Cytotoxicity Evaluation of EndoSequence Bioceramic and GuttaFlow sealers in vitro

Keivan Zoufan
University of Connecticut Health Center

Follow this and additional works at: https://opencommons.uconn.edu/sodm_masters
Part of the Dentistry Commons

Recommended Citation
https://opencommons.uconn.edu/sodm_masters/179
Cytotoxicity Evaluation of EndoSequence Bioceramic and GuttaFlow Sealers *in vitro*

Keivan Zoufan, D.D.S.

D.D.S., Tehran Azad University, Center of Dental Science, 1999
D.D.S., University of Southern California, School of Dentistry, 2004

A Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Dental Science at the University of Connecticut 2010
Cytotoxicity Evaluation of EndoSequence Bioceramic and GuttaFlow Sealers \textit{in vitro}

Presented by

Keivan Zoufan D.D.S.

Major Advisor \hspace{1cm} Dr. Qiang Zhu

Associate Advisor \hspace{1cm} Dr. Jin Jiang

Associate Advisor \hspace{1cm} Dr. Yu-Hsiung Wang

Associate Advisor \hspace{1cm} Dr. Kamran Safavi

University of Connecticut

2010
Acknowledgements

I would like to thank all those who have helped me to carry out and complete my thesis. First and foremost, I would like to acknowledge the dedication and guidance of Dr. Qiang Zhu. His professionalism in the laboratory setting and his approach to research is stress-free and admirable.

I would like to thank Drs. Jiang, Wang for your assistance and guidance.

Dr. Safavi I can not thank you enough for these three wonderful and exciting years as an endodontic resident. You have provided me with the invaluable skills that not only apply to the clinical setting and my professional career but to life in general, and that is to be analytical and to question the things I do and to understand why.

To my parents who have provided me with the gift of education and exposed me to so many incredible experiences throughout my life, thank you.

To my wife, Setareh whom I admire dearly, having spent three years raising our two daughters, Nika and Nura, and working full-time. Thank you for your support, patience and understanding.
Table of Contents

Title Page i
Acknowledgements iii
Table of Contents iv
Introduction and Background 1
Specific Aims 25
Materials & Methods 26
Results 28
Discussion 31
Conclusion 39
References 40
Figures 50
INTRODUCTION

Sealing ability is one of the fundamental requirements of root filling materials. Numerous root fillings have been introduced to improve the seal of the root canal. However, even in the era of adhesive dentistry, microleakage between root canal dentin walls and root canal fillings still exist and may adversely affect endodontic treatment outcome (Zhang 2009a). Recently, EndoSequence BioCeramic and GuttaFlow sealers have been developed to overcome this issue.

Furthermore, biocompatibility of endodontic sealers is critical to clinical success of endodontic therapy (Orstavik 2005). Whereas the cytotoxicity of conventional endodontic sealers has been well documented, little is known about the toxicity of newer endodontic sealers such as BioCeramic sealer or GuttaFlow. Therefore, the purpose of the current study was to review the Endodontic etiology, various root fillings, biocompatibility tests and at last investigate the early biological response of these new endodontic sealers.

Endodontic Etiology

Bacteria are the prime etiologic factor in development and progression of dental caries and pulp and periapical disease. Miller in 1890 was the first to describe the presence of several different types of bacteria in the necrotic pulp. Despite his findings, the role of microorganisms in the etiology of apical periodontitis eluded researchers and clinicians alike for a number of years.
Keyes (1960) demonstrated that dental caries did not develop in germ free animals fed a cariogenic diet. Kakehashi et al. (1965) elegantly demonstrated that germ-free rats were devoid of apical periodontitis when their pulps were kept exposed to the oral cavity. Soon thereafter, the crucial role of obligate anaerobes in endodontic infections was demonstrated (Möller, 1966). These findings were confirmed by others (Bergenholtz, 1974; Kantz and Henry, 1974; Wittgow and Sabiston, 1975). Sundqvist (1976) further demonstrated by sampling caries-free, human teeth requiring root canal treatment due to trauma. These teeth had necrotic pulps, but only the teeth harboring bacteria in their root canal systems developed periapical radiolucencies, which are the hallmark of apical periodontitis. Since then researchers have accepted the role bacteria and their byproducts play as the principal cause of apical periodontitis.

Endodontic Microflora

The unique local environment of the root canal provides the necessary factors that select for the strict anaerobic genera found therein. Oxygen and its products play an important role in the determination of which species will thrive at the different levels of the root canal system. Traveling apically in the root canal system, oxygen is consumed with an increase in production of carbon dioxide and hydrogen. The developing low reduction-oxidation potential, together with the lack of oxygen selects for the growth and development of anaerobic species.

The nutrients available to the invading bacteria also play a role in determining which bacterial species will thrive in the root canal. When there is
carious exposure of the pulp space, the coronal third of the root canal contains exogenous nutrients such as fermentable carbohydrates which promote the growth and development of those species which derive their energy by carbohydrate fermentation. Facultative anaerobes such as streptococci derive their nutrients in this manner (Edvardsson 1967). However, further down into the middle and apical third of the root canal system, the availability of these carbohydrates decreases and the bacteria found there must derive their nutrients from different endogenous sources. Also, certain bacteria cause inflammation of the periapical tissues and this inflammation leads to an influx of protein-containing exudate. Anaerobic bacteria have the ability to hydrolyze proteins and glycoproteins into amino acids which they can use as nutrients for growth and development (Figdor 2007). Many bacteria also receive their nutrients from the by-products of other species found in the infected root canal system. It is known that mixed bacterial populations contain a food chain in which one species receives its sustenance from another bacterial species (Marsh 1989). For example, black-pigmented anaerobic rods such as Porphyromonas have a very specific requirement for Vitamin K and hemin in order to grow. Vitamin K is produced by the Veillonella genus and this in turn is used by the black-pigmented rods for growth and development (Gibbons 1964). Species belonging to the Porphyromonas and Veillonella genera are commonly found together in the infected root canal system.

