
University of Connecticut
OpenCommons@UConn

Honors Scholar Theses Honors Scholar Program

Fall 12-2012

Finding Unpredictable Behaviors of Periodic
Bouncing for Forced Nonlinear Spring Systems
when Oscillating Time is Large
Yanyue Ning
University of Connecticut - Storrs, ivyyning@163.com

Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses

Part of the Non-linear Dynamics Commons

Recommended Citation
Ning, Yanyue, "Finding Unpredictable Behaviors of Periodic Bouncing for Forced Nonlinear Spring Systems when Oscillating Time is
Large" (2012). Honors Scholar Theses. 283.
https://opencommons.uconn.edu/srhonors_theses/283

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/srhonors_theses?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/srhonors?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/srhonors_theses?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/srhonors_theses/283?utm_source=opencommons.uconn.edu%2Fsrhonors_theses%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages

 Finding Unpredictable Behaviors of Periodic Bouncing for Forced

 Nonlinear Spring Systems when Oscillating Time is Large

 Yanyue Ning

 A Thesis

 Submitted in Partial Fulfillment of the

 Requirements for Graduation as

 University Scholar and Honors Scholar

 At the University of Connecticut

 Storrs

 2012

 Approval Page

 Honors Scholar Thesis

 Finding Unpredictable Behaviors of Periodic Bouncing for Forced Nonlinear Spring Systems

 when Oscillating Time is Large

 Presented by

 Yanyue Ning

 Research Advisor ___________________________________

 Patrick J. McKenna

 Honors Advisor _____________________________________

 David R. Solomon

 Department of Mathematics

 College of Liberal Arts and Sciences

 University of Connecticut

 2012

2

Acknowledgements

 I would like to express my deepest gratitude to Prof. Joseph McKenna who guided my

research in the fall semester of 2012. His research concentration in the qualitative study of

nonlinear partial differential equations intrigues me a lot, and his idea that applying

mathematics to solve mechanical problems of bridges deepens my interest in the field of

computational mathematics and engineering. Moreover, his passion in applied mathematics

passed on to me throughout the research and we even threw ourselves into the research with

enthusiasm during the thanksgiving break. From his advice of technical skills and work habits, I

felt how important that seriousness and meticulous nature are for a competent scientific worker

and I will always remember his sincere teachings in my future study and career.

 I am also grateful to thank Dr. Reed Solomon, who is the honors advisor for my two

years study in the honors program. Before starting this research, he matched my interest with

each mathematics professor’s research field in order to find the best combination, which helped

me to set the stage for the thesis and get the best training of research skills.

 Though this honors thesis is the final work of my undergraduate study, I believe it will be

one of accomplishments in my life. On the occasion of graduation, I will also express my great

gratitude to Prof. Sarah Glaz who provides moral encouragement and support for me since my

sophomore year, which makes me feel more confident in this research and my learning in

applied mathematics. Also, I would like to thank Prof. Dmitriy Leykekhman, who provided me

with very useful help of MATLAB coding during the research process.

 Lastly, I am thankful to my parents and friends for all the helps and encouragement they

always provide.

3

Table of Contents

I. Abstract………………………………………………………………………………5

II. Introduction………………………………………………………………………..6-7

III. Finding Periodic Oscillations when Time is Large……………………………..7-13

IV. Finding Periodic Bouncing Behaviors when Time is Large………………….14-29

V. Conclusion……………………………………………………………………….30-31

VI. References…………………………………………………………………………...32

VII. Appendix…………………………………………………………………….......33-40

4

I. Abstract.

 The model of nonlinear spring systems can be applied to deal with different aspect of

mechanical problems, such as oscillations in periodic flexing in bridges and ships. The

concentration of this research is the bouncing behaviors of nonlinear spring system when the

processing time is large, therefore nonlinear ordinary differential equations (ODE) are suitable

since researchers can add different variables into the models and solve them by computational

methods. Benefit from this, it is easy to check the oscillations or bouncing behaviors that each

variable contributes to the model and find the relationship between some important factors:

vibrating frequency, external forces and amplitudes. Moreover, analyzing the model can be

implemented by plugging different values into the equations characteristics. For example, this

research will focus on discussing various initial conditions since they may cause different

behaviors to appear. Conducting numerical analysis to check the performance of the model by

computing with MATLAB is also necessary during the research procedure, which may help

researches to avoid failure results and show the existence of a certain phenomenon.

