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ABSTRACT 
 

Atomistic simulations are a powerful tool for the study of materials, especially in the 

determination of underlying atomistic mechanisms. Molecular dynamics (MD) is an atomistic 

simulation method that is well suited for a large number of atoms in a system, up to one billion.  

MD holds sufficient physical rigor while keeping the number of calculations reasonable for 

modern computational power. In molecular dynamics, a mathematical potential is used to 

capture the physics of the interaction between two adjacent atoms or molecules. Existing 

potentials fail to adequately represent the interaction between some materials, such as 

Magnesium and Titanium, or are based off of non-physics based parameter fitting which suffers 

from a lack of rigor. For example, the potentials cannot accurately represent electron density 

distribution and therefore cannot properly replicate elastic constants and surface relaxation in 

Hexagonal close packed (HCP) materials and some Face centered Cubic Materials (FCC). In this 

work, we first review the past 30 years of progress in atomistic simulation, more specifically 

molecular dynamics, discuss the issues with the existing interatomic potentials, and then 

establish the need for a new response interatomic potential, or the R-EAM. The R-EAM is based 

on an approximate form of quantum mechanics theory and is an extension of the existing 

Embedded Atom Model (EAM) potential. Further, we go on to show simulations to confirm the 

R-EAM by examining dislocation motion in Magnesium nanorods under tension. The 

    ̅       ̅   dislocation is found in the HCP material, Magnesium, in accordance with 

experiments. Further implementation of R-EAM should allow for great expansion of molecular 
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dynamics because of its increased accuracy in reproducing surface relaxation and dislocation 

dynamics for HCP and FCC metals. 
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1. INTRODUCTION 
 

A. Motivation 

This section presents why we want to study materials and how the understanding of 

materials and their properties is the key to technological innovation. Without the 

understanding of materials and science based engineering, technological innovation becomes a 

game of guess and check, and is time consuming.  

The study of materials is at the center of modern engineering science and technology. 

Within the study of materials, there are three main factors that engineers must understand: 

process, structure and properties. Simply, the processing of a material is what the material 

undergoes to become the end product, from ore to ingot. The structure of the material is how 

the atoms and molecules are arranged to compose the bulk. The properties of the material are 

intrinsic reactions of the material to different external stimuli. Examples of this are the strain 

when a stress is applied or the temperature profile when heat is supplied. However, a clear 

connection exists between all three. The process dictates the microstructure, or the 

arrangements of atoms and molecules, and the microstructure dictates the properties. As 

engineers it is critical to understand the properties of the materials that we use to create 

devices and processes. The properties can be studied on two levels. First, the properties may be 

studied experimentally; for example, the strength and thermal expansion of a titanium alloy bar 

or a titanium nanowire may be measured. Going deeper, second, the microstructure may be 

studied to understand what mechanisms on the atomic scale give rise to the observed 
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properties. For example, we may first understand that the strength of a material is derived from 

its resistance to the glide of dislocations through the crystal lattice1. We may go even further to 

determine how the surfaces of solid effect the mechanical strength which changes as a function 

of the thickness or diameter of specimen2. Therefore, to truly understand engineering materials 

and make future advances, we must investigate the microstructure of materials.  

There are two ways to study materials, experiments and modeling, and each has its own 

strengths and weaknesses. First, in experiments we directly observe the behavior of physical 

matter. This means that, although there may be some artifact or our interpretation may be 

incorrect, what we are observing is always physically true. For example, we may directly study 

the diffraction pattern of a material to see its crystal structure. Experiments cannot solve all 

problems because of two key limitations. First, we can only observe things down to a certain 

level of smallness, below which we can no longer see3. For example, it is very difficult to see 

single atoms and perhaps impossible to see individual electrons directly; the wave nature of 

electrons is also much more prominent than that of atoms. Second, experiments are very costly 

and time consuming. For example, if we want to study radiation damage we must have a 

dangerous radiation source that requires expensive shielding and if we want to study 500 

different materials we must either have a person prepare each sample or create a sophisticated 

enough machine to take the place of the person. In this regard, experiments are limited in what 

can be directly studied, how much can be studied and in what time frame. On the other hand, 

computer simulations work well in the areas that experiments do not, and lack in the areas that 

experiments are strong in. Unlike experiments, using computational modeling, it is possible to 

replicate the dangerous environment for radiation damage with only the cost of a personal 
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computer (PC). Further, it is possible to model a large number of things in parallel, leading to 

time savings compared to experiments. Alternatively, it is possible to miss important physical 

parameters in the computational model and create something that is unphysical. Overall, the 

combination of computational modeling and experiments allows for the fastest progress in 

understanding materials on the atomic scale.  

Depending on the involved physics, computational models of materials may be on several 

different scales. First, a continuum model, such as a finite element representation, may be used 

to model macroscopic behavior of materials. On this scale, the model is based on a 

mathematical discretization of material geometry and the reaction of the material to external 

load- mechanical, thermal or chemical-  is based on a mathematical model of this property 

which may or may not contain rigorous physics. This scale of modeling is well suited for solving 

classical engineering problems. A level lower, there are atomistic simulations which look at 

atom dynamics in crystal structures. On the high level is lattice kinetic Monte Carlo (LKMC) 

simulations which model materials using the Monte Carlo prediction method and have a 

prescribed inter-atomic interaction which does not contain a large amount of physical rigor in 

exchange for time. In LKMC, the laboratory time scale may be simulated and processes like 

growth of thin films may be modeled. A level deeper and including more physics is molecular 

dynamics. Molecular dynamics relies on a detailed interatomic potential approximation 

between atoms. Due to the computational rigor involved, molecular dynamics is limited to only 

systems on the order of 109 atoms on the time scale of nanoseconds. Going to the base level, 

first principles calculations take into effect the most rigor and rely on quantum mechanics. With 

these calculations, only 10s or 100s of atoms may be used at extreme computational cost.  
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Molecular dynamics is well suited for the study of materials on the atomistic scale as it has 

appropriate physical rigor and moderate computational cost. Unlike first principles calculations, 

molecular dynamics allows the study of systems that approach several nanometers.  