The pathogenicity of endodontic microflora is determined by a number of factors. Their interactions with other microorganisms and their ability to develop
synergistic relationships with other bacteria are an integral part of establishing virulence and pathogenicity. The importance of the mixed bacterial infections has been well demonstrated in animal studies (Sundqvist et al., 1979; Fabricius et al., 1982). Prevotella oralis and 11 other species isolated from the infected, necrotic pulps of teeth with periapical lesions from experimental monkeys were inoculated in various combinations or as a single species into the root canals of other monkeys. Inoculation with individual species resulted in mild apical periodontitis. However, in combinations, the same bacterial species induced a more severe periapical reaction. Interestingly, Prevotella oralis did not establish in root canals as a mono-infection. In contrast, it not only survived but dominated the endodontic flora when introduced with the other species involved (Fabricius et al., 1982).

Bacteria usually do not live as a single microbial species but as a collection of “matrix embedded...multispecies organisms in microecosystems that may be immobilized on the dentinal wall”. Today these groups of bacteria living together, protected by a hydrated exopolysaccharide complex, are known as biofilms (Nair, 2004).

Bacterial lipopolysaccharide (LPS) is a powerful stimulus of the immune response. LPS, also known as endotoxin, forms an integral part of the cell walls of Gram negative bacteria. Endotoxin may be released by bacteria during division or after death. The profound effect of LPS is mediated through its induction of endothelial cells to express adhesion molecules and macrophages to secrete numerous proinflammatory molecular mediators (e.g. TNF-alpha)
(Metzger 2000). As the Gram negative bacteria multiply and/or die in the apical regions of the root canal, LPS leaches out in the periapical tissues (Yanagisawa, 1980) where it induces and sustains periapical inflammation (Dahlén, 1980; Dahlén et al., 1981). The ability of LPS to trigger an immune response is also evidenced by mitogenic stimulation of B lymphocytes to produce non-specific antibodies which are taken up by soluble antigens released by the bacteria preventing the antibodies from acting against the microorganisms (Mims, 1988). This mechanism, like those of other pathogens, stimulates the immune response, but has a secondary mechanism to evade it.

The dynamic interaction between the microbes and their virulence factors and the host defenses determines the different stages of apical periodontitis. The causative agent in the vast majority of apical periodontitis lesions is bacteria (Kakehashi et al. 1965; Bergenholtz 1975; Sjogren 1976), but iatrogenic trauma, irritation from chemicals or overfilled root fillings all can result in periapical inflammation. The resulting inflammation produces symptoms such as pain, hypereruption of the tooth, and tenderness to touch.

Endodontic Treatment

The classical steps of Endodontic treatments are instrumentation, disinfection and obturation. Thorough cleaning and shaping of the canal system to render it as free as possible of bacteria, and bacterial products, followed by complete sealing of the canal system to prevent bacterial colonization and re-infection. Different materials are available to achieve this objective. Some have
been used for over one hundred years whereas others are relatively new to the endodontic armamentarium. Ongoing efforts to improve the outcome of endodontic therapy will continue to require the development of new materials.

Endodontic filling materials should not only be able to eliminate or minimize the ingress or egress of bacteria and their byproducts, but also have a favorable tissue response that promotes healing of the periapical tissues. Although endodontic sealers are designed to be used only within the root canal during endodontic therapy, they are frequently extruded through the apical constriction. Thus, they are often placed in intimate contact with the periapical tissues for extended periods of time. It is generally accepted that the biocompatibility of endodontic sealers is critical to clinical success of endodontic therapy. Whereas the cytotoxicity of conventional endodontic sealers has been well documented, little is known about the toxicity of newer endodontic sealers such as Bioceramic sealer, or GuttaFlow. Therefore, the purpose of the current study was to evaluate the early biological response of these new endodontic sealers.

Root Canal Filling Materials

The first evidence of a “root filling” comes from a maxillary lateral incisor from the skeletal remains dating back to 200BCE (Hellenistic period) in the northern Negev Desert. It shows a 2.5mm bronze wire wedged in the root canal (Zias and Numeroff 1987). However, Edward Hudson in 1809 is generally given credit for placing the first root filling, which was made of gold foil (Taylor 1922).
The main objectives of root canal therapy are cleaning and shaping, obturating the root canal system in three dimensions and preventing reinfection. Complete sealing of the root canal system after cleaning and shaping is critical to successful endodontic therapy. The intimate contact between endodontic sealers and adjacent periapical tissues, coupled with inadvertent but common extrusion of sealers into the periapical region during treatment, make the biological and sealing properties of sealers paramount to clinical success.

Various techniques have been proposed for root canal obturation and the most common method uses semisolid materials such as gutta-percha in combination with a root canal sealer or paste. Several classes of endodontic sealers are currently used in clinical practice, but all have significant limitations. (Orstavik 2005).

Gutta Percha

Gutta Percha is the most common root filling material in use today. This is interesting, because it is one of the oldest dental materials currently being used. The history of Gutta Percha goes back much earlier than its introduction into dentistry in 1860. The introduction of Gutta Percha into dentistry is credited to Dr. Asa Hill, a Connecticut dentist. Then Gutta Percha was introduced as a root filling material (Bowman 1867). Gutta-percha is a natural product made of the bark of the gutta-percha tree (Isonandra percha). Gutta Percha is chemically a polymer based on isoprene (Spangberg 1982). Gutta Percha endodontic points
are composed of approximately 66% zinc oxide, 20% gutta percha, 11% heavy metal sulfates, and 3% wax/resins (Friedman et al. 1975).

Animal studies have shown Gutta Percha to have an acceptable biocompatibility profile with a low degree of toxicity (Spangberg 1969a, Wolfson and Seltzer 1975). However, in vitro studies have shown gutta percha to be cytotoxic. This toxicity was believed to be attributed to toxic agents bound to water-insoluble substances (Spangberg 1969a). Later, it was believed that the cytotoxic nature of this material was due to the high content of zinc oxide in gutta percha (Pascon and Spangberg 1990). Finally, it was concluded by Sjogren et al. (1995), that the size and surface character of gutta percha determined the tissue reaction of the material.

It was also apparent that “gutta percha root fillings” in the absence of sealing cement were frequently linked to the manifestations of apical periodontitis manifested both clinically and radiographically (Orstavik 2005). To combat this problem, a cementing medium or sealer was used to accompany the solid gutta percha cone (Rickert 1925).

Coated Gutta Percha

Gutta Percha is now available with the uniform resin layer that may achieve bonding between the solid core and a resin sealer. The manufacturer claims that this will inhibit leakage between the solid core and the sealer. The technique calls for use of EndoRez sealer (Ultradent, South Jordan, UT) with this new solid-core material. The material with a resin sealer was compared with
guttapercha for microleakage. The results indicated a bonding between core and sealer resulting in far less microleakage than gutta-percha (shipper 2004).