5

II. Introduction.

 When we suspend a single particle on a linear spring and put damping and external

periodic forces on the spring, the solution can be found by a specific initial condition and

external periodic forcing. There will be no effect on the long-term behaviors when we plug in

large initial values. However, the result we get could be qualitatively different when we do

research for nonlinear situations. In the nonlinear spring systems, the long-term behaviors will

depend on both the external forcing and the initial conditions. For example, a very small periodic

force can not only cause the small long-term consequences like that of linear models but can also

show us unexpected large periodic oscillations with different initial values.

 Before creating the nonlinear differential equations model, we have to analyze the spring

constant contained in the Hooke’s Law since this factor can affect the model and even the

bouncing behaviors. Then we can simulate the behaviors of vibrating of a linear spring with

different elasticity constant by using MATLAB. However, the most important thing we care

about in this research is the bouncing behavior when the time is very large, say from 6000 to

9000, and with different initial values. We look forward to seeing what can happen when we take

absolute value for the solution of the differential equation and plug in a large time period with

different initial conditions. Moreover, when changing the frequency, the magnitude of external

forces and damping coefficients, the bouncing behaviors can have corresponding variations.

Another task of this research is to use 3-D graph to show the relationship for vibrating frequency,

magnitude of external forces and the range of amplitudes. We will also use other MATLAB

programming results to present new details on how increasing initial values affects the response

of the system. In this presentation, we will also provide numerical evidence to explain the

6

theoretical results, which can clearly shows the relationships between each parameter in this

model.

III. Finding Periodic Oscillation Solutions when Time is Large

 A physical problem occurs when we put a particle attached to a spring, and the second

order ODEs can fully manifest the oscillations of a spring system. For example, choose a

nonlinear unforced equation model 3'' ' 0y py qy+ + = , where p is damping constant and q is

spring constant. We set 0.1p = and 1q = , the equation becomes 3'' 0.1 ' 0y y y+ + = . Let set initial

values to be (0) 20y = and '(0) 0y = , and make the oscillating time to be 0 to 50, we can get the

graph

 Figure 1

Here we can see that since we put a damping term in the model, so the graph will be convergent

to the equilibrium position. As the time period become much larger, the oscillation will

eventually disappear. For example, when we set the choose the time interval to be 0 to 200, the

0 5 10 15 20 25 30 35 40 45 50
-20

-15

-10

-5

0

5

10

15

20

7

graph almost shows a straight line from 160 to 200, which means few or no oscillations in this

time period

 Figure 2

 An important task we have to do before modeling the oscillations is to add a factor of

nonlinearity to the model. Basically, we can discuss the relationship between two different spring

constants to deal with this problem. Consider the case that a mass is hanged by both a linear

spring and a rubber band, and each of them has an elastic constant. In this situation, the particle

moving in x−∞ < < ∞ is determined by the two restoring forces:by when y is positive, and ay

when y is negative. We can create a system of functions to describe the nonlinear relationship:

, 0
()

, 0
by y

f y
ay y

>
= <

; consider the example 17b = and 13a = , the graph is

0 20 40 60 80 100 120 140 160 180 200
-20

-15

-10

-5

0

5

10

15

20

8

 Figure 3 Nonlinearity

From the graph, we can see that 0x = is a breaking point which separates the line into two

segments and the right section has a larger slope than the left, but the nonlinearity is not strong.

To get a stronger nonlinearity, one has to make a larger difference between a andb .

 In order to apply this function system to our nonlinear ODE model to describe the

oscillation of a spring, we need to describe the nonlinearity by using the combined form:

ay by+ −− (a b>) where y y+ = if 0y > and 0 otherwise, and y y− = − if 0y < and 0 otherwise.

This expression can show the nonlinearity in the equation, and a large difference between a andb

can show a strong nonlinearity as stated above. As what we discussed just now, a spring system

with a small forcing term and a damping term may cause unexpected oscillating behaviors. For

our first model, we set the forcing term to be () sinf t tλ µ= , whereλ is an external force applied

on the spring andµ stands for the frequency of oscillation. Combined what we have indicated

above, the nonlinear differential equation for this model is given by

 '' 0.01 ' 10 siny y ay by tλ µ+ −+ + − = +

-20 -15 -10 -5 0 5 10 15 20
-300

-200

-100

0

100

200

300

400

9

 The same as previously shown, we still set 17b = and 13a = . Let us first see what may

happen when we put a small force and a large frequency into the model, sayλ =0.1andµ =4, then

the equation becomes '' 0.01 ' 17 13 10 0.1sin 4y y y y t+ −+ + − = + . It would be hard to code

17 13y y+ −− directly in MATLAB since it cannot recognize this expression, but we can transform

