
University of Connecticut
DigitalCommons@UConn

Honors Scholar Theses Honors Scholar Program

Spring 5-9-2010

Development of a 3D Game Engine
Nicholas Alexander Woodfield
University of Connecticut - Storrs, Starnick10287@aol.com

Follow this and additional works at: http://digitalcommons.uconn.edu/srhonors_theses

Part of the Other Computer Sciences Commons, and the Software Engineering Commons

Recommended Citation
Woodfield, Nicholas Alexander, "Development of a 3D Game Engine" (2010). Honors Scholar Theses. 134.
http://digitalcommons.uconn.edu/srhonors_theses/134

http://lib.uconn.edu/?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/srhonors_theses?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/srhonors?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/srhonors_theses?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/srhonors_theses/134?utm_source=digitalcommons.uconn.edu%2Fsrhonors_theses%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages

Development of a 3D Game Engine

Nicholas Woodfield

Dr. Thomas J. Peters

Senior Design Project – Honors Thesis

26 April 2010

University of Connecticut

Development of a 3D Game Engine

1

Contents

1. Introduction ... 2

2. Motivation ... 3

3. XNA Background .. 4

4. Engine Architecture .. 7

4.1. Scene Graph ... 7

4.1.1. Properties .. 10

4.1.2. Extensions ... 16

4.1.3. The Update Pass .. 16

4.1.4. The Draw Pass ... 17

4.2. Rendering System ... 18

4.3. Material System ... 22

4.3.1. Lighting ... 25

4.3.2. Shader Library ... 28

4.4. Input System ... 39

4.5. Animation System ... 41

4.6. Content Pipeline .. 43

4.7. Application Usage ... 46

5. Performance and Optimization Work ... 48

6. Future Work ... 52

7. Conclusion ... 53

8. Works Cited .. 55

Development of a 3D Game Engine

2

1. Introduction

This paper presents the development history and specification of a 3D game engine titled

“Spark Engine”. The term “graphics engine” is used to describe a complex software suite that

provides a platform for scene management and rendering, allowing such functionality to be reused

for multiple projects. A “game engine” expands on this concept and specifically provides tools and

game modules to simplify game development. Spark Engine was developed to aid in the creation of

a Windows based game for a senior design project.

The genesis for this project began with an interest in the development of shaders. Shaders are

small programs that are executed on graphics hardware and allow developers to program the

graphics processing unit (GPU) programmable rendering pipeline. Graphics hardware has moved

from a fixed-function approach to a programmable rendering pipeline in recent years. This trend is

due to the flexibility that shaders provide: a developer is able to create custom rendering effects by

reprogramming the pipeline and is not limited to the algorithms provided by the rendering API.

Originally this honors project was intended to explore and implement shader concepts, such as

normal mapping and real time lighting.

Due to the interest in shader programming, the platform chosen for the design project was

Microsoft’s XNA Framework. The XNA Framework is a .NET platform for the C# language, and is

built on top of Microsoft’s DirectX rendering API. While gaining experience with the C# language

was desirable, the primary reason for choosing XNA is that the platform has first class support for

shaders. Every geometric model rendered by XNA is required to use a shader, which meant the

backend support for using them was already available. This would allow more effort to be focused

on the implementation of shader algorithms. All shaders developed for this project were written in

Microsoft’s High Level Shading Language (HLSL).

The idea for developing a game engine grew out of the needs for the design project, as XNA is

not a game engine. It provides some tools for building content and access to DirectX, but it does not

provide the means to either organize 3D scenes or efficiently render them. This meant the

framework does not provide the type of functionality that a graphics engine would normally supply,

such as a scene graph data structure or the functionality to cull geometry that need not be

rendered. Early on in the design project, many features under development resembled the core

Development of a 3D Game Engine

3

components of a graphics engine. This was the beginning of Spark Engine and prompted a shift in

focus. While a significant portion was still to be devoted to shader development, the honors project

expanded to include engine development.