Silver Cones

Jasper (1933) introduced cones made of silver, which he claimed produced the same success rate as gutta-percha and were easier to use. However, when silver points contact tissue fluids or saliva, they corrode. The corrosion products have been found to be cytotoxic and produced pathosis. Therefore, silvercones are no longer used in endodontic practice (AAE position statement, Use of silver points, 2007).

Resilon

Recently, the resin-based obturation systems Epiphany (Pentron Clinical Technologies), RealSeal (SybronEndo), and Resinate (Obtura Spartan, Earth City, MO) have been introduced as alternatives to gutta-percha that brings dentin bonding technology to root canal obturation. The principle of chemically bonding the root-fillings to the canal wall may have potential for improving both the apical and coronal seal of the canal. Resilon (Resilon Research, LLC, Madison, Connecticut) is a thermoplastic synthetic polymer based on polymers of polyester containing bioactive glass and radiopaque fillers. The filler content is approximately 65% by weight. Resilon handles like gutta percha, and is available in the same variety of master cones and accessory cones. The sealer used with Resilon is Epiphany dual cure resin cement (Pentron Clinical Technologies,
Wallingford, Connecticut). The resin sealer bonds to a Resilon core, and attaches to the etched root surface. The manufacturer claims that this forms a “monoblock”. With traditional techniques there is a gutta-percha–sealer interface and a tooth–sealer interface. With Resilon the resin sealer bonds to both the canal wall and the cone. Whether a monoblock is achievable remains controversial. An in-depth review article on the subject of monoblocks indicates that with current materials and techniques, the monoblock has yet to be achieved (Tay, 2007).

Activ GP

Activ GP (Brasseler USA) consists of gutta-percha cones impregnated on the external surface with glass ionomer. Single cones are used with a glass ionomer sealer. The single cone technique is designed to provide a bond between the dentinal canal wall and the master cone. Like Resilon, this material is popular because of its ability to create a “monobloc” obturation. The Activ GP sealer is a glass ionomer sealer, which can adhere chemically and micromechanically to the Activ GP cones and bond to the dentin (Koch and Brave, 2006).

A bacterial leakage study comparing Activ GP/glass ionomer sealer, Resilon/Epiphany, and gutta-percha/AH Plus demonstrated no statistically significant differences in leakage at 65 days (Fransen 2008).
Endodontic Sealers

An endodontic sealer should be biocompatible, antibacterial, radiopaque, hermetically seal the root canal system, be dimensionally stable and should have good adhesion to the core material and the root canal wall.

Endodontic sealers are necessary to seal the space between the dentinal wall and the obturating core interface. Sealers also fill voids and irregularities in the root canal, lateral and accessory canals, and spaces between core materials. According to the composition, Sealers can be classified in various classes. These include Silica based, Zinc-oxide-eugenol (ZOE), glass ionomer, resin based, calcium hydroxide based, and silicone based sealers (Orstavik, 2005).

Zinc-Oxide Eugenol

ZOE sealers go by their commercial variants known as Kerr pulp Canal Sealer, Roth sealer, and TubliSeal. ZOE sealers possess some antibacterial activity, however, there have also been shown to exhibit some toxicity when placed directly on vital tissues (Orstavik 2005). This characteristic is partially attributed to the several chemical additives used in the various formulations. These include rosins used for greater dentin adhesion, paraformaldehyde for antimicrobial and mummifying effects, germicides for antiseptic action, and corticosteroids for anti-inflammatory action (Hauman and Love, 2003). However, eugenol itself has been shown to exhibit various properties depending on its concentration and duration of contact with cells. These properties include
inhibition of prostaglandin synthesis, inhibition of sensory nerve activity, and exhibition of antimicrobial activity (Hume 1988). Furthermore, analysis of the setting reaction of zinc-oxide eugenol cements, indicate that the eugenol oil becomes available as a result of surface hydrolysis of the zinc eugenolate chelate. The release rate of eugenol when placed in saline was found to be much greater than through intervening dentin (Hume 1988). Consequently, when in contact with wetter periapical tissues, the release is more rapid with a concentration sufficient to kill cells (Hauman and Love, 2003).

Glass Ionomer Sealers

Glass ionomer sealer has the advantage of chemically bonding to dentin. Ketac-Endo glass ionomer sealer has been shown to be biocompatible and maintain the ability to adhere to dentin (Ray and Seltzer, 1991). Animal studies and *in vitro* cell culture studies have shown minor tissue irritation, low toxicity, and little cytotoxic effect on L-929 cells after a setting time of 24h and 1 week, respectively (Zetterqvist et al. 1987&1988, Pissiotis et al. 1991, Ersev et al. 1999). However, they have also been shown to leak and disintegrate (Schafer et al. 2003).

Active GP sealer is a glass ionomer sealer, which can adhere chemically and micro-mechanically to the Activ GP cones and bond to the dentin (Koch and Brave, 2006). Donadio et al. (2008) demonstrated that Active GP sealer showed moderate toxicity when fresh and less toxicity when set.

Glass ionomer sealers have been shown to be well tolerated by tissues
(Kolokuris et al., 1996). However, in vitro studies have also shown glass ionomer cements to be highly toxic to cells in culture (Hume and Mount 1988). This characteristic is reported to be due to the release of uncured acid from the material. However, dentin is believed to play a role in buffering the acid, which might explain its clinical usefulness in successful endodontic treatment outcomes (Friedman et al., 1995).

Resin Based Sealers

Resin based sealers are widely used today. The most popular of these is the AH series developed over 50 years ago by Andre Scroeder in Switzerland. The AH 26 powder contains hexamethylenetetramine (HMT) which is made from formaldehyde and ammonia. HMT is a catalyst/disinfective agent which is hydrolyzed to ammonia and formaldehyde. The amount of formaldehyde release is determined by the amount of freshly mixed sealer which is in contact with water (Koch 1999). AH26 has been shown to release formaldehyde in the freshly mixed state for up to 2 days at which point levels drop off (Spangberg et al. 1993). Consequently, AH26 has been shown to exhibit some cytotoxicity. These findings are concurrent with in vitro cytotoxicity studies which show that cytotoxicity levels are greatest immediately after mixing and gradually decrease with time, ceasing after several days (Spangberg, 1969 and Spangberg, and Langeland, 1973). Other resin formulations include resorcin-formaldehyde type, also known as “Russian Red,” Diaket, a polyvinyl chloride in polymer which sets by chelation, and EndoREZ, which is based on urethane dimethacrylate, and has
been shown to have hydrophilic properties (Orstavik 2005).