B. What is Molecular Dynamics? 

Molecular Dynamics (MD) is a computationally efficient and fast approximation of the 

quantum mechanics description of atomic interactions4.  It is based on the wave function 

solution to the Schrödinger partial differential equation5. Whereas the wave function must take 

into account spatial positions of electrons over time, molecular dynamics assumes the electrons 

move instantaneously relative to the core atomic nuclei; this is known as the Born–

Oppenheimer approximation6. The atomic nuclei may then be assumed to be a point mass with 

velocity, acceleration and rotation of that of a standard particle in Newtonian mechanics.  

In order to obtain a better understanding of the power of molecular dynamics, a 

comparison must be made between other computational methods for their overall efficiency 

and accuracy. Kinetic Monte Carlo simulations are a viable alternative to molecular dynamics in 

terms of computational speed7. Events are guided by random number generating algorithms.  

Atomic diffusion and interactions are based on probability distributions of certain events 

occurring at any time. This allows for simulations on the magnitude of 1023 particles and a 

timeframe of seconds, representing real world processes. Overall mechanisms for thin film 

growth, and equilibrium material properties are represented accurately on average over time 

with KMC. However in KMC, dislocation dynamics on the atomic scale and any discreet 

snapshot of atomic movement is ultimately meaningless.  
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 Quantum mechanics seeks to mathematically to define the interactions of material on 

the atomic and subatomic, directly taking into account electron position and motion. The 

Schrödinger equation in quantum mechanics serves as an analog to the Newtonian equation of 

motion for three dimensional space. The Schrödinger equation is a partial differential equation 

which describes a spectrum of particles position over time. The solution to the Schrödinger 

equation can be used to define the probability distribution of a particle, and its likelihood to be 

in a location for a specified time. However, the solution to the Schrödinger equation does not 

have a finite domain and is computational expensive to obtain accurate results for large scale 

atomic simulations. 

 Molecular dynamics holds supremacy for simulating the underlying mechanisms for 

nano-scale physical phenomena in the world. MD enables direct observation of these events at 

an achievable speed with relatively resource sparing computational calculations.   

C. Formulation  

 

Before presenting the new work in the implementation of the REAM, we must first describe 

the formulation of molecular dynamics, then move forward to the formulation of inter-atomic 

potentials to provide the reader with the necessary background. Molecular dynamics is derived 

from newton's laws of motion for a point mass. Newton’s second law states that the 

acceleration of a body is proportional to the external force acting on the object and object’s 

mass8.  

 
      

   

   
 

 
(1) 
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Through the integration of the equation above with respect to time, one obtains equations 

for the velocity and position of a particle. An extension of newton's second law includes the 

torque experienced by the rigid body,  

 
   ⃗     ⃗⃗   ⃗      ⃗⃗  

  

  
    

 

 
(2) 

Integration of the equation of torque with respect to time results in relationships for angular 

velocity and rotation. Together these equations provide a complete description of a particle’s 

translation and rotation over time.   

Real solids however are not points but deformable volumes. Expanding on newton’s 

laws, one arrives at the idea of a continuum solid9. A continuum solid can be seen as the 

division of a bulk material into sufficiently small neighboring elements. Each element in the 

continuum is capable of a relative displacement and hence the solid as a whole may experience 

a strain and stress. Continuum mechanics relies on the following basic principles: 1) properties 

are uniform within each element. 2) The element’s material properties remain uniform as their 

size approaches infinitesimal proportions. 3) Such an element follows the equations of motion 

of a rigid body and newton’s third law with nearby particles. 4) The solid follows the principles 

of conservation of mass and is continuous; hence no fractures may be present.  Since each 

element in the continuum behaves according to Newtonian laws and element properties may 

be described using standard engineering descriptions for resistance to shear and normal stress.  

Continuum mechanics accurately reproduces bulk material characteristics; however it has 

difficulty in inaccurately predicting material properties as finite volume approaches zero. This is 

due to the fact that any material is composed of atoms, and hence a finite volume cannot be 
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smaller than atomic volume without knowing nuclear forces. Additionally, electrons in space 

are located in a non-uniform distribution and have no sharp ending point.  

Molecular dynamics solves this problem by representing material on the individual atomic 

scale.  Atoms in a molecular simulation take the place of point masses in the Newtonian 

equation.  Initial positions are defined by the natural lattice arrangement in real materials.  

Forces experienced between atoms are obtained from the gradient of a “potential”, a function 

which approximates electron distribution and core nuclei repulsion.  
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2. ELEMENTS OF MOLECULAR DYNAMICS 
 

D. Potentials 

 

Bonding in solids may take multiple forms ranging from covalent bonding to metallic 

bonding. In general bonding results from the sharing of electrons between atoms. So how does 

one go about accurately simulating bonding in solids? Electrons and atomic nuclei interact in an 

intricate fashion, forming a multi-body system. The Schrödinger equation is commonly used to 

describe atomic, molecular, subatomic, and various multi-body problems. The solution to the 

Schrödinger equation results in a wave function describing the quantum properties for a given 

element. However, the wave equation is difficult to solve for elements more complicated than 

a base Hydrogen atom from the resulting coupling between electrons and atomic nuclei. To 

decouple the wave function, one can assume that the lighter electrons move almost 

instantaneously to an equilibrium position relative to the speed of the much denser nuclei. This 

approximation reduces the wave function to the classical Newtonian equations of motion.  