This paper is intended to be a series of discussions for the major systems that comprise Spark

Engine. These discussions range in describing how the system works, as well as how it expands on

existing XNA features or provides a brand new feature. In some cases this will include deficiencies

in the system’s design or implementation as well as ideas for future development. While these

discussions will be in detail, the nature of this paper is not to discuss implementation details. The

paper is partitioned into six sections:

1. Motivation for creating the engine.

2. An overview of the XNA Framework.

3. Engine architecture discussion for all major and minor systems of the engine.

4. Performance and optimization work.

5. Future work for enhancing and expanding engine features.

6. Concluding remarks on success of meeting engine design and learning goals.

The source code for Spark Engine is open source under the New BSD License, and is freely

available from a Google Code Subversion repository1. Engine systems and features discussed in this

paper pertain to Version .6 of Spark Engine.

2. Motivation

There were a few reasons that motivated this honors project. The first being to gain experience

working with aspects of computer graphics at all levels of the application, from the exciting to the

mundane. This included the aspiration to investigate shaders, as well as explore how graphics

engines are organized to aid the developer in efficiently rendering a scene. Experience cannot

1 http://code.google.com/p/spark-engine/

Development of a 3D Game Engine

4

easily be gained in those systems until they are worked with directly. No third party libraries would

be used and most parts of the engine were designed and implemented from scratch. This would

make the project an invaluable learning experience. Use of third party libraries would not facilitate

learning how systems discussed in this paper function or how to implement them. The only

exceptions to this rule were some significantly used XNA features, some of which were unavoidable

such as using the XNA API to access DirectX.

When it was decided to expand the scope of this project to include engine development, the

second motivating reason presented itself. If systems had to be developed for the senior design

project that resembled a graphics engine, that effort should be unified under the direction of a

coherent design philosophy. It made sense to a build a general piece of software which had systems

that were designed to work with one another, opposed to software that was haphazardly pieced

together to meet the needs of a specific application. Much of the work for the engine was to address

the short comings of the XNA Framework, as many of its features are meant as starting points for

hobbyists. Code that used the XNA API directly did not lend itself to be easily extended nor very

elegant. This in turn led to the primary two goals in developing the engine: flexibility and

reusability. Therefore there was tremendous motivation in improving the experience using XNA for

developers, such as the senior design project team.

It also was desired for the work developed for this honors project to not just be thrown away at

the project’s conclusion, but to survive and be used by others. Therefore, Spark Engine was

designed to be a viable and feature complete graphics platform that could be used for any graphics

application, be it a game or not. This aspiration combined with implementing game-specific systems

from the senior design project would propel the engine to the classification of game engine, since

games were of primary interest in developing the engine. While this was very ambitious, at the

conclusion of this project the majority of those aspirations did come to fruition. The engine has

progressed very far in its development as the rest of this paper will discuss.

3. XNA Background

Since Spark Engine’s purpose was to build upon the XNA Framework, this paper first presents

several key features of XNA used by the engine. Microsoft’s XNA Framework is freely available

Development of a 3D Game Engine

5

software intended to allow easy entry into game development by hobbyists and independent

developers. The framework supports the Windows, Zune, and Xbox 360 platforms. Development for

the Xbox 360 is a major feature of the XNA Framework, as it opens that platform up for anyone to

develop a game and sell it through the Xbox Live Marketplace.

The XNA Framework is not a game engine but rather a collection of tools and technologies to

facilitate game development and foster cod reuse between different target platforms. Currently

XNA only supports DirectX 9.0c, but is entirely shader driven. Everything that is rendered must be

done so via a shader. This made it a perfect choice for investigating shaders, and forced Spark

Engine to also be shader-driven. All modern game engines today are designed with shaders in mind,

and building the engine in this style was desired.

At the time of this writing, Spark Engine is intended for use only on the Windows platform.

Support for the Xbox 360 would require additional development, which was not needed for the

senior design project. Although Xbox 360 support was a secondary reason for adopting the XNA

Framework, as it was an area of interest.

Content Pipeline

The XNA Framework’s content pipeline is one of the signature pieces of the entire framework.

Game asset management was one of the reasons for the framework’s creation, to bring together a

set of easy to use tools to process texture and 3D models into a game ready format. This game ready

format is the platform independent binary .xnb file, which allows for game content to be loaded

quickly at run time. The content pipeline is entirely an offline process as the processing for content

in most cases would be unfeasible during runtime and result in long load times.

This is an area of the XNA Framework that Spark Engine used significantly. The engine directly

extended it to include its own model importers and processors, but changed little in the overall

build process. Section 4.6 goes further into detail how the pipeline works as well as how the engine

extends it.