The hydrophilic properties of the urethane methacrylate based resin sealers along with resin coated gutta percha points, has sparked new interest in the development of a sealer based on BisGMA, UDMA, and hydrophilic methacrylates used in combination with a primer to coat the dentinal walls (Orstavik 2005). These materials have given rise to the concept of a homogeneous “monoblock” obturation.

Calcium hydroxide based sealers

Calcium hydroxide based sealers were developed to taking advantage of the biocompatibility and possible bioactivity of calcium hydroxide in pulp capping and an interappointment dressing. However, to be effective in this respect, calcium hydroxide must dissociate into calcium and hydroxyl ions. For this to occur, it would require the sealer to break down or dissolve to some degree. If the dissociation occurred, the sealing ability would be compromised (Soares et al., 1990).

Calciobiotic root canal sealer (CRCS) is a zinc oxide–eugenol sealer with calcium hydroxide as one ingredient. Sealapex (SybronEndo) is a catalyst/base system. The base contains zinc oxide, calcium hydroxide, butyl benzene, sulfonamide, and zinc stearate. The catalyst contains barium sulfate and titanium dioxide as radiopacifiers. Apexit and Apexit Plus (Ivoclar Vivadent, Schaan, Liechtenstein) consist of an activator (disalicylate, bismuth hydroxide/bismuth carbonate, and fillers) and a base (calcium hydroxide, hydrated colophonium,
and fillers).

Silicone-based sealers

Polydimethylsiloxanes are often referred to Silicons. Silicons possess unique properties such as stability, low surface tension, lack of toxicity and have been utilized in all aspect of health care. Silicone-based sealers, based on silicons widely used as sealants in kitchens, bathrooms, and joining material in construction work, show sound biological performance and can be made to polymerize without shrinkage. The first of those materials were based on C-silicones (condensation cross-linking silicons); a newer material is based on A-silicones (addition cross-linking), such as RoekoSeal (Automix, Roeko Dental Products, Langenau, Germany).

The new root canal filling paste, GuttaFlow (GF; Coltene/Whaledent, Altstatten, Switzerland), is a modification of this sealer. It contains Gutta Percha particles as filler. According to the manufacturer, its ingredients include Gutta percha, zinc oxide, zircon dioxide, paraffin and silicone-based oils, hexachloroplatinic acid and silicic acid. The manufacturer is claiming an improved seal by slight (0.2%) expansion (Bouillaguet 2006). Roeko-Seal, Endo-Fill, and GuttaFlow are examples of silicone sealers (Ortsavik 2005).
Silica based sealers

Recently, Silica based sealers have been introduced to the market and described by manufacturer as a bioceramic material. Bioceramic materials are “ceramic products or components employed in medical and dental applications, mainly as implants and replacements, which have osteoinductive properties.” Many materials used today in dentistry are considered to be bioceramics, such as zirconia, hydroxyapatite, tricalcium phosphate, tricalcium silicate, and dicalcium silicate (Zhang 2009a). According to this definition, both GMTA and WMTA are considered to be bioceramics.

EndoSequence BC sealer (Brasseler, Savannah, GA), also known as iRoot SP root canal sealer (Innovative Bioceramic Inc, Vancouver, Canada), has recently been introduced to the market. According to manufacturer's description, BC sealer is premixed, injectable white hydraulic cement and composed of zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, and various filling and thickening agents which requires the presence of water to set and harden. To date there are few studies evaluating this new material.

Biocompatibility

Biocompatibility describes the ability of a material to perform with an appropriate host response when applied as intended (Williams 1992). There are various culture methods utilized for the evaluation of the toxic characteristics of
dental materials. Organ culture, tissue culture, and cell culture comprise the range of culturing methods available. Of these methods, organ culture, due to its impracticality, was not developed for use. Consequently, tissue culture was the original technique employed for evaluating toxicity. While all methods assess the degree of toxicity, the techniques for evaluating cell injury are many. Depending on the type of study, cell injury measures included the degree of proliferation from the explant periphery, attachment to or detachment from a substrate, colony inhibition or growth inhibition in assay, cell counting and mitotic index, cell membrane permeability as measured by dye exclusion, vital staining, 51Cr release, and finally, evaluation of macromolecular biosynthesis and analysis of differentiated functions (Spangberg 1981).

The MTT assay is also developed for evaluating toxicity of a test material at the cellular level. This method was first described by (Mosmann 1983). This assay is widely used for biocompatibility evaluation in in vitro studies (Huang et al. 2002b, Camps and About 2003, Huang et al., 2004). MTT stands for [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide]. It measures the ability of a mitochondrial dehydrogenase enzyme found in viable cells to cleave the tetrazolium rings of MTT (pale yellow). This cleavage results in the formation of formazan crystals (dark blue). These crystals are largely impermeable to cell membranes and accumulate within healthy cells. The addition of a detergent results in solubilization of the cells and the release of the crystals. The number of surviving cells is directly proportional to the level of the formazan crystals produced. The color can be quantified using a simple colorimetric assay. The
results can then be read on a multiwell scanning spectrophotometer (ELISA reader). The advantages of this assay method are that it is simple, rapid, and precise and does not require the use of radioisotopes (Eldeniz et al., 2007).

The majority of in vitro techniques are based upon material-cell contact by diffusion and evaluation of the effects by calculating the degree of destruction of the monolayer. Monolayer disruption, target cell lysis, cell migration inhibition, and colony formation represent the array of methods for calculating these effects. However, the major flaw in all these methods is the lack of direct cell-material contact and the reactions proceed slowly. Moreover, the criteria for cell death are not clearly defined. Finally, the evaluation criterion is a subjective measurement (Spangberg 1973).