17 13y y+ −− to 15 2y y+ in the coding process to avoid errors. In this research, we will focus on

the oscillations when we make the time period to be very large, such as from 800 to 2500. In this

situation, we can compare the graphs with three different initial values

 Figure 4.1 Initial conditions (0) 2, '(0) 1y y= = −

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10

 Figure 4.2 Initial conditions (0) 1, '(0) 0y y= =

 Figure 4.3 Initial conditions (0) 0.1, '(0) 0.1y y= = −

From the graphs of decreasing initial values, we can see that the amplitudes at point 800t = also

decrease and the equilibrium position is some point near 0.5y = . Moreover, we can see much

faster shrinking amplitudes with smaller initial values, which is especially obvious for the period

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

11

of 800 to 1200; for Figure 4.1 with initial values of (0) 2y = and '(0) 1y = − , there is almost no

shrinking behaviors. Another property we find out is that the time each oscillation needs to settle

down to the eventual periodic state is almost the same and we can get periodic solutions after

2000t = .

 One may also ask what may happen when we put a large force on the spring. This time

we may assign a large value ofλ and a small value ofµ with a large difference betweenb and a .

Consider respective values 17b = , 1a = , 13.7λ = and 0.17µ = , thus the equation becomes

'' 0.01 ' 17 10 13.7sin 0.17y y y y t+ −+ + − = + . Similarly, we can use 9 8y y+ instead of 17y y+ −−

in MATLAB programming. We try to run the codes in the period of 800 to 2000, and we get

three different graphs with the same initial conditions of last example

 Figure 5.1 Initial conditions (0) 2, '(0) 1y y= = −

800 1000 1200 1400 1600 1800 2000
-12

-10

-8

-6

-4

-2

0

2

4

6

12

 Figure 5.2 Initial conditions (0) 1, '(0) 0y y= =

 Figure 5.3 Initial conditions (0) 0.1, '(0) 0.1y y= = −

From the results, when we make the nonlinearity become stronger, we can see many types of

stable periodic solutions as the time period is very large, and a higher density of oscillations for

each period is presented by choosing larger initial values. In addition, we also see that the largest

amplitudes decrease as the initial values decrease.

800 1000 1200 1400 1600 1800 2000
-8

-6

-4

-2

0

2

4

800 1000 1200 1400 1600 1800 2000
-6

-5

-4

-3

-2

-1

0

1

2

13

IV. Finding Periodic Bouncing Behaviors when Time is Large

 In general, we put the particle near the equilibrium position and the particle will follow

the usual linear equation. Now, there is a new case that we add a small forcing term and a small

viscous damping term to the spring system, and we would hope to see periodic bouncing motions.

The basic model for the periodic bouncing solutions is given by the following set of equations

0 0 0() 0 '() '()

'' ' 1 sin
0

u u

u t u t u t

bu t
u

δ ε+ + = ±

= ⇒ + = − −

+
 ≥

and the general nonlinear differential equation is given by '' () ' 1 sin()y a y by t εε ε ε α+ + = + − ,

where () 0a ε → as 0ε → , () 0a ε > and a is a continuously differentiable function. In this study,

we will discuss the bouncing behaviors in a large time with a constantly small damping

coefficient 0.01p = for the model

 '' 0.01 ' s ()*(cos)y y by ign y a tλ µ+ + = +

 Before finding the bouncing behaviors, we can first have a look at what the oscillation

behavior of this model is when the time is large. Here, we are hoping to see the results in the

interval from 2500 to 3000. Consider plugging in values that 4b a λ= = = and 0.1µ = , we can

see that the oscillations is the following

14

 Figure 6 Oscillations of '' 0.01 ' 4 s ()*(4 4cos 0.1)y y y ign y t+ + = +

We can see from this graph that 0y = is the equilibrium position and the graph is almost

symmetric on this line. Therefore, this is a good starting point for us to think about how to get

the graph of bouncing. Just as its name “bouncing” implies, the amplitudes should be always

positive, which means the value of all y should be nonnegative all the time. Here, we can use

numerical technique to change one point to our code of Figure 6, namely, we can find the

absolute values of y instead of original y in order to make the amplitudes nonnegative. Moreover,

one may realize that the curve that ode45 graphs is stiff without polish. To solve this problem,

we recommend using “eps” as the option to make the graph looks non-stiff. Since we want the

period to be 2500 to 3000, the numerical methods we consider to correctly express this time

interval is setting 3000timefinal = and create a new variable i which satisfies

min(500)i t timefinal= > − . This command can always require MATLAB to start drawing

bouncing curves at 2500t = rather than 0t = . After revising the code, MATLAB shows us perfect

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

15

bouncing behaviors from 2500 to 3000, and we can see that there is no weakening trend so the

damping term does not affect the bouncing too much.