Development of a 3D Game Engine

6

Rendering Capabilities

The XNA Framework is built over DirectX 9.0c, which supports both shaders and the fixed-

function pipeline. Later versions of DirectX have done away with the fixed-function pipeline in favor

of a fully programmable pipeline with shaders (introduced with DirectX 10). This is one of the

reasons why XNA is entirely shader driven, in order to facilitate a move to DirectX 10 sometime in

the future. At the time of this paper, the next version of XNA (XNA 4.0) has begun this transition.

The version of XNA used by Spark Engine is XNA 3.1.

Although rendering is entirely shader-based using the XNA API, it still supports some limited

fixed-function effects. A notable example is fixed-function fogging, which is enabled with the use of

the fog render state (See Section 4.2 for further details on render states). The engine fully uses the

XNA API in its rendering system, as it provides access to DirectX 9.

Shader Effect API

In addition to the rendering capabilities the engine uses, the XNA Framework’s shader Effect

API provided the foundation for the engine’s material system. The API builds directly upon

DirectX’s Effect class and allows shader programs to be compiled, bound to the graphics device,

and shader constants to be updated. XNA provides a BasicEffect class that provides the default

rendering effects for 3D models. However, using BasicEffect directly often resulted in ugly drawing

code. While the Effect API was used by the engine, the material system (Section 4.3) was

developed to address the shortcomings of working with the API directly and provide an automatic

means with applying shaders to 3D models.

Game Component System

In order to promote game development, the XNA Framework provides a game component API.

This allows for a portion of game logic (such as a scene graph) to be packaged in a component that

could be reused by other developers. The system also supports the idea of game services, which are

interfaces that are implemented by components. Game services are singleton-like objects that are

Development of a 3D Game Engine

7

queried via their interfaces (e.g. a scene graph manager), which allows for different

implementations to be replaced in a game without requiring code change. This is actually how

Spark Engine is attached to an XNA application at start up; the engine can be considered a large

game component. Section 4.7 has further details on application usage with the engine.

While this can be a useful piece of the XNA API, it often can be misused. For example, an

animated character can be its own game component while a scene graph can be another

component. This can cause issues in managing the order of how systems are updated or rendered.

Therefore the game component API was seldom used in Spark Engine’s development, instead

favoring implementation of original systems that were unified under one design.

4. Engine Architecture

The engine is composed of several important systems that handle the tasks involved with

updating and rendering a scene. This section discusses each of those systems in detail and how they

interact with one another. The scene graph, rendering system, and material system form the core

features of the engine and are explicitly coupled together. Other systems such as input and the

animation library are extensions to the core. Reusability and extendibility were the two prevailing

goals in designing the engine as a whole, and as a result most engine systems can be extended easily

or replaced entirely.

4.1. Scene Graph

The engine’s scene graph is its most defining characteristic and is the core component that the

rest of the engine is built around. A scene graph is a collection of nodes in a tree, where a node has a

single parent but multiple children and where leaf nodes represent geometry. This allows for the

scene to be organized spatially, which leads to optimizations when rendering the scene. For

example, objects not in view can be culled to reduce data sent to the graphics card. A scene graph

also allows for inheritance between parent nodes and their children. If a scene object is rotated 45

degrees, and its parent rotated 30 degrees, then the object would be rotated by a total of 75

Development of a 3D Game Engine

8

degrees. The rotation performed on the object is its inherent or local property; while the object’s

final rotation that its parent influences is its world property. Other properties can be inherited

similarly, such as lights and render states. Thus the scene graph can be viewed in more than one

context.

Since the XNA Framework does not provide a scene graph, a basic implementation was worked

on in the first stage of the senior design project. This was to make development easier for the senior

design project team to easily setup the scene and not have to worry about the mundane details

involved with updating and rendering geometry. Therefore this feature gives the engine a

tremendous advantage over the XNA Framework. It eliminates much of the repetitive code that

often is found in XNA tutorials and leads to a high level of abstraction. The developer only has to

worry about the scene graph’s properties, such as its transformation or material rather than

worrying about how to ensure those details are applied when the scene graph is updated and

rendered.