In response to these drawbacks, Spangberg (1973) adopted a technique utilized in immunologic research that incorporates the use of radioactive markers. In this method, DNA-synthesizing cells are incubated with 51Cr and the radiolabel is incorporated into the DNA. Once the cells are exposed to the toxic material, cell damage occurs and the labeled DNA is released from the cell. Consequently, this technique provides a rapid and highly sensitive method for objective quantification of cell damage with good accuracy while allowing for adequate cell-material contact for both soluble and non-soluble materials (Spangberg 1973). Spangberg and Langeland (1973) used this technique to evaluate several root canal filling materials. Amongst these were various zinc-oxide eugenol formulations, N2, Tubli-Seal, AH26, gutta-percha, and chloropercha. In the fresh state, AH26 demonstrated a high degree of toxicity though less than the
remaining materials at 1h cell material contact but significantly increased at 4h as measured by 51Cr release. Cell lysis occurred for all materials except Moyco chloropercha at 24h. Gutta-percha points only slightly increased release of 51Cr after 24h of cell material contact. Lastly, analysis of the medium extracts showed AH26 to exhibit a significant increase in radiochromium release though less than Tubli-Seal. N2 and Proco-Sol caused complete cell lysis (Spangberg and Langeland, 1973).

In conclusion, studies have shown gutta percha to be relatively inert. Based on these early cytotoxicity studies, Langeland (1974) outlined the properties of root canal sealants and pastes relative to toxicity and resorbability and evaluated via tissue culture experiments, implant studies, and usage tests. These criteria still hold true today. He concluded that 1) in their freshly mixed state, all sealers cause irritation, 2) once set or cured, some sealers lose their irritant properties and become relatively inert, 3) all sealers are resorbable, 4) the possibility of sealer components to travel and settle in internal organs is a risk, 5) paste only root fillings are not acceptable, 6) the root canal should be filled as much as possible with a solid or semi-solid nonirritating material, and 7) no amount of sealer should be in contact with remaining pulp or the periapical tissue.

The ISO (1984) in technical report 7405 established a structured approach for evaluating the biocompatibility of dental materials. It includes three levels. 1) initial tests (cytotoxicity, mutagenicity); 2) secondary tests (sensitization, implantation tests, mucosal irritation); and 3) usage tests.
Biocompatibility of endodontic materials can be evaluated by various tests. These include genotoxicity, mutagenicity, carcinogenicity, cytotoxicity, histocompatibility or microbial effects. Therefore, it is impossible to determine the relative biological characteristics of a material using one test alone. Several structured in vitro and in vivo tests are necessary for this type of assessment (Hauman and Love 2003).

Cell Culture Studies

Cell culture tests have been employed to evaluate the cytotoxic reactions induced by endodontic materials (Rappaport et al. 1964, Keresztesi and Kellner 1966). Permanent cell lines such as HeLa, 3T3 or L929 cells and oral fibroblasts are commonly used for these studies. Despite this, primary cell lines are thought to be more relevant for biocompatibility studies because the materials tested are more likely to come into contact with cells such as human fibroblasts. On the contrary, the advantage that is offered by permanent cell lines is that they continue to grow as long as there is nutrient present, whereas primary cell lines have a predetermined life span which means that growth will plateau regardless of the growth conditions (Key et al., 2006). In addition, L929 cells are commonly used because they have been shown to be more prone to toxic products than human gingival fibroblasts (Pissiotis and Spangberg 1991).

Various biological endpoints are used to measure the degree of toxicity elicited by a given material. These include growth inhibition, determination of the effective dose 50 (ED$_{50}$), membrane integrity, DNA, RNA, or protein synthesis,
and alteration in cell morphology (Hauman and Love 2003).

Implantation Studies

Implantation studies represent an *in vivo* method for evaluating nonspecific tissue reactions caused by endodontic materials and are subsequently evaluated histologically after the material has been implanted into various animal tissues. Test materials may be directly injected or implanted either directly or placed within teflon, silicone or polyethylene tubes. Implantation sites can vary from subcutaneous connective tissue, muscle or bone of rats, rabbits, guinea pigs, hamsters and ferrets (Hauman and Love 2003).

Usage Tests

Usage tests are categorized as specific *in vivo* toxicity tests which involve the use of the test material in animals. Materials are usually deliberately overfilled to determine their effects on the periapical tissues. It is important to note, that due to ethical considerations, usage tests in humans are rarely performed. Moreover, they are time consuming, expensive and difficult to control (Hauman and Love 2003). Furthermore, it is often difficult to control for the influence of other factors both technical and biological such as infection or dentin chips between the filling material and vital, reacting tissue (Orstavik, 1988).

In evaluating all three levels of biocompatibility testing, it should be noted that usage tests, in addition to their inherent pitfalls, have a tendency to demonstrate less tissue-irritating characteristics of sealers than one would expect
from cell culture or implantation experiments. On the other hand, while cell culture studies are valuable for identifying individual toxic components of a material and are the most sensitive test, they provide little relevant clinical information. Therefore, ranking of toxicity will differ depending on the technique (Orstavik 1988, Mjor 1988).
New Root Filling Materials

GuttaFlow

GuttaFlow (Coltene Whaledent, Switzerland) is a silicone based sealer which consists of a mixture of gutta-percha powder, poly-dimethylsiloxane and silver particles. According to the manufacturer, its ingredients include Gutta-Percha, zinc oxide, zircon dioxide, paraffin and silicone-based oils, hexachloroplatinic acid and silicic acid. It comes in a unidose capsule and is injected after mixing. The silicone is mixed with gutta-percha powder to form what the company calls a “two-in-one” cold filling system. GuttaFlow is flowable, and sets within 10 min. It is supposed to be easily applied using lentulo spiral or application syringe. The manufacturer claims that GuttaFlow slightly expands (0.2%) during setting, which results in an improved apical seal of the root end fill. The major advantages of this material are that it flows at room temperature and that a primer can be used to increase its wettability to radicular dentin.