 Figure 7 Bouncing Behaviors of '' 0.01 ' 4 s ()*(4 4cos 0.1)y y y ign y t+ + = +

 Though the bouncing behaviors can appear, it does not occur at any time since those four

variables , , ,a b λ µ can affect the original oscillation. For example, when plugging in

20, 20, 4, 0.2a b λ µ= = = = , the graph for oscillation is

 Figure 8 Oscillations of '' 0.01 ' 20 s ()*(20 4cos 0.2)y y y ign y t+ + = +

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
0

0.5

1

1.5

2

2.5

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

16

Even if we take absolute values for all y , there will be no bouncing behaviors occurring since the

original oscillation solutions are already all positive so that the curve of bouncing will never

touch 0y = . In other words, if we want a bouncing occurs, we should require some part of the

original oscillation curve to intersect with the line of 0y = but not necessarily to be symmetric.

Numerically, to guarantee the bouncing appears, we have to find the variables which satisfy the

requirements that the step size between each y value has to be very small (less than 0.003) and

the set of y should contain both positive and negative values. Here are two subset of Y value for

Figure 7 and 8, we see that the data in Figure 7 can satisfy above requirements but the data of

Figure 8 cannot, so 20, 20, 4, 0.2a b λ µ= = = = cannot provide bouncing behaviors to the model.

 Figure 7 Figure 8

17

Therefore, one has to try different values for the four variables on this experiment several times

to get bouncing behaviors. After several attempts, we find that the bouncing behaviors can occur

successfully when we setb a λ= = orb a λ≈ ≈ , but for the second condition, the graphs may be

manifested by some chaotic tiny-amplitude bouncing in addition to general bouncing behaviors.

For example, when we choose 10.2, 9.9, 10b a λ= = = and 0.1µ = , we can see some small dense

bouncing behaviors when the amplitudes are near 0y = (which has been marked by the red box).

 Figure 9 Bouncing Behaviors of '' 0.01 ' 10.2 s ()*(9.9 10cos 0.1)y y y ign y t+ + = +

Now we enlarge the graph to see more details for these bouncing with small amplitudes, and

there is no specific way to control and refine these solutions, so these are chaotic bouncing

behaviors.

18

 Figure 10 Enlarged Chaotic Behaviors for '' 0.01 ' 10.2 s ()*(9.9 10cos 0.1)y y y ign y t+ + = +

In addition, when we try different initial values to the graph, there is no too much difference

between each of them. Consider the equation '' 0.01 ' 4 s ()*(4 4cos 0.1)y y y ign y t+ + = + , we try

three different initial values and get three graphs which are almost the same

 Figure 11.1 Initial conditions (0) 2, '(0) 1y y= = −

2720 2725 2730 2735 2740 2745
0

0.02

0.04

0.06

0.08

0.1

0.12

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
0

0.5

1

1.5

2

2.5

19

 Figure 11.2 Initial conditions (0) 1, '(0) 0y y= =

 Figure 11.3 Initial conditions (0) 0.1, '(0) 0.1y y= = −

 Furthermore, when set 10a b= = and keepλ andµ to be unknown, our model becomes

'' 0.01 ' 10 s ()*(10 cos)y y y ign y tλ µ+ + = + and researchers may want to know the relationships

for the bouncing frequency, force applied on the spring and the range of amplitudes when

choosing different initial values. This is a good topic to research since we can use 3-D graph to

see effects that both variational frequencies and forces on the range of amplitudes. According to

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
0

0.5

1

1.5

2

2.5

2500 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000
0

0.5

1

1.5

2

2.5

20

this new idea,λ andµ will no longer be constants and we have to put the variations of both

factors into consideration when programming with MATLAB. Here, we can use “for loops” to

describe their variations. Forµ , we set the range to be 2.5 to 5 with the changing step size of 0.1,

so there will be 25 steps in the whole process. Forλ , we set the range to be much smaller, say 0

to 1, and we set the step size to be 0.05 so that there will be 20 steps in the process. It will take a

long time to run the programs with different initial conditions, since when MATLAB reads one