The design of the scene graph is based on David Eberly’s Wild Magic Engine from his book 3D

Game Engine Design as well as other similarly designed graphics engines such as the Java-based

jMonkey Engine. In that design, the scene graph has a strong hierarchy where every scene object

extends an abstract super class called Spatial. When discussing scene graph objects in a general

fashion, the term spatial will be used. The Spatial class represents any object in 3D space,

whether it is geometry or a logical entity, and has the following properties:

 Local and world transformations

 Render state list

 World bounding Volume

 Controllers

 Scene hints

 Parent node

The engine has two prominent scene objects that inherit from the Spatial class: the Node

Class (internal node) and the Mesh class (leaf node). Although internal nodes do not contain

geometry, they are required to have properties such as render state information to allow for

geometry to inherit these states. For example, a render state applied to the root of the scene graph

Development of a 3D Game Engine

9

is inherited by all nodes and meshes in the graph. Although Node is a subclass of Spatial, the

parent of every Spatial is of type Node. Nodes ensure that all of their children are updated and

drawn during those respective passes and provide functions for managing children.

Mesh objects on the other hand represent actual data – the geometry and material effects that

will get rendered. Since they extend Spatial and not Node, they explicitly are not allowed to have

children. A Mesh object has three important properties:

 A mesh data object

 A material

 A model bounding volume

While the Mesh class represents geometry, it in fact resembles that of a container class. The

MeshData class holds the actual geometric data and owns the vertex and index buffers. This allows

for multiple meshes to share the same geometric data, but at the same time be entirely separate

entities with their own transformations, material s and controllers. The MeshData class supports

all the primitive types that XNA does – point list, line list, triangle list, and triangle fan. Therefore a

Mesh may be a composed of triangles, or simply a list of points. Regardless of the primitive type,

the engine simply treats it as a batch of geometric data.

Since XNA is shader-driven, every Mesh object is required to have a material in order to be

drawn by the graphics card. Materials contain reference to a shader effect object and a list of

material definitions that feed data to the shader’s uniform parameters. The material system is

discussed further in detail in the Section 4.3.

In addition to the world bounding volume property in the Spatial class, the Mesh class has a

bounding volume that is built from the geometric information from the MeshData object. This is

called the model bound and encapsulates the entire geometry. A Mesh object’s world bounding is a

transformed model bound. Bounding volumes are propagated up the tree, thus the world bounding

volumes for nodes are merged with the world bounding of their children. So in this way, the scene

graph also represents a Bounding Volume Hierarchy (BVH) which forms the backbone for collision,

picking, and culling.

Development of a 3D Game Engine

10

A diagram of a scene graph is depicted in Figure 4-1. This scene graph has several notable

features that were discussed previously. The moon is always attached to a planet, and will rotate

about it regardless where the planet is positioned in the scene, since it inherits its transformation.

The spaceship is free to move around the scene, since it’s attached to the root node. While this

example has the scene graph spatially organized, other scenes may group objects together based on

common properties such as materials and textures.

Spaceship

Geometry

Planet

Geometry

Moon

Geometry

Root Node

Spaceship

Node

Planet

Node

Moon Node

Figure 4-1 A diagram of a scene graph that is spatially organized. The moon orbits around the planet, no matter where
the planet is positioned since it inherits the plane’s transformation. Meanwhile, the spaceship is free to roam the scene as

it is attached to the scene root. The root node typically is left at the scene’s origin.

4.1.1. Properties

The scene graph is a complex data structure that has many properties and roles associated with

it. Since the scene graph is a tree data structure, scene objects are hierarchical and inherit from the

Spatial class. Therefore, Spatial contains many properties that are common to all scene

objects regardless if they are logical nodes or geometry. This section discusses those common

properties in detail.

Development of a 3D Game Engine

11

Spatial Transformations

Every object in the scene has two sets of transformations (translation, rotation, scale), the first

is local to just that object, and the second is derived from the transformations of its parent which is

propagated from the root. During the update pass, once the world transformation is calculated a

world matrix is computed and cached.

Controllers

Controllers are attached to a spatial, whether it is geometry or an internal node, and can modify

it over time. They are local to the spatial only, and are updated when the spatial they are attached to

is updated. This allows for logic to be attached to the spatial easily. A controller that rotates the

spatial it is attached to about the Y-Axis 5 degrees per frame is a good example of a controller. The

engine provides an interface to implement controllers, but also provides implementations such as

the aforementioned rotation controller. Since controllers are the first thing to be updated during

the update pass of the scene graph and as such, controllers can safely modify a spatial’s

transformations.

