 rma(d.ex.,var_d.ex.,subset=(trt==4&Outcome==6),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB1
par("usr")
forest(COMB1,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,10,"Cholesterol")
text(c(-2,2),10,c("Baseline","COMB ART"))
text(-6,10,"Author Year",pos=4)
text(5,10,"d[95% CI]",pos=4)
par(op)

COMB1 for HDL

COMB1<-
 rma(d.ex.,var_d.ex.,subset=(trt==4&Outcome==7),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB1
par("usr")
forest(COMB1,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,10,"HDL")
text(c(-2,2),10,c("Baseline","COMB ART"))
text(-6,10,"Author Year",pos=4)
text(5,10,"d[95% CI]",pos=4)
par(op)
COMB1 for LDL

COMB1 <- rma(d.ex., var_d.ex., subset=(trt==4&Outcome==8), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

COMB1
par("usr")
forest(COMB1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")

op<-par(cex=0.85, font=2, col="black")

op<-par(cex=0.85, font=2, col="dark red")

text(0,10,"LDL")

text(c(-2,2),10,c("Baseline", "COMB ART"))

text(-6,10,"Author Year",pos=4)

text(5,10,"d[95% CI]",pos=4)

par(op)

COMB1 for tg

COMB1 <- rma(d.ex., var_d.ex., subset=(trt==4&Outcome==9), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

COMB1
par("usr")
forest(COMB1, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")

op<-par(cex=0.85, font=2, col="black")

op<-par(cex=0.85, font=2, col="dark red")

text(0,10,"TG")

text(c(-2,2),10,c("Baseline", "COMB ART"))

text(-6,10,"Author Year",pos=4)

text(5,10,"d[95% CI]",pos=4)

par(op)

COMB2 for Weight

COMB2 <- rma(d.ex., var_d.ex., subset=(trt==5&Outcome==1), data=HIVdata, method="REML", slab= paste(Author, Year, sep=""))

COMB2
par("usr")
forest(COMB2, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")

op<-par(cex=0.85, font=2, col="black")

op<-par(cex=0.85, font=2, col="dark red")

text(0,3,"Weight")

text(c(-2,2),3,c("Baseline", "COMB2 ART"))

text(-6,3,"Author Year",pos=4)

text(5,3,"d[95% CI]",pos=4)
par(op)

COMB2 for BMI

COMB2 <-
rm(a(d.ex., var_d.ex., subset = (ttr == 5 & Outcome == 2), data = HIVdata, method = "REML", slab = paste(Author, Year, sep = ""))
COMB2

par(op) par("usr")
forest(COMB2, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = .85, efac = 2, col = "dark red", border = "black")
op <- par(cex = 0.85, font = 2, col = "black")
op <- par(cex = 0.85, font = 2, col = "dark red")
text(c(-2, 2), 7, c("Baseline", "COMB2 ART"))
text(-6, 7, "Author Year", pos = 4)
text(5, 7, "d [95% CI]", pos = 4)
par(op)

COMB2 for Trunk fat

COMB2 <-
rm(a(d.ex., var_d.ex., subset = (ttr == 5 & Outcome == 3), data = HIVdata, method = "REML", slab = paste(Author, Year, sep = ""))
COMB2

par(op) par("usr")
forest(COMB2, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = .85, efac = 2, col = "dark red", border = "black")
op <- par(cex = 0.85, font = 2, col = "black")
op <- par(cex = 0.85, font = 2, col = "dark red")
text(c(-2, 2), 8, c("Baseline", "COMB2 ART"))
text(-6, 8, "Author Year", pos = 4)
text(5, 8, "d [95% CI]", pos = 4)
par(op)

COMB2 for Limb fat

COMB2 <-
rm(a(d.ex., var_d.ex., subset = (ttr == 5 & Outcome == 4), data = HIVdata, method = "REML", slab = paste(Author, Year, sep = ""))
COMB2
par(op) par("usr")
forest(COMB2, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = .85, efac = 2, col = "dark red", border = "black")
op <- par(cex = 0.85, font = 2, col = "black")
COMB2 for Total fat
COMB2<-rma(d.ex,var_d.ex,subset=(trt==5&Outcome==5),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB2
par(op)par("usr")
forest(COMB2,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=.85, font=2,col="black")
op<-par(cex=.85, font=2,col="dark red")
text(0,3.5,"TOTAL FAT")
text(c(-2,2),3.5,c("Baseline","COMB2 ART"))
text(-6,3.5,"Author Year",pos=4)
text(5,3.5,"d[95% CI]",pos=4)
par(op)