µ , it has to check the values of twentyλ s, and then to read the nextµ with the same twentyλ s；

the rest can be done in the same manner. Thus the graphing procedure will take a much longer

time than previous graphs. In this topic, we are concerned about the range of amplitudes, which

basically means difference between the maximum and minimum amplitudes; similarly, we also

care about the behaviors when the time is very large, so we still set the running time to be 2500

to 3000. In order to easily compare the three graphs with different initial conditions, we can set

same scale for z-axis of each graph, say 0 to 10. The results are the following

 Figure 12.1 Initial conditions (0) 0.1, '(0) 0.1y y= = −

0
0.5
1

2.533.544.55
0

1

2

3

4

5

6

7

8

9

10

21

 Figure 12.2 Initial conditions (0) 1, '(0) 0y y= =

 Figure 12.3 initial conditions (0) 2, '(0) 1y y= = −

 Now let us analyze the three graphs. First, when the initial values become larger, the

range of amplitudes (or say, the z-values) becomes larger, which has been shown especially

obviously when shifting from Figure 12.2 to 12.3. Moreover, the value of range gives a larger

0
0.5

1

2.533.544.55
0

1

2

3

4

5

6

7

8

9

10

0
0.5

1

2.533.544.55
0

1

2

3

4

5

6

7

8

9

10

22

and faster jump for each corresponding pair ofλ andµ when the initial values get larger and

larger. To clearly show this statement, we choose the point 3.2µ = and see when we change the

value ofλ , the values of amplitude range for each initial condition is given by the following

table

This property can also been shown byλ sides of Figure 12

 Figure 13.1 Initial conditions (0) 0.1, '(0) 0.1y y= = −

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

23

 Figure 13.2 Initial conditions (0) 1, '(0) 0y y= =

 Figure 13.3 Initial conditions (0) 2, '(0) 1y y= = −

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12
4
6

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12
4
6

0

1

2

3

4

5

6

7

8

9

10

24

 Another important finding from Figure 12 is that when the initial values become larger,

a surface expands gradually on the top of each 3-D graph. Now the problem which brought to

our attention is whether this area of the surface will expand and continue to exist when we plug

into much larger initial values. To solve this problem, we can perform a numerical experiment to

check the slice of the surface; if the slice will never suddenly change or even disappear, we will

conclude that surface exists all the time. However, this experiment may require a set of more

accurate initial values. Now, we set 0.5λ = and the nonlinear equation becomes

 '' 0.01 ' 10 s ()*(10 0.5cos)y y y ign y tµ+ + = +

To solve this equation, we randomly choose initial values, say (0) 2y = and '(0) 1y = − , and letµ

initially be 3.1. Then set the time to be 0 to 3000, then we can solve the nonlinear ODE and get

results for (3000)y and '(3000)y . We can use this way to find a point in the 3-D space on each

graph of Figure 12, and this point shows the magnitude of amplitude range for a specificµ . Yet

this is just a single point, we still need more points and connect them to form a line which

describes the slice of surface. Thus the next attempt when we solve the same function, we want

3.0µ = and set the time to be 3000 to 6000. For the initial values, we have a pair of accurate

initial values which are the final values of our last attempt, i.e. (3000)y and '(3000)y . The

MATLAB codes for the first two steps are the following:

First Step:

function dy=function7(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-10*y(1)+sign(y(1))*(10+0.5*cos(3.1*t));

[T,Y]=ode45('function7',[0 3000],[0.1 -0.1],'AbsTol',eps,'NonNegative',eps);

Y(end,1)
ans = -1.4992

25

Y(end,2)
ans = 2.4617

Second Step:

function dy=function8(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-10*y(1)+sign(y(1))*(10+0.5*cos(3*t));

[T,Y]=ode45('function8',[3000 6000],[-1.4992
2.4617],'AbsTol',eps,'NonNegative',eps);

Y(end,1)
ans = 1.1061
Y(end,2)
ans = 1.4603

 Similarly, the rest of steps can be done in the same manner. To summarize this

experiment, we will explain this with numerical techniques. Forµ , it starts at 3.1 and decrease

by 0.1 for each step and it will end at 2.1, so totally there will be 10 steps. We also see that the

time interval will increase by 3000 for each step, basically it will be 0 to 3000, then the next step

be 3000 to 6000, and next continue with 6000 to 9000… Thus the current problem is how to

connect the time interval and the values ofµ . Here, we create a new variable, n , which starts

from 0 and ends with 10. This variable stands for the number of steps. We can perform a “for

loop” on n and use n to connectµ and time interval. Basically, 3.1 0.1nµ = − × ,

3000timeinitial n= × and 3000timefinal timeinitial= + . Since we have to use final values to be

the initial values of the next step, we should set inia and inib to stands for two variational initial

values. Based on what we discussed above, we can randomly assign values for them at the

beginning, such as 2inia = and 1inib = − ; inside the loop, we replace the expressions with

(,1)inia Y timefinal= and (, 2)inib Y timefinal= .