Potentials fall into 2 general categories: simple pair interaction, and multi-body interaction. Pair 

interaction potentials take into account only the separation distance between single pairs of 

atoms. Multi-body potentials make use of higher orders terms which may depend on the total 

local electron density contribution, or angular dependence in relation to multiple atoms. 
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Lennard-Jones (LJ) 

  

 

Figure 1 

 

Figure 2 
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)
 

] 

 

 
(3) 

 

The Lennard-Jones potential is a classified as a simple pair potential. An initial form of the paper 

was drafted in the early 1920’s by Jones10. Here r is the separation distance between atoms as 

seen in figure 2. σ is the separation distance at which the force between atomic pairs is zero, 

and   is the depth of the potential well seen in the figure 1. It found widespread use in 
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computational chemistry and physics in the early years of molecular dynamics because of its 

computational efficiency. It is a fairly accurate representation for noble gases and inert atoms 

or molecules; however it fails to represent more complicated systems with metallic or covalent 

bonding due to a lack of multi-body considerations.  

Embedded Atom Model (EAM) 

 
   ∑  

 

 ∑    ̅ 

 

 
 

 
∑  (   )

       

 

 

 
(4) 

  ̅  ∑ (   )

   

 

The embedded atom model is classified as a multi-body potential with local density 

dependence11. Here    is the total energy of the system, which is the sum of energy 

contributions from each atom in the system. The total electron density,   ̅, is the sum of density 

contributions from nearby neighbors of atom i. Here      is the embedding energy, which can 

best be described as the energy required to place an impurity atom into an existing sea of 

electrons (figure 3). The function, F(p), generates a multi-body effect because of its dependence 

on the total local electron density of each atom.  

 

Figure 3 
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The function,  (   ), is a pair interaction which represents the core repulsive forces 

experienced between atoms. The EAM is an improvement over existing atomic potentials such 

as the LJ potential, in that it considers multibody effects from atoms. Electron density is a 

summation over many neighboring atoms, and subsequently the total energy is dependent on 

this local density.  This multi-body effect allows the embedded atom method to more 

accurately represent elastic constants. The previous limitations on basic pair interaction 

potentials such as C12 equals C44 no longer apply (reference). Additionally, surface relaxation 

and bonding is more accurately represented in terms of direction and magnitude (reference). 

E. Time Integration 

Molecular dynamics programs make use of numerical time integrators in order to obtain 

future linear and angular position, velocity, and acceleration of particles. Some commonly used 

algorithms are the Verlet and gear approximation. To derive the Verlet method for time 

integration, we start with the basic Newtonian equations of motion. 

        ̈    
 

 
(5) 

 

One can approximate the second derivative of position with respect to time by using a central 

difference approximation.  Assuming a constant timestep and mass, the acceleration of a 

particle is written as the following 

 

 ̈    

       

   
       

  
  

 
             

   
 

 

 
(6) 
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From the above equation for acceleration one can determine the future position of the particle 

using only the current position, the previous position, and the force exerted on the particle. 

 
       ̈                 

    

 
              

 

 
(7) 

 

A more commonly used offshoot of the Verlet algorithm is the Velocity Verlet. The Velocity 

Verlet computes both position and velocity in the same time step thereby saving computational 

resources12.   

However, all numerical time integration produces errors of varying magnitude. In order to 

minimize these errors, a sufficiently small time step may be chosen for a simulation run at the 

expense of computational time. The proper time step should be sufficiently small to observe 

the vibration and diffusion of the given material. Values for typical time steps can range of 5%-

10% of the vibrational period, for example 1 femtosecond for metals13. Regardless of the time 

step chosen the magnitude of errors will become sufficiently large with time.  Fortunately to 

make use of these simulations, one can assume that the error does not affect the base 

underlying mechanisms. 

F. Neighbor lists, Domain lists, and cutoff 

In order to perform calculations in an efficient matter, force calculations between atoms 

beyond a chosen cutoff distance are assumed to be zero (figure 4). A list of neighbors with this 

cutoff distance is built for each atom within the system and these lists are then used to perform 

force calculations. This approximation ensures that computation power is only used on nearby 

neighbors, as the number of calculations that would be performed will become increasingly 
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large with system size on the order N^2. However, this introduces a new problem in that one 

would need to calculate the distance between atoms in order to be able to determine which 

atoms are nearby or local to any given atom. To solve this problem, atoms with cutoff plus an 

addition “skin” distance are used to create neighbor lists. This assumption holds for stable NVE 

systems since atomic diffusion and vibration is relatively small. Larger skin distances and a 

smaller time intervals for neighbor list updates may be needed for simulations on radiation 

damage or particle bombardment. This allows the neighbors lists to be updated less often, 

increasing computation speed.  

Domain lists is an algorithm, similar to that of neighbor lists, used to find adjacent atomic 

neighbors but through the use of simulation cell division. The simulation as a whole is divided 

into distinct cell volumes in n dimensions. The length of an edge of a given cell volume is chosen 

to be greater than the cutoff. The atoms in the system are sorted into their correct cell and 

then only nearby cells must be check for pair interactions14. 

The combination of domain lists with neighbor list results in the most computational 

efficient algorithm. Domain lists are used to quickly sort atoms within their own cells, and then 

neighbor lists are used to check whether within range of cutoff. 
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Figure 4 

G. Conjugate Gradient Minimization 

Conjugate gradient method is an iterative algorithm used to obtain a solution to a 

complicated multiple degree freedom system. In the case of a molecular statics simulation, a 

large system of interconnected atomic positions must be solved for their optimum positions15. 