COMB2 for cholesterol
COMB2<-rma(d.ex,var_d.ex,subset=(trt==5&Outcome==6),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB2
par(op)par("usr")
forest(COMB2,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=.85, font=2,col="black")
op<-par(cex=.85, font=2,col="dark red")
text(0,6.5,"Cholesterol")
text(c(-2,2),6.5,c("Baseline","COMB2 ART"))
text(-6,6.5,"Author Year",pos=4)
text(5,6.5,"d[95% CI]",pos=4)
par(op)

COMB2 for HDL
COMB2<-rma(d.ex,var_d.ex,subset=(trt==5&Outcome==7),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB2
par(op)par("usr")
forest(COMB2,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text (0,6,"HDL")
text(c(-2,2),6,c("Baseline","COMB2 ART"))
text(-6,6,"Author Year",pos=4)
text(5,6,"d[95% CI]",pos=4)
par(op)

COMB2 for LDL
COMB2<-
 rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==8),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB2
par(op)par("usr")
forest(COMB2,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text (0,7.5,"LDL")
text(c(-2,2),7.5,c("Baseline","COMB2 ART"))
text(-6,7.5,"Author Year",pos=4)
text(5,7.5,"d[95% CI]",pos=4)
par(op)

COMB2 for TG
COMB2<-
 rma(d.ex.,var_d.ex.,subset=(trt==5&Outcome==9),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))
COMB2
par(op)par("usr")
forest(COMB2,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text (0,7.5,"TG")
text(c(-2,2),7.5,c("Baseline","COMB2 ART"))
text(-6,7.5,"Author Year",pos=4)
text(5,7.5,"d[95% CI]",pos=4)
par(op)

COMB3 for weight
COMB3<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==1),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

par(op)par("usr")
forest(COMB3,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,3.5,"Weight")
text(c(-2,2),3.5,c("Baseline","COMB3 ART"))
text(-6,3.5,"Author Year",pos=4)
text(5,3.5,"d[95% CI]",pos=4)
par(op)

Comb 3 for BMI

COMB3<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==2),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

par(op)par("usr")
forest(COMB3,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,7.5,"BMI")
text(c(-2,2),7.5,c("Baseline","COMB3 ART"))
text(-6,7.5,"Author Year",pos=4)
text(5,7.5,"d[95% CI]",pos=4)
par(op)

COMB3 for Trunk

COMB3<-rma(d.ex.,var_d.ex.,subset=(trt==6&Outcome==3),data=HIVdata,method="REML",slab=paste(Author,Year,sep=""))

par(op)par("usr")
forest(COMB3,xlim=c(-6,7),xlab="Standardized Mean Difference",cex=.85,efac=2,col="dark red",border="black")
op<-par(cex=0.85, font=2,col="black")
op<-par(cex=0.85, font=2,col="dark red")
text(0,3.5,"TRUNK FAT")
text(c(-2,2),3.5,c("Baseline","COMB3 ART"))
COMB3 for LIMB

COMB3 <- rma(d.ex, var_d.ex, subset=(trt==6 & Outcome==4), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))

COMB3
par(op) par("usr")
forest(COMB3, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text(0,7.5, "LIMB FAT")
text(c(-2,2), 7.5, c("Baseline", "COMB3 ART"))
text(-6.7, 5, "Author Year", pos=4)
text(5.7, 5, "d[95% CI]", pos=4)
par(op)

COMB3 for Total fat

COMB3 <- rma(d.ex, var_d.ex, subset=(trt==6 & Outcome==5), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))

COMB3
par("usr")
forest(COMB3, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text(0,7.5, "Total FAT")
text(c(-2,2), 7.5, c("Baseline", "COMB3 ART"))
text(-6.7,5, "Author Year", pos=4)
text(5.7,5, "d[95% CI]", pos=4)
par(op)

COMB3 for Cholesterol

COMB3 <- rma(d.ex, var_d.ex, subset=(trt==6 & Outcome==6), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))

COMB3
par(op) par("usr")
forest(COMB3, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
op<-par(cex=0.85, font=2, col="black")
op<-par(cex=0.85, font=2, col="dark red")
text(0.4,5,"Cholesterol")

COMB3 for HDL
COMB3 <-
 rma(d.ex, var_d.ex, subset = (trt == 6 & outcome == 7), data = HIVdata, method = "REML", slab = paste(Author, Year, sep = ""))
COMB3

par(op) par("usr")
forest(COMB3, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = 0.85, efac = 2, col = "dark red", border = "black")