 We hope see that the surface expands gradually when the initial value becomes larger, if

this actually occurs, there could exists a turning point on the curve. Namely, before the turning

26

point, the z-values decrease whenµ decreases; after the turning point, the z-values decrease when

µ increases. Now, let us see what happens in reality:

 Figure 14 Decreasingµ with step size of 0.1

We can see that there is no turning point appearing on the graph, instead, z-values drop down

very fast at some points between 3µ = and 3.2µ = . This means the surface stop expanding

suddenly at a specific point. Though there is evidence to show that the non-existence of a turning

point, this result may be caused by the large step size since the surface may still exist right before

the last point ofµ . Now we try to make n starts from 0 and ends at 10 with a step size of 1. Thus,

we wantµ to decrease with a much smaller step size from 3.1 to 3.0 in10 steps. The new result is

given by the following graph

1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

27

 Figure 15 Decreasingµ with step size of 0.01

Unfortunately, the evidence still shows a fast dropping speed for z-values and therefore we can

conclude that the surface will end suddenly at a point near 3.09µ = whenµ is decreasing. Though

the idea of decreasingµ fails to get an expanding surface, we can try if it will exist in the case of

increasingµ . To avoid the effects of large step size, this time we try smaller step size first.

 Figure 16 Increasingµ with step size of 0.01

3 3.02 3.04 3.06 3.08 3.1 3.12 3.14
0.5

1

1.5

2

2.5

3

3.5

4

4.5

3.1 3.12 3.14 3.16 3.18 3.2 3.22 3.24

4.04

4.06

4.08

4.1

4.12

4.14

4.16

4.18

4.2

28

From this graph, we successfully get a curve without fast dropping, but we still need further

proof for the existence whenµ continues to increase. Now, we increase the step size to be 0.1and

the consequence is the following

 Figure 17 Increasingµ with step size of 0.1

The same as Figure 15, the fast dropping phenomenon occurs again which means when we

increase the value ofµ continuously, the surface will end suddenly at a point near 3.7µ = .

 In conclusion, the surface on the top of the 3-D graph may only appear when the value of

µ is between 3.09 and 3.7.

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

29

V. Conclusion.

 This research shows how the initial values affect the oscillation and bouncing behaviors

when the time is very large. We use several nonlinear differential equations to model the spring

system by plugging in different values to each variable, and the MATLAB outputs give us visual

experience which makes the explanation easy to follow.

 For the oscillations, our model is given by '' 0.01 ' 10 siny y ay by tλ µ+ −+ + − = + . The

expression of ay by+ −− adds the nonlinearity to the model cleverly. In the case of small

nonlinearity and forcing, we find that when plugging in smaller initial values, a much faster

shrinking speed of the amplitudes appears but the time each oscillation needs to settle down to

the eventual periodic state is almost the same. When we change the nonlinearity and forcing to

be large, a completely different phenomenon occurs. We can see many types of stable periodic

solutions, which are depends on the initial values one has chosen. Besides these, a higher density

of oscillations for each period is presented for larger initial values.

 The concentration of this study is the bouncing behaviors. The main model is given by

another similar nonlinear differential equation '' 0.01 ' s ()*(cos)y y by ign y a tλ µ+ + = + . In order

to get the bouncing behaviors, we add an absolute value command to our original code. However,

we cannot get bouncing by assigning any values to four variables. The numerical requirements to

guarantee bouncing behaviors to happen are the step size between each y value has to be very

small (less than 0.003) and the set of y should contain both positive and negative values. After

several attempts, the ODE withb a λ= = or b a λ≈ ≈ may often show us a good bouncing graph,

but the case ofb a λ≈ ≈ may include chaotic bouncing behaviors besides general bouncing. With

regard to initial conditions, there is almost no effect on the bouncing. The MATLAB also shows

30

readers three 3-D graphs to describe the relationship for frequency, external forces and range of

amplitudes. The values on z-axis stand for the range of amplitudes, and they present a larger and

faster jump for each corresponding pair ofλ andµ when the initial values become larger and

larger. We also realize that when we increase the initial values, a possible surface appears on the

top of each 3-D graph. Unfortunately, when we implement numerical techniques to analyze the

slice of the surface, this statement was overthrown as we saw fast dropping z-values on both

increasing and decreasingµ directions. In other words, the surface will not continuously expand

as the initial values increase and it will disappear suddenly at some points.