Conjugant gradient minimization may be used for simulating instantaneous quenching of 

system, and elastic constant and strength evaluation. The optimum configuration of the system 

may be found through energy minimization. The theory lies in the assumption that moving 

proportion to the steepest direction of descent will lead to the minimum energy state of the 

system. For a system of atoms the force or gradient of potential for each individual atom may 

be used.  For an atom with position, r, its future position for time, t, is found by moving 

proportional to the direction of the deepest descent or gradient of the total energy of the 

system.  

First the steepest descent direction is determined as gradient of the total energy of the system 
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(8) 

Then a parameter   for descent, known as the Fletcher-Reeves formula16, is chosen as dot 

product of ration of the previous and current positions 

 
   

    
    

      
      

 

 

 
(9) 

The magnitude and direction of descent is then found to be 

                

 

 
(10) 

 

Next the line search parameter,   is found through obtaining the minimum of the one 

dimensional function 

            
           

 

 
(11) 

Finally the position of the atom is updated as 

   
    

             

 

 
(12) 

Initial values are set for the line search parameter and the descent path, as usually 0.1 and 0 

respectively.  

H. Boundary Conditions 

Fixed and free boundary conditions greatly affect the forces acting on a system, and the 

displacement experienced by the solid material, as in general solid mechanics problems for 
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continuous beams. A fixed end denotes a surface of an object which is immovable in terms of 

translation and rotation. A free end denotes a surface of an object which has the ability to 

move without resistance; it is traction free and has no stress component normal to the surface. 

To demonstrate the similarities and differences between continuous models and molecular 

dynamics, below is a cantilever beam (figure 5), point A designates the fixed end and point B 

the free end.  The scale of a typical continuous model allows for approximations to be made for 

local stresses near applied loads. When a beam is under axial load the stress will be on average 

equal to P/A when far from the load site. However in molecular dynamics this assumption 

cannot be made due to surface effects. Additionally, representing axial tension is not as simple 

on the atomic level since it is unclear how to apply a load to individual atoms. A more accurate 

representation of axial tension would be based on uniform strain.  

 

Figure 5 
 

In molecular dynamics a fixed boundary condition can be represented by “freezing” groupings 

of atoms. These atoms are either not included in time integration or the forces experienced by 

these atoms are removed before subsequent calculations. The result is the same with atoms in 

a fixed group having neither translation nor rotation. A free surface is a group of atoms which 
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have no external load or modification of their movement. Free surface atoms are allowed to 

evolve naturally. This is analogous with fixed and free conditions in a continuous beam.   

Molecular dynamics introduces a third boundary condition, a periodic boundary. A periodic 

boundary links opposite sides of simulation cell, so that they represent the same location.  One 

can visualize periodic boundary conditions as picking a small ideal segment from a larger bulk, 

as seen in figure 5. Figure 6 depicts how an atom leaving the right border of the simulation cell 

reenters on the left border.  

 

Figure 6 
 

The proper boundary conditions in a molecular dynamics simulation must be carefully 

chosen to ensure realistic conditions and adequate computation speed. Current computational 

speed allows for simulations of 10^9 atoms, where as a real material has atoms on the order of 

10^23 in number.  To compensate for the unrealistic size of molecular dynamics simulations, 

one can use periodic boundary conditions. Periodic boundary conditions replicate the real 

simulation cell in all surrounding directions and these replicas act as the external environment 

for the true simulation cell.  The simulation cell therefore interacts with itself, and in a sense is 
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comparable on average to a much larger cell of the same structure. It is important to note that 

periodic boundaries inherently enforce that the dimensions of the simulation cell must be 

greater than the cutoff distance of the potential in order to prevent atoms from interacting 

with their own “ghosts”.    

I. Thermostats:  

A thermostat is a form of self-governing control system which serves to maintain the temperature of 

a system at a desired level. It relates to the physical world, in that it seeks to replicate heat transfer in 

solids. For example one may wish to study a material’s thermal conductivity on the atomic level, this can 

be achieved by holding the relative temperature of opposing ends of a long rod constant using a 

thermostat. The rod can then be modeled according to Fourier’s law for heat flux.  

         
 

 
(13) 

 

Temperature within a molecular dynamics abides by the ideal gas law 

        

 

 
(14) 

The ideal gas law can be reformulated in terms of the root mean square particle speed of the 

system. 

  

 
    

 

 
    

 

 
(15) 

Where m is the average mass of the particle, v is the root mean square speed of the system,    

is the Boltzmann constant, n is the degrees freedom of the system, and T is the temperature of 

the system 
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Temperature in a MD simulation may be maintained by multiple styles of thermostats, 

such as velocity rescaling, Berendsen ode (reference), or virtual particle interaction. In a system 

with a thermostat regulated with velocity scaling, particle velocities magnitudes are scaled but 

their relative velocities are conserved. The Berendsen thermostat results in a somewhat less 

severe approach to regulating temperature by using the ordinary differential equation17: 

   

  
 (

    

 
) 

 

 
(16) 

The parameter w effects the rate of heat transfer occurring in the system.  

However, both methods enforce an unrealistic distribution of particle velocities. Real 

systems display a Boltzmann distribution of particle speed proportional to        . The 

solution lies in a method proposed by Nose and Hoover, which is founded on the idea of a 

virtual particle exchanging energy with the system18. A Lagrangian for the virtual particle and 

each real atom is written for the entire system. The potential energy of the virtual particle is 

carefully chosen to form a canonical ensemble and is dependent on the number of degrees of 

freedom of the system. The end result is the following equation for atomic motion: 

 
 ̈   

 

 
    ̇ 

 

 
(17) 

 
 ̇  

 

 
   ̇        

 

 
(18) 

Here the mass of the virtual particle, M, dictates the rate of temperature change. Referring 

backing to the equation above relating particle velocity to temperature, one can see that when 
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the average kinetic energy of the system reaches that for the desired temperature, the friction 

coefficient Q becomes zero and the system is in stable equilibrium. 