Usages for controllers can go beyond simple animations. Controllers for meshes can be used for

morphing vertex data, or modifying render states. A controller could be used to vary the color of a

light source or its intensity. Another example is a controller that implements a continuous-level-of-

detail algorithm that dynamically changes the topology of a mesh.

Scene Hints

A SceneHint object is a collection of enumerations that provide clues to the engine on how to

process a spatial. Scene hints can be explicitly set or inherited from the spatial’s parent. Therefore

there are hints that are local to the spatial and those that are derived from its ancestors. The hints

are as followed:

Development of a 3D Game Engine

12

 CullHint – Determines how the spatial is to be culled during rendering. It can do as it

parent does, never be culled, always be culled, or be dynamic. The last hint is the default and

is culled depending if the spatial is in view or not.

 PickingHint – Determines how the spatial should behave during collision and ray

picking queries. A spatial can be queried for collision only, or ray picking only, or both.

 RenderBucketType – Determines to which bucket the spatial will be added during

rendering. See Section 4.2 for more information on render buckets.

 TransparencyHint – Sets whether the spatial should use one sided or two sided

rendering when it is in the transparent render bucket.

 LightCombineHint – Specifies how light states are to be combined. This enables many

lights to be in the scene and the light states the spatial uses. Lights are also sorted based on

how much they affect a spatial and on the maximum number of lights the material system

supports.

 TextureCombineHint – Similar to LightCombineHint, but for how texture states to

be combined.

Integrated Bounding Volume Hierarchy

As mentioned, each spatial in the scene graph has an associated world bounding volume and the

graph forms a bounding volume hierarchy. The primary use for this hierarchy is for frustum culling

during the drawing pass. Since a node’s world bounding encompasses all of its children, if that

bounding volume does not pass the test against the camera’s frustum then the node and its entire

branch can be thrown out without further checks. Consequently, each spatial remembers whether it

was contained by the camera frustum, intersected, or was completely outside. So if a node is

completely contained inside the frustum, no further checks are needed on the children since they

are guaranteed to be completely contained also. This allows for a reduction in the number of

frustum tests to be performed, as well as prevent unnecessary draw calls to the graphics card for

geometry that will not be visible, allowing for more objects in the scene. A more detailed discussion

of frustum culling and its impact on performance is presented in Section 5.

Development of a 3D Game Engine

13

In addition to frustum culling, the bounding volume hierarchy forms the basis for collision

determinism and 3D picking. The bounding volume hierarchy serves as a broad pass, where the

scene graphs world bounding volumes are checked first for collision and picking queries. If there is

no intersection with a node’s world bounding, that entire branch can be effectively culled. A narrow

pass then can be initiated, which could be at the triangle level. Another possibility is a second

bounding volume pass, where the volumes are defined as collision volumes. Collision volumes are

special use bounding volumes that an artist creates to approximate the mesh and are exported with

the model. The engine does provide support for collision volumes; however it does not implement

checking them for collisions or picking. They were used by the senior design project for non-engine

classes, as they required extensions to the scene graph. Collision volumes are discussed further in

detail in Section 4.6.

All bounding volumes support intersection and merge methods with one another, as well as

methods for testing pick ray intersections and frustum plane intersections. The engine currently

supports three types of bounding volumes, which inherit from an abstract super class:

 Bounding sphere – Simplest bounding volume has a radius and a center. It is one of the

quickest to check.

 Axis-aligned bounding box – A box where its edges are aligned to the coordinate axes.

 Oriented bounding box – An arbitrary box that encapsulates the mesh.

Figure 4-2 shows these three bounding volume types as they appear in the engine. The white

bounding volumes that surround the orange cube are drawn by the engine’s debugger. The images

provide a good visual for examining the strengths and weaknesses of the bounding types. Spheres

are the fastest to check in collision and intersection tests, but they usually do not approximate an

arbitrary mesh that well. This is because of false positives – an object may intersect the bounding

volume, but not the mesh that it encapsulates. The Axis-aligned bounding box is not as simple as the

sphere, but it is a widely used volume. However, it can have drawbacks when the object that it

encapsulates is rotated. This requires the volume to be computed again, and since it is aligned to

the coordinate axes, it does not rotate with the object. When the cube in Figure 3-2 is rotating, the

axis-aligned bounding box does not contain it very well.