COMB3 for LDL
COMB3 <-
 rma(d.ex, var_d.ex, subset = (trt == 6 & outcome == 8), data = HIVdata, method = "REML", slab = paste(Author, Year, sep = ""))
COMB3

par(op) par("usr")
forest(COMB3, xlim = c(-6, 7), xlab = "Standardized Mean Difference", cex = 0.85, efac = 2, col = "dark red", border = "black")
COMB3 for TG

```r
COMB3 <-
  rma(d.ex, var_d.ex, subset=(trt==6 & Outcome==9), data=HIVdata, method="REML", slab=paste(Author, Year, sep=""))
COMB3
par(op)par("usr")
forest(COMB3, xlim=c(-6,7), xlab="Standardized Mean Difference", cex=.85, efac=2, col="dark red", border="black")
```

R syntax for Meta regression plot

```r
model100 <-rma(d.ex, var_d.ex, subset=(trt==1 & Outcome==8), mods=Weeks, data=HIVdata, method="REML", slab=paste(Reference, Pub_Year, sep="","))
model100pred <- predict(model100, newmods=cbind(seq(0,208,.1)))
wi=HIVdata$w_d.ex.
min= min(wi, na.rm=TRUE)
max= max(wi, na.rm=TRUE)
size= 1.0 + 6.0 * (wi - min)/(max - min)
treatldl= subset(HIVdata, trt==1 & Outcome==8)

#Here we have to create the subsample we are working on to just plot the observed values of that below
plot(treatldl$Weeks, treatldl$d.ex, pch= 21, col="black", bg = "white", cex=size, xlab= "Number of Weeks", ylab = "LDL Effect Size (d)", xlim=c(0,260), ylim=c(-1,1))
lines(seq(0,208,.1), model100pred$pred, col = "dark red")
#Plotting here the regression line and confidence interval of the predictive model
lines(seq(0,208,.1), model100pred$ci.lb, lty = "dashed", col="dark red")
lines(seq(0,208,.1), model100pred$ci.ub, lty = "dashed", col="dark red")
```

R SYNTAX FOR MODERATOR ANALYSIS Risk of Bias:
rsg<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(rand_sequence), data=HIVdata, method="REML")

rg

alloc<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(alloc_conc), data=HIVdata, method="REML")

alloc

blind<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(alloc_conc), data=HIVdata, method="REML")

blind

outblind<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(outcome_blind), data=HIVdata, method="REML")

outblind

incomp<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(incompl_outc_data), data=HIVdata, method="REML")

incomp

selectreport<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==9), mods=~factor(select_report), data=HIVdata, method="REML")

selectreport

otherbias<-rma(d.ex., var_d.ex., subset=(trt==4 & Outcome==1), mods=~factor(other_bias), data=HIVdata, method="REML")

library("metafor")

Regimen NRTI on outcome variable WEIGHT:

model1<-rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==1), data=HIVdata, method="REML")

model1
Publication Bias

pub bias for NRTI and Weight

Egger's

regtest(model1, model="lm", data=HIVdata)

Begg's

ranktest(model1, data=HIVdata)

funnel plot

model1trim = trimfill(model1, data=HIVdata)

funnel(model1trim)

Regimen NRTI on outcome variable BMI:

model2 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==2), data=HIVdata, method="REML")

model2

Publication Bias

pub bias for NRTI and BMI

Egger's

regtest(model2, model="lm", data=HIVdata)

Begg's

ranktest(model2, data=HIVdata)

funnel plot

model2trim = trimfill(model2, data=HIVdata)

funnel(model2trim)

Regimen NRTI on outcome variable TRUNKFAT:

model3 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==3), data=HIVdata, method="REML")

model3

Publication Bias
pub bias for NRTI and BMI

Egger's
regtest(model3, model="lm", data=HIVdata)

Begg's
ranktest(model3, data=HIVdata)

funnel plot
model3trim = trimfill(model3, data=HIVdata)
funnel(model3trim)

Regimen NRTI on outcome variable LIMBFAT:
model4 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==4), data=HIVdata, method="REML")
model4

Publication Bias

pub bias for NRTI and LIMBFAT

Egger's
regtest(model4, model="lm", data=HIVdata)

Begg's
ranktest(model4, data=HIVdata)

funnel plot
model4trim = trimfill(model4, data=HIVdata)
funnel(model4trim)

Regimen NRTI on outcome variable TOTAL BODY FAT:
model5 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==5), data=HIVdata, method="REML")
model5

Publication Bias

pub bias for NRTI and TOTAL BODY FAT:
Egger's
regtest(model5, model="lm", data=HIVdata)

Begg's
ranktest(model5, data=HIVdata)

funnel plot
model5trim = trimfill(model5, data=HIVdata)
funnel(model5trim)