J. Barostats 

A barostat is a form of autonomous control system which serves to maintain the pressure of 

a system at a desired level. Before discussing the means for regulating pressure in a molecular 

dynamics simulation, one must have a way for defining stress on the atomic level. The atomic 

level stress of a system is founded on the virial theorem19 and can be defined as  

 

    
 

 
(
 

 
∑(  

    
 )   

 
 ∑   ̇ 

  ̇ 
 

    

) 

 

 
(19) 

 

Where     is the component of the stress tensor in the basis direction   and  ,   is the total 

system volume,    
   

 is the projection of the interatomic force between atoms in the direction 

of one of the basis directions,  ̇ 
   

 is the projection of the current atom’s velocity in one of the 

basis directions, and m is the mass of current atom. Here    
   

 is obtained by taking the 

gradient of total potential energy of the system with respect to the basis vectors. The first term 

is essentially energy per projected area between atoms, analogous to the standard engineering 

definition of pressure. However the second term is a kinetic energy contribution imparted from 

atoms colliding with a virtual interface. Much controversy existed over whether the kinetic 

energy term is valid when compared to physical stresses experienced in a solid. Current 
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numerical simulations agree that the kinetic term is necessary for correctly reproducing the 

continuum mechanics concept of the Cauchy Stress tensor20.  

Given the idea of atomic Virial stress, one can now develop a means for controlling 

pressure in an MD simulation. This may be accomplished by artificial scaling the dimensions of 

the box with to obtain the desired external pressure using the Berendsen method previously 

noted for thermostats17: 

   

  
 (

              

 
) 

 
(20) 

 

Here once again w is the rate of pressure change, and convergence to the external stress. 

Without going into the details of derivation, the virtual particle method applied for thermostats 

can be applied in a similar format to barostats to obtain a lagrangian which allows for a natural 

particle velocity distribution and preservation of the canonical ensemble18. 

K. Thermodynamic Ensembles 

1. Micro canonical (NVE) 

 In a micro canonical system, the number of atoms the volume of the system and the 

total energy remains constant. This represents a simulation say with periodic boundaries in all 

dimensions, with no thermostat present, and no incoming flux of atoms into the system. It is 

analogous to an isolated system with no heat transfer. 

2. Canonical (NVT, NPT) 

In a canonical system, the number of atoms the volume of the system and the 

temperature remains constant. The total energy of the system is no longer required to be 
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conserved. A canonical system is analogous to a system with an efficient thermostat or 

barostat.  For example under isobaric conditions the number of atoms, pressure and 

temperature remain constant for a solid. It is analogous to a situation in a pressure vessel is 

exposed to the atmosphere and ambient temperature. 

3. Grand Canonical (µVT) 

In a Grand Canonical system even the number of atoms is not conserved. It can be seen 

as a process in which a constant chemical potential, µ, is present. This process is represented 

physically as thermal evaporation or chemical reactions. Molecular dynamics is limited in its 

ability to simulate Grand Canonical ensembles. 

 

L. Molecular Dynamics Program Outline 

A molecular dynamics simulation begins with the importation of initial condition data. 

The following information is imported at initial runtime: specification of the units of 

measurement of energy and distance, the size, degrees of freedom, and overall configuration of 

the simulation, the atomic postions, velocities and external forces of atoms, the potential used 

to define the attraction experience between atoms, and the intial kinetic energy of the system. 

A detailed schematic can be seen in Appendix A.  

Then forces are calculated for each individial atom, obtained through the gradient from 

the given potential experienced by the atoms. Then boundary conditions are imposed through 

artificial conditions. Thermostats  and barostats may be applied thereby scaling atomic 

velocities or  box dimensions. Atomic positions may be fixed to simulate a rigid object. After all 
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artifical and internal conditions have been applied to the atom and forces have been calculated, 

a numerical time integration will be performed to obtain the future positions, velocities and 

accelerations of atoms within the system for a given timestep. Data is then exported to saved 

storage for later analysis. Analysis may include, elastic constant determination, dislocation 

studies, and various other phenomenon. If the simulation has reached the designated number 

of timesteps then the program ends, otherwise the loop continues. 

M. Convergence 

For any simulation run using molecular dynamics one must make sure that the system is at 

equilibrium and not in a constant state a flux. A system in flux will be inherently unstable, proving 

in some cases impossible to reproduce by outside parties. Therefore all simulations performed 

were analyzed to ensure that they converged within a standard deviation over a given timeframe. 

Examples of convergence can be seen in Appendix A.  
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3. CRYSTALLOGRAPHY  

N. Lattice 

A lattice is a repeating, usually symmetrical pattern of points. A lattice is synonymous to a 

vector space. Basis vectors for a vector space may be linearly combined to generate an endless 

number of points. These points make up the entirety of the lattice structure. 

O. Unit cells 

Unit cells are the smallest possible volume which when replicated reproduces a given lattice 

for a material structure. Unit cells are composed of basis vectors and basis atoms. Basis vectors 

are a linearly independent set of vectors that when combined can be used to define any point 

in space. Any point or vector can be described as a combination of the unique basis vectors, 

allowing for efficient calculation and computations. For lattice space, one may define basis 

vectors:   , ⃗ , and   . These vectors are not required to be orthogonal, nor are their lengths 

necessary equivalent; this will be seen later with the hexagonal close packed structure. So in 

general one may define α as the angle between  ⃗  and   ⃗⃗  β as the angle between    and   , and γ 

as the angle between  ⃗ , and   . Basis atoms represent the points that will be replicated to form 

the lattice structure. They are described in terms of the chosen basis vectors and range from 

values between 0 and 1.   