Development of a 3D Game Engine

14

Figure 4-2 Upper left: Bounding sphere. Upper right: Axis-aligned bounding box. Lower middle: Oriented bounding box.

A special version of the box volume is an oriented bounding box. It’s essentially an axis-aligned

bounding box that is aligned to an arbitrary axis. This allows the box to generated, and then rotated

with the object it encapsulates. This often produces a much tighter fit, but oriented bounding boxes

require expensive computations in collision and intersection tests.

Collision and Picking Testing

Currently the engine provides utility methods for identifying if a collision has occurred between

two spatials, and for testing a ray against the scene. As described in the previous section, these are

broad pass queries using the world bounding volumes of scene objects. The engine also supports

triangle accuracy ray intersection testing for individual meshes. Collision and picking testing is

handled separately from the scene graph data structure, in the static PickingUtil class. The

Development of a 3D Game Engine

15

scene graph root or parts of the scene graph are passed to the utility class for processing. This

allows for custom implementations to easily be developed to replace the engine’s default

algorithms.

In addition to bounding volumes, there is support for artist created collision volumes, although

they are not included in the queries by default. These utilize the same bounding volume types as the

bounding volume hierarchy, but are used to approximate geometry. The engine only supports the

importing and processing of collision volumes, as the senior design project utilized them. Although

completely incorporating them into the collision and picking queries is a future goal. See Section 4.6

for further details on importing collision volumes.

Dirty Marks

Before a frame is rendered, the scene graph undergoes an update pass that ensures that all

controllers, transformations, render states, and bounding volumes are updated. However, in certain

cases such as static geometry, time can be wasted updating this data when it has not changed since

the last update call. The engine automatically keeps track, for each spatial, what data has been

changed with the use of a “dirty mark” bit flags. When certain spatial properties are changed

directly, such as a change in the local transformation, render states, or bounding volumes the

respective property is flagged. These flags are then propagated up and down the scene graph in

order to notify ancestors and descendents that their world properties will require an update. Then

during the update pass, if a property is marked dirty either directly or indirectly, the proper

calculations are done and the flag is reset. If no flag is present, then those calculations are skipped.

The use of dirty marks is the key to reducing redundant computations and speeding up the time

to update a scene. This is an improvement over Eberly’s Wild Magic Engine, as it automatically locks

parts of a static scene from updating. In Wild Magic, parts of the scene graph that were static would

have to be locked by the developer manually. Dirty marks are more flexible and reduce errors if the

developer forgets to lock or unlock parts of the scene graph.

Development of a 3D Game Engine

16

4.1.2. Extensions

The scene graph is intended to be extended to allow for new types of scene objects. Such

extensions are skyboxes and specialty nodes for lights or cameras. Some of these extensions are

practical and are provided by the engine already. More ambitious examples of extensions can be for

scene graph management. The engine does not have any spatial partitioning or scene graph

management built in, such as an oct-tree system. However, the scene graph is by design malleable

enough to be extended to be used in such systems. How the scene graph is organized is entirely up

to the user and the scene objects are not aware nor specify any organizational requirements other

than parent-child relationships.

A useful extension provided by the engine is the shapes library. Although the Mesh class is

general enough to represent any geometry whether they are points, lines, or triangles, shapes

provide convenience access to common primitives. Currently the shape library provides the

following primitives:

 Boxes

 Lines

 Quads

 Spheres

 Utah Teapot

Of particular interest are boxes, lines, and spheres as they used actively by the engine in a

debugger tool. The engine’s debugger visually draws world bounding volumes and vertex normals.

Throughout this paper, many of the engine screen captures have objects from this shape library.