Regimen NRTI on outcome variable CHOLESTEROL:
model6 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==6), data=HIVdata, method="REML")
model6

Publication Bias
pub bias for NRTI and CHOLESTEROL:
Egger's
regtest(model6, model="lm", data=HIVdata)

Begg's
ranktest(model6, data=HIVdata)

funnel plot
model6trim = trimfill(model6, data=HIVdata)
funnel(model6trim)

Regimen NRTI on outcome variable HDL:
model7 <- rma(d.ex., var_d.ex., subset=(trt==1 & Outcome==7), data=HIVdata, method="REML")
model7

Publication Bias
pub bias for NRTI and HDL:
Egger's
regtest(model7, model="lm", data=HIVdata)
Begg's
ranktest(model7, data=HIVdata)
funnel plot
model7trim = trimfill(model7, data=HIVdata)
funnel(model7trim)

Regimen NRTI on outcome variable LDL:
model8 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==8), data=HIVdata, method="REML")
model8
pub bias for NRTI and LDL:
Egger's
regtest(model8, model="lm", data=HIVdata)
Begg's
ranktest(model8, data=HIVdata)
funnel plot
model8trim = trimfill(model8, data=HIVdata)
funnel(model8trim)

Regimen NRTI on outcome variable TG:
model9 <- rma(d.ex., var_d.ex., subset=(trt==1&Outcome==9), data=HIVdata, method="REML")
model9
pub bias for NRTI and TG:
Egger's
regtest(model9, model="lm", data=HIVdata)
Begg's
ranktest(model9, data=HIVdata)
funnel plot
model9trim=trimfill(model9,data=HIVdata)
funnel(model9trim)

Multilevel MA R code for outcome HDL.
library("metafor")

#Calculate total number of participants (Ni)
HIVhdl$Ni <- unlist(lapply(split(HIVhdl,HIVhdl$study),function(x) rep(sum(x$n1i)+x$n2i[1],each=nrow(x)))))

##Creating the Variance-Covariance Matrix for Multiple Comparisons
calc.hdlv <- function(x) {
 hdlv <- matrix(1/x$n2i[1] + outer(x$d.ex., x$d.ex., "*")/(2*x$Ni[1]),nrow=nrow(x),ncol=nrow(x))
 diag(hdlv) <- x$var_d.ex.
 hdlv
}
hdlv <- lapply(split(HIVhdl,HIVhdl$study), calc.hdlv)
hdlv <- as.matrix(bdiag(hdlv))
hdlv

##Calculating the Weighted Mean ES for HDL Change (Multiple treatments), Following Random-Effects Assumptions
HIVhdl$trt <- as.factor(HIVhdl$trt) (note: code for conversion from integer to factor)
dhdl <- rma.mv(d.ex.,var_d.ex.,hdlV,mods = ~ factor(trt) - 1,random = ~ trt | study, struct="UN", data=HIVhdl,method="ML")
dhdl

Multilevel Moderation analysis:

##Special note: We have to run multilevel code for variance co-variance matrix, the n moderation code each time for all outcome variables.

R code considering **week** as a moderator for HDL:
hd1<-rma(d.ex.,var_d.ex.,hdlV,mods = ~ factor(trt) - 1 + HIVhdl$Weeks,data = HIVhdl ,method="ML")
hd1

R code for **LDL:**
ldl<-rma(d.ex.,var_d.ex.,ldlV,mods = ~ factor(trt) - 1 + HIVldl$Weeks,data = HIVldl,method="ML")
R code for TG:
tg<-rma(d.ex,var_d.ex,tgV,mods = ~ factor(trt) - 1 + HIVtg$Weeks,data = HIVtg,method="ML")
tg

R code for Cholesterol:
chol<-rma(d.ex,var_d.ex,cholV,mods = ~ factor(trt) - 1 + HIVchol$Weeks,data = HIVchol,method="ML")
chol

R code for Trunk:
trunk<-rma(d.ex,var_d.ex,trunkV,mods = ~ factor(trt) - 1 + HIVtrunk$Weeks,data = HIVtrunk,method="ML")
trunk

R code for Limb:
limb<-rma(d.ex,var_d.ex,limbV,mods = ~ factor(trt) - 1 + HIVlimb$Weeks,data = HIVlimb,method="ML")
limb

Methodological quality as a moderator

R code considering week as a moderator for HDL:

hdl<-rma(d.ex,var_d.ex,hdlV,mods = ~ factor(trt) - 1 + HIVhdl$mq,data = HIVhdl,method="ML")
hdl