Polydimethylsiloxane has been used widely in prosthodontics because of its low dimensional change (0.6–0.15%) and low water absorption. Silicon soft liners have been proposed for use in patients with irritation of the denture bearing mucosa. Room temperature silicon is popular as a maxillofacial material for correcting facial defects because of its ease of processing and good physical properties. Also silicon-low temperature isotropic in a subperiosteal implant is found to be very biocompatible (Philips, 1981). Also, Guttaflow was ineffective in killing the bacteria in vitro, (Orstavik 2004).
EndoSequence BC sealer

EndoSequence BC sealer has been recently developed to improve the seal of root canal filling. The sealer consists of zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, filler and thickening agents. The manufacturer claims that superior biocompatibility and sealing ability are due to its high hydrophilic properties unlike traditional hydrophobic materials. As a hydrophilic sealer it utilizes moisture within the canal to complete the setting reaction and it does not shrink on setting. It is biocompatible and exhibits antimicrobial properties during the setting reaction (Zhang 2009b).
SPECIFIC AIMS

Even though GuttaFlow and BC sealer have been on the market, there are few studies to investigate their biocompatibility. Therefore, the purpose of this experiment was to test the null hypothesis that there was no difference in cytotoxicity between these two contemporary systems, GuttaFlow and BC sealer and the traditional root canal sealers, AH plus and TubliSeal.

The specific aim of this study is to evaluate the cytotoxicity of EndoSequence BC sealer and GuttaFlow sealer in an in vitro cell culture system, and compare them with traditional AH plus sealer and TubliSeal sealer.
MATERIALS AND METHODS

Cell Culture

L929 mouse fibroblasts were obtained from American Type Culture Collection (ATCC, Manassas, VA). Cells were grown in Eagle’s minimum essential medium (EMEM) (ATCC), supplemented with 10% fetal bovine serum (HyClone Laboratories Inc. Logan UT), and 1% antibiotic/antimycotic cocktail (300 units/ml penicillin, 300 μg/ml streptomycin, 5 μg/ml amphotericin B; Gibco BRL, Gaithersburg, MD) under standard cell culture conditions (37 °C, 100% humidity, 95% air and 5% CO₂).

Root Canal Sealers

The root canal sealers used in this study were:

1. EndoSequence BC Sealer (Brasseler USA, Savannah, Georgia).
2. GuttaFlow (Coltene/Whaledent, Langenau, Germany).
4. Tubliseal Xpress (SybronEndo, Orange, California).

Cell Cytotoxicity Assay

The cytotoxicity of the different sealers was evaluated in two ways:

In one set of experiments, set sealer was used. Sealers were mixed according to manufacturer’s instruction, placed into the 24-well plates at 0.5
mg/well and incubated for 72 hours in a cell culture incubator to allow the sealer to become set.

In another set of experiments, fresh mixed sealers were placed into the 24-well plates at 0.5 mg/well.

The fresh and set sealers were incubated with three different amounts of cell culture medium: 300 µL, 600 µL, and 1000 µL for 24 and 72 hours. Each sealer had a total of 12 eluate groups to be evaluated. There were a total of 48 eluate groups for the four sealers.

For the cell cytotoxicity assay, L929 cells were seeded into 96-well plates at 3x10^4 cells/well and cultured for 24 hours to allow adhesion. Then 100 µL of the sealer eluate was placed into the culture wells. Cells cultured with 100 µL medium served as a control group. After 24h incubation, the cytotoxicity was evaluated by MTT assay according to manufacturer's instructions (ATCC, Manassas, VA).

Statistical Analysis

Cell viability was calculated as the ratio of the number of live cells in the experimental group to that in the control group, and the results were analyzed with one-way ANOVA. Post hoc tests were done with Scheffe’s test. Each experiment was repeated three times.
RESULTS

Sealer Setting:

When the tested sealers were left on the bench top at room temperature, EndoSequence BC sealer did not set even after 2 months (Figure 1). The other three sealers had became set when they were checked after 24 hours (Figure 1). No indentation or penetration with number 15 blade could be made in the sealer pellet after setting.

When the tested sealers were placed in a cell culture incubator for 24 hours, all sealers became set (Figure 2). EndoSequence BC sealer released a clear liquid (Figure 2).

Cytotoxicity of Set Sealers

When L929 cells were cultured with one-day eluate of set sealers, AH Plus and Tubliseal were more cytotoxic than GuttaFlow and EndoSequence BC sealer, and Tubliseal exhibited the most cytotoxicity in the 300 μL eluate group (Fig. 3). In the 600 μL eluate group, Tubliseal was more cytotoxic than the other three sealers and no cytotoxicity difference was observed among AH Plus, BC sealer and Tubliseal (Fig. 3). In the 1000 μL eluate group Tubliseal was more cytotoxic than AH Plus and BC sealer. No cytotoxicity difference was observed between Tubliseal and GuttaFlow (Fig. 3).

When cells were cultured with three-day eluate of set sealers, AH Plus and Tubliseal were more cytotoxic than GuttaFlow and EndoSequence BC sealer
in the 300 µL and 600 µL eluate groups (Fig. 4). AH Plus was more cytotoxic than Tubliseal in the 600 µL eluate groups (Fig. 4). Tubliseal was more cytotoxic than AH Plus in the 1000 µL eluate group (Fig. 4). Also no cytotoxicity difference was observed among AH Plus, BC sealer and GuttaFlow, and among Tubliseal, BC sealer and GuttaFlow (Fig. 4). There was no cytotoxicity difference between GuttaFlow and EndoSequence BC sealer in all the eluate groups (Fig. 4).

Cytotoxicity of Fresh Sealers:

When cells were cultured with one-day eluate of fresh sealers, AH Plus exhibited the most cytotoxicity, and Tubliseal was more cytotoxic than BC sealer and GuttaFlow in the 300 and 600 µL eluate groups (Fig. 5). In the 1000 µL eluate groups, AH Plus exhibited the most cytotoxicity, and there was no cytotoxicity difference among BC sealer, Tubliseal, and GuttaFlow (Fig. 5).

When cells were cultured with three-day eluate of fresh sealers, AH Plus exhibited the most cytotoxicity, and Tubliseal was more cytotoxic than BC sealer and GuttaFlow in all the 300, 600, and 1000 µL eluate groups (Fig. 6). No cytotoxicity difference was observed between GuttaFlow and EndoSequence BC sealer in all the eluate groups (Fig. 4).
Summary

No cytotoxicity difference was observed between EndoSequence BC sealer and GuttaFlow, and they were less cytotoxic than AH Plus and Tubliseal.
DISCUSSION

Biomaterials science and technology have been expanding tremendously in recent years. The results of this evolution are obvious in dental applications especially with the contemporary development of Nanotechnology. Among biomaterials, bioceramics possess a specific field due to various interactions with the biological tissues.