 MATLAB software contributes a lot to this study, especially for the numerical analysis.

The programming code for each figure is in the Appendix.

31

VI. References

[1] J. Glover, A. C. Lazer and P. J. McKenna, Existence and Stability of Large-scale Nonlinear

Oscillations in Suspension Bridges, Z.A.M.P., 40 (1989), 171-200.

[2] A. C. Lazer and P. J. McKenna, Periodic Bouncing for a Forced Linear Spring with Obstacle,

Differential and Integral Equations, Vol. 5, No. 1 (Jan. 1992), 165-172.

[3] L. D. Humphreys and R. Shammas, Finding Unpredictable Behavior in a Simple Ordinary

Differential Equation, The College Mathematics Journal, Vol. 31, No. 5 (Nov., 2000), 338-346

[4] Blanchard, Paul, Robert L Devaney and Glen R Hall. Differential Equations. Third Edition.

Belmont: Thomson, 2006.

32

VII. Appendix

Figure 1

function dy=function2(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.1*y(2)-y(1)^3;

[T,X]=ode45('function2',[0 50],[20 0]);
plot(T,X(:,1));

Figure 2

function dy=function2(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.1*y(2)-y(1)^3;

[T,X]=ode45('function2',[0 200],[20 0]);
plot(T,X(:,1));

Figure 3

x=-20:0.01:0;plot(x,13*x,'-');
hold on;
x=0:0.01:20;plot(x,17*x,'-');

Figure 4

(1)

function dy=function4(t,y)

dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-15*y(1)-2*(abs(y(1)))+10+0.1*sin(4*t);

[T,X]=ode45('function4',[800 2500],[2 -1]);
plot(T,X(:,1));

33

(2)

function dy=function4(t,y)

dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-15*y(1)-2*(abs(y(1)))+10+0.1*sin(4*t);

[T,X]=ode45('function4',[800 2500],[1 0]);
plot(T,X(:,1));

(3)

function dy=function4(t,y)

dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-15*y(1)-2*(abs(y(1)))+10+0.1*sin(4*t);

[T,X]=ode45('function4',[800 2500],[0.1 -0.1]);
plot(T,X(:,1));

Figure 5

(1)

function dy=function4(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-9*y(1)-8*(abs(y(1)))+10+13.7*sin(0.17*t);

[T,X]=ode45('function4',[800 2000],[2 -1]);
plot(T,X(:,1));

(2)

function dy=function4(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-9*y(1)-8*(abs(y(1)))+10+13.7*sin(0.17*t);

[T,X]=ode45('function4',[800 2000],[1 0]);
plot(T,X(:,1));

34

(3)

function dy=function4(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-9*y(1)-8*(abs(y(1)))+10+13.7*sin(0.17*t);

[T,X]=ode45('function4',[800 2000],[0.1 -0.1]);
plot(T,X(:,1));

Figure 6

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-4*y(1)+sign(y(1))*(4+4*cos(0.1*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[2 -1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,a);

Figure 7

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-4*y(1)+sign(y(1))*(4+4*cos(0.1*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[2 -1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

Figure 8

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-20*y(1)+sign(y(1))*(20+4*cos(0.2*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[2 -1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

35

Figure 9

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-10.2*y(1)+sign(y(1))*(9.9+10*cos(0.1*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[2 -1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

Figure 11

(1)

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-4*y(1)+sign(y(1))*(4+4*cos(0.1*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[2 -1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

(2)

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-4*y(1)+sign(y(1))*(4+4*cos(0.1*t));

timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[1 0],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

(3)

function dy=function5(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=-0.01*y(2)-4*y(1)+sign(y(1))*(4+4*cos(0.1*t));
timefinal=3000;
[T,Y]=ode45('function5',[0 timefinal],[.1-.1],'AbsTol',eps,'NonNegative',eps);
i = min(find(T>timefinal-500));
t=T(i:end);
a=Y(i:end,1);
plot(t,abs(a));

36

Figure 12

(1)

mu=2.5:0.1:5;
lambda=0:0.05:1;
I=length(mu);
J=length(lambda);
z=zeros(I,J);
f=@(t,y,mu,lambda)[y(2);-0.01*y(2)-
10*y(1)+(sign(y(1)))*(10+(lambda)*cos((mu)*t))];
timefinal=3000;
for i=1:I
for j=1:J
[T,Y]=ode45(f,[0 timefinal],[0.1 -0.1],[],mu(i),lambda(j));
k=min(find(T>timefinal-500));
t=T(k:end);
a=Y(k:end,1);
z(i,j)=max(a)-min(a);
end
end
surf(lambda,mu,z);
zlim([0 10]);