R code for LDL:

ldl<-rma(d.ex,var_d.ex,ldlv,mods = ~ factor(trt) - 1 + HIVldl$mq,data = HIVldl,method="ML")
ldl

R code for TG:
tg<-rma(d.ex,var_d.ex,tgV,mods = ~ factor(trt) - 1 + HIVtg$mq,data = HIVtg,method="ML")
tg

R code for Cholesterol:
chol<-rma(d.ex,var_d.ex,cholV,mods = ~ factor(trt) - 1 + HIVchol$mq,data = HIVchol,method="ML")
R code for Trunk:
trunk<-rma(d.ex.,var_d.ex.,trunkV,mods = ~ factor(trt) - 1 + HIVtrunk$mq,data = HIVtrunk,method="ML")
trunk

R code for Limb:
limb<-rma(d.ex.,var_d.ex.,limbV,mods = ~ factor(trt) - 1 + HIVlimb$mq,data = HIVlimb,method="ML")
limb

Publication year as a moderator

R code considering week as a moderator for HDL:
hdl<-rma(d.ex.,var_d.ex.,hdlV,mods = ~ factor(trt) - 1 + HIVhdl$Pub_Year,data = HIVhdl,method="ML")
hdl

R code for LDL:
ldl<-rma(d.ex.,var_d.ex.,ldlV,mods = ~ factor(trt) - 1 + HIVldl$Pub_Year,data = HIVldl,method="ML")
ldl

R code for TG:
tg<-rma(d.ex.,var_d.ex.,tgV,mods = ~ factor(trt) - 1 + HIVtg$Pub_Year,data = HIVtg,method="ML")
tg

R code for Cholesterol:
chol<-rma(d.ex.,var_d.ex.,cholV,mods = ~ factor(trt) - 1 + HIVchol$Pub_Year,data = HIVchol,method="ML")
chol

R code for Trunk:
trunk<-rma(d.ex.,var_d.ex.,trunkV,mods = ~ factor(trt) - 1 + HIVtrunk$Pub_Year,data = HIVtrunk,method="ML")
trunk

R code for Limb:
limb<-rma(d.ex.,var_d.ex.,limbV,mods = ~ factor(trt) - 1 + HIVlimb$Pub_Year,data = HIVlimb,method="ML")
limb
Female as a moderator

R code for HDL:
```r
hdl<-rma(d.ex.,var_d.ex.,hdlV,mods = ~ factor(trt) - 1 + HIVhdl$female,data = HIVhdl,method="ML")
```

R code for LDL:
```r
ldl<-rma(d.ex.,var_d.ex.,ldlV,mods = ~ factor(trt) - 1 + HIVldl$female,data = HIVldl,method="ML")
```

R code for TG:
```r
tg<-rma(d.ex.,var_d.ex.,tgV,mods = ~ factor(trt) - 1 + HIVtg$female,data = HIVtg,method="ML")
```

R code for Cholesterol:
```r
chol<-rma(d.ex.,var_d.ex.,cholV,mods = ~ factor(trt) - 1 + HIVchol$female,data = HIVchol,method="ML")
```

R code for Trunk:
```r
trunk<-rma(d.ex.,var_d.ex.,trunkV,mods = ~ factor(trt) - 1 + HIVtrunk$female,data = HIVtrunk,method="ML")
```

Average mean age as a moderator:

R code for HDL:
```r
hdl<-rma(d.ex.,var_d.ex.,hdlV,mods = ~ factor(trt) - 1 + HIVhdl$avrg_mean_age,data = HIVhdl,method="ML")
```
R code for LDL:
```r
ldl <- rma(d.ex., var_d.ex., ldlV, mods = ~ factor(trt) - 1 + HIVdl$avrg_mean_age, data = HIVdl, method = "ML")
```  
R code for TG:
```r
tg <- rma(d.ex., var_d.ex., tgV, mods = ~ factor(trt) - 1 + HIVtg$avrg_mean_age, data = HIVtg, method = "ML")
```  
R code for Cholesterol:
```r
chol <- rma(d.ex., var_d.ex., cholV, mods = ~ factor(trt) - 1 + HIVchol$avrg_mean_age, data = HIVchol, method = "ML")
```  
R code for Trunk:
```r
trunk <- rma(d.ex., var_d.ex., trunkV, mods = ~ factor(trt) - 1 + HIVtrunk$avrg_mean_age, data = HIVtrunk, method = "ML")
```  
R code for Limb:
```r
limb <- rma(d.ex., var_d.ex., limbV, mods = ~ factor(trt) - 1 + HIVlimb$avrg_mean_age, data = HIVlimb, method = "ML")
```