Interaction between biomaterials and natural tissues is a significant subject for biomaterials science. Information originating from this interaction is essential to aid the design and fabrication of new biocompatible and bioactive materials. In last few decades, ‘biomaterials’ is a great developing research area in the interdisciplinary field of materials-related sciences with various applications in medical and dental treatment. The development and manufacture of biomaterials demand high standards of production process, due to the combination of both high-level mechanical and biological properties.

Bioceramics related to their interactions with the biological tissues are classified as inert and bioactive.

Inert Biocermaics

Inert bioceramics are biocompatible materials, exhibiting a morphological fixation with the surrounding tissues without any biochemical bonding. In dentistry, the most significant representatives are alumina (Al₂O₃), zirconia (ZrO₂) and carbons (C), which have also been widely used in medical fields, e.g., orthopedics, such as joint or tissue replacements and for coating metal implants.
to improve their biocompatibility. During the last decades, Ti and its alloys have replaced these inert bioceramics to a great extent. However nowadays, with the advance of nanotechnology these inert bioceramics have gained active roles.

Bioactive bioceramics

The bioactive materials elicit a specific biological response at the interface, which results in the formation of a biological bond between the adjacent tissues and the material itself. They include Calcium Phosphate Ceramics (CPC), bioactive glasses, bioactive glass ceramics and Mineral Trioxide Aggregate (MTA). The rapid healing, the thickness and the strength of the bonding zone depend upon the various materials. The common characteristic of all the known bioactive implant materials is that in order to have a bond with tissues, a layer of biologically active hydroxylcarbonate apatite must form at the interface (Adamopoulos 2007). The formation of this apatite, which resembles bone apatite, is mostly due to the calcium and phosphorous ions coming out from the biomaterial surface. The apatite layer is the bridge connecting the ionically bonded bioceramic to the organically bonded bone.

Bioceramic (BC) sealer is composed of zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, and various filling and thickening agents. As a hydrophilic sealer it utilizes moisture within the canal to complete the setting reaction. Moisture from dentin is supposed to facilitate the hydration reactions of calcium silicates to produce calcium silicate hydrogel and calcium hydroxide. Calcium hydroxide partially reacts with the phosphate to form
hydroxyapatite and water (Zhang 2009b). The water is supposed to start again the reaction cycle and react with calcium silicates to produce calcium silicate hydrogel and calcium hydroxide.

BC sealer possesses antibacterial effect due to the combination of high pH, hydrophilicity, and active calcium hydroxide diffusion. However, the antimicrobial effect was greatly diminished at 7 days after mixing. The antibacterial effect might be a combination of high pH, hydrophilicity, and active calcium hydroxide diffusion (Zhang 2009a). The material also has excellent radiopacity and is available in a preloaded syringe with intracanal tips that can be bent to facilitate placement in clinical situations. Also Zhang (2009b), in the in vitro study, showed equal sealing ability with BC and AH plus sealers.

GuttaFlow is a recently introduced alternative root filling material. It consists of a polydimethylsiloxane matrix highly filled with gutta percha powder (<30 micron) and nano-silver particles (GuttaFlow instruction Inc. 2008). The finely ground gutta percha powder of the sealer is claimed to create bonds with the master gutta percha cone providing better seal. In addition, there is nano-silver in the material to prevent the re-growth of bacteria (GuttaFlow instruction Inc. 2008). GuttaFlow showed similar leakage results when used with lateral compaction or System B techniques, but it demonstrated expanding capacity over time compared to compacted gutta-percha and AH26 over a 12-month period (Kontakiotis 2007). When GuttaFlow was compared to two single-cone obturation systems, it was found that the apical seal was as effective as AH Plus
used with vertical compaction (Monticelli, 2007). However, Vasiliadis (2010) demonstrated neither AH Plus nor GuttaFlow completely sealed the root canal.

Biocompatibility of Sealers

This study compared the cytotoxicity of BC and GuttaFlow sealers with the conventional root canal sealers, AHplus and Tubiseal. In the present study, L929 mouse fibroblasts were placed in the prepared elute of the tested materials. L929 mouse fibroblasts represent cells of a permanent cell line that are commercially available. L929 is easy to prepare and culture, provides more reproducible results, and is routinely used for cytotoxicity studies (Groth et al., 1995).

The MTT assay is a standard assay to evaluate the cytotoxicity of endodontic materials. The MTT assay was used in this study to measure the cytotoxicity elicited by the given test materials. This assay measures cytotoxicity, proliferation or activation of cells. By measuring the metabolic activity of cells, as measured by the ability of mitochondrial dehydrogenase enzymes to cleave [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and form dark blue formazan crystals, the assay detects living, but not dead cells. The level of formazan product created is proportional to the number of surviving cells and quantified in a multiwall scanning spectrophotometer. The main advantages of this assay are that it is simple, rapid, precise, and does not require the use of radioisotopes (Mossman 1983).

The elution of the sealers mainly tests whether the material will leach cytotoxic substances which inhibit cell activity and growth. The advantage of this
method is not only quantitative and reproducible, but also to test fresh and set material at the various stages. A series of elutions with various times could provide the cytotoxic degree of the tested material. However, different materials may have different elution processes, so the elution volume and elution time should be carefully considered.

In this study, the cytotoxicities of four sealers were evaluated. AH Plus was found to be the most cytotoxic when fresh and less cytotoxic when set. These findings are consistent with other studies which have demonstrated that AH26 is most cytotoxic initially after mixing and the cytotoxicity gradually decreases with time (Spangberg, 1969 and Spangberg and Langeland, 1973). This has been shown to be related to the release of formaldehyde (Spångberg et al., 1993).

AH26 and AH Plus demonstrated both cytotoxicity and genotoxicity in vitro, when tested with rat cerebral astrocyte cell culture (Huang TH, 2002). When used with human cervical carcinoma (HeLa) cells and mouse skin fibroblasts (L929), AH Plus was found to be more toxic than AH26 (Miletic, 2000). Pinna et al., found AH Plus to be severely toxic to cells during the first 72 hours, but toxicity decreased over 5 weeks (Pinna, 2008). The results of the present experiment are in agreement with these earlier studies.