(2)

mu=2.5:0.1:5;
lambda=0:0.05:1;
I=length(mu);
J=length(lambda);
z=zeros(I,J);
f=@(t,y,mu,lambda)[y(2);-0.01*y(2)-
10*y(1)+(sign(y(1)))*(10+(lambda)*cos((mu)*t))];
timefinal=3000;
for i=1:I
for j=1:J
[T,Y]=ode45(f,[0 timefinal],[1 0],[],mu(i),lambda(j));
k=min(find(T>timefinal-500));
t=T(k:end);
a=Y(k:end,1);
z(i,j)=max(a)-min(a);
end
end
surf(lambda,mu,z);
zlim([0 10]);

37

(3)
mu=2.5:0.1:5;
lambda=0:0.05:1;
I=length(mu);
J=length(lambda);
z=zeros(I,J);
f=@(t,y,mu,lambda)[y(2);-0.01*y(2)-
10*y(1)+(sign(y(1)))*(10+(lambda)*cos((mu)*t))];
timefinal=3000;
for i=1:I
for j=1:J
[T,Y]=ode45(f,[0 timefinal],[2 -1],[],mu(i),lambda(j));
k=min(find(T>timefinal-500));
t=T(k:end);
a=Y(k:end,1);
z(i,j)=max(a)-min(a);
end
end
surf(lambda,mu,z);
zlim([0 10]);

Figure 14

inia=2;
inib=-1;
for n=0:1:10
m=3.1-(n)*(0.1);
f=@(t,y,m)[y(2);-0.01*y(2)-10*y(1)+(sign(y(1)))*(10+0.5*cos((m)*t))];
timeinitial=3000*n;
timefinal=3000+timeinitial;
[T,Y]=ode45(f,[timeinitial timefinal],[inia inib],[],m);
k=min(find(T>2500+3000*n));
t=T(k:end);
a=Y(k:end,1);
z(n+1)=max(a)-min(a);
mu(n+1)=m;
inia=Y(timefinal,1);
inib=Y(timefinal,2);
end
plot(mu,z);

38

Figure 15

inia=2;
inib=-1;
for n=0:1:10
m=3.1-(n)*(0.01);
f=@(t,y,m)[y(2);-0.01*y(2)-10*y(1)+(sign(y(1)))*(10+0.5*cos((m)*t))];
timeinitial=3000*n;
timefinal=3000+timeinitial;
[T,Y]=ode45(f,[timeinitial timefinal],[inia inib],[],m);
k=min(find(T>2500+3000*n));
t=T(k:end);
a=Y(k:end,1);
z(n+1)=max(a)-min(a);
mu(n+1)=m;
inia=Y(timefinal,1);
inib=Y(timefinal,2);
end
plot(mu,z);

Figure 16

inia=2;
inib=-1;
for n=0:1:10
m=3.1+(n)*(0.01);
f=@(t,y,m)[y(2);-0.01*y(2)-10*y(1)+(sign(y(1)))*(10+0.5*cos((m)*t))];
timeinitial=3000*n;
timefinal=3000+timeinitial;
[T,Y]=ode45(f,[timeinitial timefinal],[inia inib],[],m);
k=min(find(T>2500+3000*n));
t=T(k:end);
a=Y(k:end,1);
z(n+1)=max(a)-min(a);
mu(n+1)=m;
inia=Y(timefinal,1);
inib=Y(timefinal,2);
end
plot(mu,z);

39

Figure 17

inia=2;
inib=-1;
for n=0:1:10
m=3.1+(n)*(0.1);
f=@(t,y,m)[y(2);-0.01*y(2)-10*y(1)+(sign(y(1)))*(10+0.5*cos((m)*t))];
timeinitial=3000*n;
timefinal=3000+timeinitial;
[T,Y]=ode45(f,[timeinitial timefinal],[inia inib],[],m);
k=min(find(T>2500+3000*n));
t=T(k:end);
a=Y(k:end,1);
z(n+1)=max(a)-min(a);
mu(n+1)=m;
inia=Y(timefinal,1);
inib=Y(timefinal,2);
end
plot(mu,z);

40

	University of Connecticut
	OpenCommons@UConn
	Fall 12-2012

	Finding Unpredictable Behaviors of Periodic Bouncing for Forced Nonlinear Spring Systems when Oscillating Time is Large
	Yanyue Ning
	Recommended Citation

	tmp.1360950807.pdf.55pmP