4.1.3. The Update Pass

Before the scene is drawn, the scene graph is traversed and updated. This is initiated by calling

the Update() method on the root of the scene graph. A GameTime XNA object is passed to each

spatial to allow for determining the time between frames for interpolation purposes. The following

summarizes the entire update process:

Development of a 3D Game Engine

17

1. Update controllers

2. Update world transform (If flagged)

a. Combine local transform with parent if any

b. Cache world matrix

3. Call Update() for children (if Node)

4. Update world bounding (If flagged)

a. Merge children world bounds (or transform model bound if Mesh)

b. Propagate world bound to root (updates parent’s world bound)

4.1.4. The Draw Pass

After the scene graph is updated, the drawing pass begins. Like that of the update pass, the

drawing pass is initiated by calling the OnDraw() method for the root of the scene graph. During

the draw pass, each spatial is passed a reference to the renderer object that will handle the

rendering of the scene. The scene renderer and render queues are discussed in further detail in the

next section and frustum culling is discussed in Section 5. The following summarizes the draw pass

and the associated method calls:

1. OnDraw()

a. Frustum cull check

b. If inside or intersects, call Draw()

2. Draw()

a. If Node, call OnDraw() for children

b. If Mesh, add to render queue to be processed

i. If set to skip, call Render() immediately

3. Render() (Mesh only)

a. Apply render states (checked against renderer’s enforced states)

b. Apply material

i. Update material definitions (sets shader constants)

ii. Evoke device draw call

Development of a 3D Game Engine

18

4.2. Rendering System

The engine’s graphics system makes up a significant portion of the engine as it provides access

to the XNA GraphicsDevice object, which in turn handles the low level DirectX API device calls.

Two major components make up the engine graphics API – the scene renderer and render states.

Scene Renderer

The SceneRenderer class is the rendering vehicle for the engine. It is the object that is passed

to each spatial during the draw pass and provides the functionality in actually rendering an object

to the screen. The scene renderer was designed to be completely stand-alone. Each renderer owns a

camera, and therefore a viewport – which can be the entire screen, or only a small portion of it. This

allows for multiple renderers to be active at once in different contexts – e.g. a split screen game

with two players with their own cameras that render the same scene graph. The scene graph data is

entirely independent of the renderer.

Aside from containing the functions to interact with the graphics device and initiate draw calls;

the renderer provides some additional functionality to increase rendering performance. The

renderer accomplishes this in two ways:

1. Render state caching – The renderer keeps track of the last render state applied to the

graphics device to reduce state switching. Switching states can be expensive, so reducing

redundancies is a useful tactic the renderer employs.

2. Render queue – The renderer owns a render queue that manages a collection of buckets.

This allows the developer to control the order of which objects are rendered. The engine

supports by default four buckets: Pre-Bucket, Opaque, Transparent, and Post-Bucket which

are rendered in that order. Control over the order of rendering geometry is a useful, as it

allows for transparent objects to be drawn properly. Figure 4-3 demonstrates this, with a

transparent and opaque cube. The picture on the left has the cubes ordered properly;

whereas the picture on the right does not.

Development of a 3D Game Engine

19

These two features allow the renderer to be intelligent in how it processes the scene graph

during the draw pass. Aside from potential transparency issues, it can be inefficient drawing the

scene graph in the order that it was organized. The scene graph may be optimally organized, but

that is entirely up to how the developer creates their scene hierarchy as the engine does not

provide that guarantee. Once the scene graph has been processed, the render queue then sorts all of

the objects in each of its buckets accordingly. Then the contents of each bucket are rendered in the

order mentioned previously.

Figure 4-3 Left: Transparent object is correctly rendered in scene. Right: Same scene incorrectly rendered.

To illustrate why this is an efficient means of rendering, we will use an example scene from an

engine test that had a thousand scene objects. Half share texture “a”, where as the other half share

texture “b”. These objects can be arranged in any number of ways – the worst arrangement would

be each object is rendered alternating between the two textures. The best arrangement would be to

render the first 500 objects that share texture “a” and then the second 500 objects that share

texture “b”.

However, without state caching this still can be slow since the texture for each object would be

applied when it is rendered – even if it’s a redundant state change. With state caching, redundant

states are prevented from being set, therefore the texture state is only set once for the 500 objects.

Sorting the objects and employing state caching reduces the number of state switches from a

thousand, to just two. This is perhaps one of the most significant advantages of using the engine

over pure XNA code, as XNA does not have built in functionality for processing geometry for

efficient rendering.

Development of a 3D Game Engine

20

Since the engine provides interfaces for the render queue functionality, the type of sorting can

be easily reconfigured by developers for their own needs. For example, sorting can be expanded to

include sort by shader and material. All the buckets in the default implementation, save for the

transparent bucket, sort their meshes by their texture state. If texture states are not present on

meshes, then they are simply sorted front to back. The transparent bucket sorts meshes back to

front, regardless of common states.