Although zinc-oxide eugenol (ZOE) containing sealers are the most widely used sealers in endodontics, non-specific biocompatibility tests showed eugenol elicited a pronounced tissue irritation (Langeland, 1978). Araki et al.,(1993) demonstrated that the increased cytotoxicity of ZOE sealer was caused by its
eugenol content. Hume (1986) demonstrated that when ZOE was in contact with the soft tissue, release of eugenol caused local cell death. Kolokouriset al. (1998) also demonstrated that eugenol liberation from ZOE containing compounds was initially high immediately after mixing, but decreased overtime with a progressive decrease in connective tissue reaction.

The TubliSeal sealer, a eugenol based sealer, was shown to be cytotoxic when fresh and set, but its toxicity gradually declined and was less than AH Plus. Eugenol has been identified as one of the major ingredients responsible for the material's cytotoxicity (Serene et al., 1988, Guigand et al., 1999, Hauman and Love, 2003). The results of our study are in agreement with these earlier studies.

The first silicone-based endodontic sealer, RoekoSeal has been reported to be non-cytotoxic (Miletic et al. 2005). GuttaFlow is the most recent silicone based sealer which is manufactured by adding gutta-percha powder to the silicone matrix. Silicone sealers, based on their composition, are expected to be biocompatible. However, there are few reported studies on the cytotoxicity of GuttaFlow. Gerosaetal (2003) compared the cytotoxicity of GuttaFlow with Pulp Canal Sealer and resin-based Acroseal (Septodont, France) and found GuttaFlow is less cytotoxic than Pulp Canal Sealer and Acroseal. Miletic et al., (2005) found no cytotoxic effects of the silicon-based sealer RoekoSeal on HeLa cells and mouse skin fibroblasts (L929). Gencoglu et al., (2003) investigated the connective tissue response of RoekoSeal and found new granulation tissue with fibrous tissue adjacent to RoekoSeal on day 30 after treatment. In the animal study, Gencoglu
et al (2009) investigated the remote organ toxicity and connective tissue reaction to GuttaFlow. Slight cytotoxic effects were observed in all of the investigated organs such as lung, liver, kidney and skin of albino Wistar rats within a period of 24 h and this effect decreased in time and was found acceptable.

In contrast, GuttaFlow was shown to exhibit a comparatively low cytotoxicity and less cell damage than with resin-based systems or AH26 (Bouillaguet et al., 2006) and it was only slightly more cytotoxic than the pure silicone sealer (Eldeniz, 2005). Guttaflow and RoekoSeal demonstrated comparatively low cytotoxicity, especially when tested fresh (Bouillaguet 2006, Eldeniz 2007). The results of our study demonstrated that GuttaFlow was comparatively non-cytotoxic.

Bioceramics currently in use in both dentistry and medicine have been tested for biocompatibility. Alumina and zirconia are among the bioinert ceramics used for prosthetic devices. Based on their composition, no toxicity would be expected and in this study relative biocompatibility of BC sealer was observed. BC sealer showed cell viability similar to the control group in freshly mixed and set conditions. During setting, BC sealer released a clear fluid. It would be expected to be water for the reason that hydration reactions of calcium silicates produce calcium silicate hydrogel and calcium hydroxide. Calcium hydroxide partially reacts with the phosphate to form hydroxyapatite and water (Zhang 2009b).
Setting time, antimicrobial activity, dimensional stability, solubility, and effective root canal sealing should be investigated further.
CONCLUSION

It is generally accepted that the biocompatibility of endodontic sealers is critical to clinical success of endodontic therapy. Biocompatibility is only one of the several properties which define the ideal root filling material. While the majority of biocompatibility studies are done in vitro, understanding the relevance to the clinical setting is often difficult to impossible. Furthermore, various biological endpoints are used to measure a material’s toxicity which does not allow for uniformity and a direct comparison of materials from one study to another. Therefore, a standardized approach to all in vitro material testing that is as clinically relevant as possible needs to be implemented. In conclusion, the findings of this study demonstrated that BC and GuttaFlow sealers showed comparable biocompatibility. Other properties of BC and GuttaFlow, such as solubility, dimensional stability, in vivo endodontic usage, etc., need to be investigated in the future. The clinical implications of this study may suggest that caution should be taken not to overfill when using the AH Plus or TubliSeal Sealers.
REFERENCES

Gibbons RJ, Engle LP. Vitamin K compounds in bacteria that are obligate anaerobes. Science 1964;146:1307-9

Huang TH, Ding SJ, Hsu TZ, Lee ZD, Kao CT. Root canal sealers induce

Hume WR. In vitro studies on the local pharmacodynamics, pharmacology and

Hume WR, Mount GJ. In vitro studies on the potential for pulpal cytotoxicity of

Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of
dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med

Key JE, Rahemtulla FG, Eleazer PD. Cytotoxicity of a new root canal filling

Kirkevang, L.L., et al., Periapical status and quality of root fillings and coronal

Koch K, Brave DG. Activ GP: a single-cone obturation technique. Inside
Dentistry 2006;Jan/Feb:76-7.

Kontakiotis EG, Tzanetakis GN, Loizides AL: A 12 month longitudinal in vitro
leakage study on a new silicon-based root canal filling material (Gutta-Flow). Oral

Larsen MJ, Horsted-Bindslev P. A laboratory study evaluating the release of
hydroxyl ions from various calcium hydroxide products in narrow root canal-like

Leonardo MR, Utrilla LS, Rothier A, Lenonardo RT, Consolaro A. Comparison of
subcutaneous connective tissue responses among three different formulations of

Lodiene G, Morisbak E, Bruzell E, Orstavik D. Toxicity evaluation of root canal

Lohbauer U, Gambarini G, Ebert J, Dasch W, Petschelt A. Calcium release and

Lui JN, Sae-Lim V, Song KP, Chen NN. In vitro antimicrobial effect of
chlorhexidine-impregnated gutta percha points on Enterococcus faecalis. Int

Orstavik, D. Materials used for root canal obturation: technical, biological, and

Rickert UG. Dental Cosmos 1925;67:635.

FIGURES

Figure 1. Sealers were left in the laboratory bench top for 2 months.
Figure 2. Sealers were placed in cell culture incubator for 24 hours.
Figure 3. Cell viability of L929 cells after culture with 1 day eluate of set sealers.
Figure 4. Cell viability of L929 cells after culture with 3 day eluate of set sealers.
Figure 5. Cell viability of L929 cells after culture with 1 day eluate of fresh mixed sealers.
Figure 6. Cell viability of L929 cells after culture with 3 day eluate of fresh mixed sealers.