Many lattice structures exist for various materials, such as simple cubic, body centered 

cubic, face centered cubic, and hexagonal close packed. 

The simple cubic crystal structure has equal basis lengths of a=b=c, and angles of 

α=β=γ=90 . The basis vectors are usually chosen to be parallel to the standard x, y, and z axis, 
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and therefore only one basis atom is needed to fully replicate the lattice. The basis atom may 

be chosen to be located at any corner point, due to symmetry. Very few applicable materials 

have simple cubic crystal structure. 

 

Figure 7 
The body centered cubic crystal structure, like simple cubic, has equal basis lengths of 

a=b=c, and angles of α=β=γ=90 . The basis vectors are chosen to be identical to that of simple 

cubic as well. However two atoms are required to completely replicate the lattice structure. The 

basis atoms are located at a corner point, and the center of the unit cell. Common materials 

with BCC crystal structure are iron and Chromium. 

 

Figure 8 



 

26 
 

The face centered cubic crystal structure, has identical basis vectors and angles to that 

of simple cubic and body centered cubic. However, FCC has 3 basis atoms. The basis atoms are 

located at a corner point, and two faces of unit cell. Common materials with FCC crystal 

structure are gold and copper. 

 

Figure 9 
 

The hexagonal closed packed crystal structure is unlike any of the previous cubic 

lattices. HCP has equal basis lengths of a=b, with an independent length of c. The c direction is 

orthogonal to the vectors a and b with α=β=90 , however the vectors a and b are separated by 

an angle γ=120 . The basis vectors are chosen to be points located at opposite corners of the 

hexagon structure as seen in the figure below. 4 atoms are required to completely replicate the 

lattice structure with this basis; 2 in plane and 2 out of plane. Common materials with HCP 

crystal structure are Magnesium, Titanium, Zinc. 
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Figure 10 
 

P. Miller Indices 

The Miller Index notation provides an easy method for defining crystallographic planes for any 

crystal structure, even one with non-orthogonal basis vectors. The general procedure for 

determining the miller indices is to find the points of intersection between the plane and the 3 

basis vectors. Planes parallel to a basis vectors are taken as equivalent to infinity. Next one may 

take the inverse of the 3 intercepts previously found,  and simplify the intercepts so as to have 

the smallest possible whole integer. These indices are displayed as (hkl) for 3 basis vectors 

respectively. Some common planes in cubic crystal systems are seen below 

 

Figure 11    Figure 12    Figure 13 
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Figure 14    Figure 15 
 

For HCP there is an exception to the normal 3 miller index notation, with the addition of a 4th 

index.  The 4 miller index notation references vectors            and     which are represented by 

the notation (hkil). The vectors            are equivalent to    and  ⃗  as previous noted for HCP.  

A new vector    , is generated which is equal to the combination,    = -(        . This new vector 

is given the miller index notation,         . The overall miller index notation is denoted 

(hkil). Some common planes for the HCP structure are displayed below: 

 

   Figure 16        Figure 17       Figure 18 
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Q. Dislocations 

Dislocations are crystal defects, or irregular structures present in typical crystal lattices. 

Dislocations are generated when a solid is subjected to high levels of strain, resulting in plastic 

deformation. There are two types of dislocations, namely edge and screw. Real materials will 

contain a combination of both edge and screw dislocations (reference). An Edge dislocation 

occurs when a lattice structure is altered by the inclusion of an additional half plane of atoms 

between ideal planes. Screw dislocations can be seen as the result of the shearing of two partial 

cut segments of a lattice structure. 

Slip planes are planes on which dislocations tend to move or grow in a given material, 

usually of the highest atomic packing density. Dislocations will move in preferred directions 

within the plane as well. The primary slip plane for HCP is (0001), (111) for FCC, (110) for BCC 

(reference). There are a limited number of slip systems in HCP with only one slip plane and 

three slip directions. Comparably, FCC has up to four slip planes and BCC has six slip planes. Slip 

of atomic planes and plastic deformation occurs when the system reaches the critical shear 

stress along the direction of the slip plane. For a solid under axial tension, the projected shear 

stress is  

                   
(21) 

 

Here   is the angle between the slip plane in question and the direction of applied load, and   

is the angle between slip direction and the applied load . The maximum shear stress will occur 

for the highest Schmid factor, dictated by                    (reference). The Slip system 
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with the highest Schmid factor will slip first.  The Schmid factor is determined from the direct 

evaluation of the vector dot product for any slip system, or the combination of slip plane, 

          and direction,         , and the applied load direction,           . 

 
             

                   

|        ||          |
 

                   

|        ||          |
 

 

 
(22) 

For example for the (111)/[1-10] slip system in FCC metals under an applied load in the [100] 

direction, the Schmid Factor is 

  
           

|     ||     |
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R. Strain hardening 

Plastic deformation of a solid leads to dislocations along slip planes. High levels of strain 

generate a very dense network of dislocations and grain mismatch creating a strengthening 

effect. Or in other words the creation of dislocations leads to a natural resistance to further 

deformation, known as strain hardening.  Strain hardening can be used to increase the strength 

of many relatively ductile materials used for commercial applications such as carbon steel, 

copper and aluminum(reference). Therefore logically one can conclude that preventing 

dislocation mechanisms can create more ductile materials.  The opposite could also be said for 

creating a more brittle material. However strain hardening can only be effective when obtained 

by plastically deforming a solid well below its melting point. If the stain hardening was 

attempted at high temperatures the high diffusion and local ordering would eliminate most 

dislocations and the beneficial strengthening effects. 
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Along the lines of preventing dislocation motion in order to strengthen materials one can 

add impurity atoms to a base solid generating an alloy. The impurity atoms create a local stress 

concentration as well as a lattice mismatch resulting in the cancellation of dislocation motion. 

S. Twin Boundaries 

 Twin boundaries grain boundaries along which lattice orientation and structures are 

mirrored on opposite sides. Two mirrored lattices share the same plane of points. Twin 

boundaries are most common in hexagonal close packed materials, and least common in face 

centered cubic and body centered cubic because of the number of slip systems present. HCP 

has very few slip systems whereas FCC and BCC have up to four or more (reference). Twin 

boundaries have a natural strengthening effect, which is why they are generated in HCP metals 

with few slip systems to increase strength.   
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4. CRYSTAL ANALYSIS TECHNIQUES 

T. Burgers Vector 

The Burgers vector is a means a defining the magnitude of a dislocation occurring in a 

perfect crystal21. The burgers vector can be defined by visualizing a perfect rectangular loop 

dictated by the ideal atomic positions in lattice relative. When the ideal crystal is deformed so 

too is the rectangular loop. The resulting direction and length of deformation present in the 

rectangular loop is defined as the burgers vector,  ⃗ . 

 

Figure 19     Figure 20 
 
 

U. Radial Distribution Function 

The radial distribution function is a means for describing the local density a given distance r 

away from an average particle in the system22. It can be seen as the probability of finding a 

given density of atoms a distance relative from any atom, normalized by that typically found in 

an ideal gas. 

V. Common Neighbor Analysis 



 

33 
 

Common Neighbor Analysis (CNA) is a method used to characterize crystal structures and 

crystal defects. CNA is commonly used to distinguish between different crystal structures, and 

dislocation cores, surface adatoms, and atom clusters23. One begins by determining which 

surrounding atoms to classify as neighbors. The first local minimum of the radial distribution 

function for a given crystal structure is generally considered the neighbor cutoff. If two atoms 

are within this cutoff distance they are labeled as having formed a bond. Choosing a bond pair 

of atoms, one begins by finding neighbors which are common to the pair. The number of 

common pairs designates the first number in the common neighbor analysis notation. Next one 

determines the number of bonds formed between the common pairs, defining the second 

number in the common neighbor analysis notation. The final number in CNA notation is defined 

by the longest chain length created by the shared bonds. 
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5. R-EAM IMPLEMENTATION 

W. Current Simulation Limitations 

Although the EAM reproduces experimentally determined properties for most metals fairly 

accurately, it fails to produce reliable results for some systems.  Specifically the EAM imposes 

the following conditions: C12>C44 for cubic crystals24, C13>C44 and (c) approximately 3C12-

C11>2(C13-C44) for hexagonal close packed (HCP) crystals25. It can be shown analytically that the 

R-EAM removes all of these constraints. The limitations on EAM potentials arise from the way 

that electron density contributions are distributed between atoms. In the EAM regardless of the 

local environment, as in the nearby atomic density, does not affect the relative distribution of 

electron density; each electron contribution from individual atoms is not affected by its 

neighbors. The R-EAM takes into account the local environment and allows for relative 

distribution of electron density. Historically, it has been shown that EAM fails to properly 

capture outward relaxtion in fcc metals26.  Naturally, the response portion of the REAM and its 

relative electron distribution leads to a more accurate reproduction of surface relaxation. 

Interatomic spacing after relaxation, for the            ̅       ̅       ̅           ̅   

planes were compared between the Magnesium REAM, respected EAM potentials by Mishin 

and Liu, and quantum mechanics results. It was shown that the REAM has comparable direction 

and magnitude to that of quantum mechanics but the EAM has neither27.  

To present the REAM, we start with the framework of EAM. 
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Here    is the total energy of the system, which is the sum of energy contributions from each 

atom in the system. The total electron density,   ̅, is the sum of density contributions from 

nearby neighbors of atom i.      is the embedding energy, which can best be described as the 

energy required to place an impurity atom into an existing sea of electrons. Physically speaking, 

the electron density surrounding an atom will be distributed differently when nearby stronger 

bonding atoms or when situated within a larger number of neighbors. To account for this the 

total electron density may be written as the following: 

 

    (   )[    ( ̅  )] 

 

 
(23) 

The previous description of electron density would be extremely costly in terms of 

computational speed. Given that the subdivision of both embedding energy and pair interaction 

energy has multiple solutions, one may write the equation for electron density and atomic 

energy as the following:  

   ∑     ∑     ̅   
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Taking into account the symmetry of bonding for atoms i and j one may write the response 

function as a geometric mean of the coupled electron densities. 

 

 ( ̅    ̅  )    √ ̅   ̅  ) 

 

 
(26) 
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X. Implementation 

The molecular dynamics program LAMMPS28, originally developed by the two national labs 

Sandia and LLNL, was extended with a R-EAM subroutine. The subroutine was inserted into the 

existing EAM multi-body potential present in LAMMPS architecture. The inner workings of 

LAMMPS and the placement of the R-EAM subroutine is visualized below, along with an outline 

of the coding methodology. 

 

Figure 21 
Pair_REAM: compute() – PseudoCode 

1. Create arrays to store individual atom properties, and splined function values 
2. Divide atoms and simulation cell between processors 
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3. Loops over neighbors j>i (in order to save computation time, since calculations are 
duplicate due to symmetry) 

4. Communicate total electron density, electron density derivative, and embedding energy 
derivative 

5. Compute energy contribution and net force per atom located on each processor 
a. Calculate embedding energy using total electron density 
b. Calculate the geometric mean of electron density between atomic pair 

i. Determine value for Response function using mean 
c. Calculate phi based upon separation distance 

6. Sum forces and energy between processors 

 

Y. Efficiency 

Before affirming the validity of the R-EAM, one must check the efficiency of the REAM 

relative to the existing EAM. If the REAM proves to be too computational expensive to be useful 

in common applications then it will fail to be more valuable than the existing EAM method. 

Simple simulations of bulk magnesium were carried out in LAMMPS, using the same Nose-

Hoover temperature and pressure control, varying the number of processors used and the total 

number of atoms present in the system. 

  

Figure 22       Figure 23 
 
 

The results of these simulations show that on average the REAM is around 1.5 times slower 

than the EAM when it comes to computational speed for various system sizes; this holds true 
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regardless of the number of processors used.  Important to note, the number of atoms used 

must never be smaller than 1000 atoms per processor to ensure efficient distribution amongst 

all nodes. 

 

Z. Dislocation Motion 

 

Figure 24   Figure 25 
 

A simulation of a Magnesium nanorod under tension was run to test the strength, mechanisms 

for plastic deformation and the overall validity of the potential fitting.  A 5 nanometer diameter 

and 30 nanometer long nanorod was generated in a 150 by 150 by 300 angstrom simulation cell 

with basis vectors            ,        √    ,              Since the simulation was run 

at a nonzero temperature of 300 K, a finite temperature lattice value was used for quicker 

computation and more accurate atomic relaxation.  Using an NPT barostat and thermostat a 
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bulk simulation cell was relaxed under isobaric conditions of 0 bars and 300 K, resulting in a 

finite temperature lattice value. The nanorod was also held at isobaric conditions for 100 

picoseconds to allow for surface relaxation. The simulation cell was then deformed at a rate of 

        and the atomic positions scaled relative to the deformation. The stress and strain 

values at .1 picoseconds increments were exported and graphed for data analysis.

 

Figure 26 
 

Looking at the graph of stress versus strain, one can determine an approximate value for the 

modulus of elasticity by fitting a curve through the initial linear portion.  Taking the slope of the 
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linear curve the modulus is found to be roughly 13 GPa.  The critical point for twin dislocation 

nucleation occurs at 10% strain and 1 GPa stress, at which point yielding follows shortly at 1.2 

GPA.  This compares well with the experimental strength testing of a 50 nanometer diameter 

nanorod, where the elastic modulus was found to be 8 gigapascals and the critical stress for 

dislocation nucleation occurs at 7-10% strain and 800 megapascal stress29. 

 

Figure 27 
 

Cross sections of the nanorod, at various strains were taken to visualize dislocation motion. 

Common neighbor analysis displays bulk hcp atoms in pink and dislocation planes in gray. The 

above images depict     ̅                             ̅   tension twin dislocation. This agrees 
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with experiments where the     ̅       ̅   twin system forms under plastic deformation30. A 

planar slice was taken for closer analysis of the slip direction for dislocation motion. 

 

Figure 28    Figure 29 

 

Figure 30    Figure 31 
 

Figure 1 depicts the dislocation core using common neighbor analysis, which appears to be 

composed mostly of screw dislocations. Drawing a burger’s circuit and comparing the initial 

atomic structure before straining to that with a dislocation present, one can obtain a burger’s 

vector as seen in figure 3 and 4. This vector is determined to be in the     ̅   direction, which 

can be most easily seen when atomic displacement is projected onto this direction. Figure 2 
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shows the magnitude of projection onto the slip direction. Yellow or white atoms indicate small 

displacement or a perpendicular direction and dark red atoms indicate large displacement or 

parallel directions. Therefore, the dark red atoms in the dislocation core may be taken as having 

displaced in the     ̅   direction 

.  

Figure 32     Figure 33 
 

 Various size nanorods were run and their dislocation structure was analyzed and found 

to be similar to that of the 5 nanometer diameter rod. The similarities can also be seen in the 

elastic modulus and yielding point of the different diameter nanorods. The same twin system is 

found to form at roughly the same strain and stress in all nanorods with diameters between 

5nm and 10nm. For smaller nanorods the percentage of surface atoms is higher, resulting in a 
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softening effect for the material due to the loss of bonding. As to be expected, yield strength 

and elastic modulus increases with increasing diameter size because of the smaller percentage 

of surface atoms relative to the overall total but the plastic deformation mechanism remains 

unaffected.  
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6. FUTURE EXPLORATION 
 

With computational power doubling once every year according to Moore’s law, 

molecular dynamics will soon be a feasible method for finite size and time simulations. 

Additionally, progress has been made in recent years to utilize GPUs for computational 

purposes. GPUs have the advantage over CPUs in that they are designed with graphics 

processing in mind, which requires a large number of cores for processing. CPUs are limited to 

roughly 4-8 cores per processor, and then must be linked to allow communication. This 

communication between CPUs is a costly process and hinders the scalability of large scale 

parallel processing. Since a single GPU may have thousands of cores present, more efficient and 

faster processing will be possible in the future. GPU support for the REAM code in LAMMPS will 

be the next logical step to improve performance and scalability.  
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SUMMARY 

 

Limitations in molecular dynamics currently exist for replicating elastic constants and 

surface properties of HCP and FCC metals. The R-EAM uses a novel approach which more 

naturally represents electron density distribution in crystal structures. The R-EAM was 

implemented into LAMMPS existing molecular dynamics program structure, and found to 

achieve performance only slightly slower to that of existing EAM potentials. Simulations on 

dislocation dynamics confirm the accuracy of the R-EAM and agree with data obtained from 

nano-scale strain measurements. Further implementation of R-EAM should allow for great 

expansion of molecular dynamics because of its increased accuracy in reproducing surface 

relaxation and dislocation dynamics for HCP and FCC metals.  
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APPENDIX A 
 

i. Program Outline 

a.  
ii. Convergence 
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