Render States

Render states affect the behavior of how geometry is processed as vertices and pixels flow

through the rendering pipeline. In XNA, states are defined as enumerations which the engine uses.

Unlike XNA, the engine groups these enumerations into individual classes that can be attached

directly to the Spatial class. As mentioned in Section 4.1, the scene graph allows render states to

be inherited and combined. The engine also takes a slightly different approach in the defining

render states. Engine render states refer to all the information that is associated with geometric

data, including material color information, textures, and lighting. This splits the classification of

render states into two main categories: global states and data states.

Global render states contain the enumerations from XNA and are analogous to the typical

definition of a render state – such as alpha blending, triangle culling, depth buffering, and so forth.

These states are defined as global since their information is independent of any property of the

Spatial class (Eberly 2007). Therefore these states are essentially nothing more than wrappers

that provide a componentized form of interfacing with the render state enumerations in XNA.

The data render states are special use classes that provide the coloring, texture, and lighting

information for the engine’s material system. Separating data from the materials and shaders

allows for flexibility and reuse – the textures and light objects held by data render states do not

correspond to any one shader. This design is a departure from traditional XNA examples such as the

BasicEffect class that relies on a single shader and has a one hard coded texture property.

Meanwhile, the engine’s TextureState can hold any number of textures that can be interpreted

by different materials. For example, some shaders may only use the first texture as a diffuse color,

others may use the second and third for normal and specular maps. The engine has a terrain texture

Development of a 3D Game Engine

21

splatting shader that uses four textures and an alpha map for instance. How these data render

states interact with the material system is discussed in detail in Section 4.3.

All engine render states inherit from an abstract class called AbstractRenderState. The

following are the render states that the engine currently supports:

 BlendState - Controls alpha and color blending for transparency options.

 CullState – Controls triangle culling, e.g. cull counter-clockwise, clockwise, or none.

 FillState – Controls how the object should be filled, whether wireframe, solid, or point.

 FogState – Controls fixed-function DirectX9.0c fog functions.

 ZBufferState – Controls depth buffering.

 MaterialState – Data render state for controlling object’s uniform material colors, such

as diffuse, ambient reflectance, emissive, and specular reflectance colors.

 TextureState – Data render state for textures applied to an object. Also manages

sampler states for texture filtering and wrap modes.

 LightState – Data render state for light objects, keeps track of a list of lights that are

attached to the spatial.

Future Considerations

Although planned, the engine graphics API was to include a render pass system. This would

allow for post-processing effects such as bloom, or multi-pass effects such as shadow mapping. In

lieu of shadow mapping, the engine does support light mapping for static geometry. Such a pass

system would allow those effects to easily be chained together without having to modify data in the

scene graph. The renderer already provides some support for this, such as enforcing render states

that override the render states of scene objects that are about to be rendered. This area is a

candidate for future work, as all modern engines provide some sort of support for post-processing

and shadows.

Development of a 3D Game Engine

22

4.3. Material System

A material defines the properties of how an object should be colored and shaded. Every object

that is rendered is required to have an associated material. This is directly tied to XNA’s Effect

API, since every object rendered in XNA must be done so via a shader. The material system is a

simple but very flexible system that was designed to address several short comings of using the

Effect API directly. Typically usage of an Effect in a draw call is as follows:

1. Load the shader effect file

2. Set shader constants

3. Call Effect.Begin()

4. For each EffectPass do

a. Call EffectPass.Begin()

b. Draw geometry

c. Call EffectPass.End()

5. Call Effect.End()

This is the process for drawing geometry in the engine, as well as for any XNA application. The

main problem with this process is setting shader constants – identifying the effect parameters and

binding data to the effect are very specific to what the shader expects, and having this code directly

inside the Mesh object’s rendering call is unacceptable. Typically, for specific shaders, a subclass

effect would be created. An example of this is XNA’s BasicEffect class, which supports all the

functionality offered by the basic effect shader. Many XNA applications and libraries have a similar

setup for their custom shaders, but this lacks generality since the object using the shader needs to

know what constants to set. If the engine implemented effect classes for the entire shader library

like BasicEffect then engine classes would have to be re-written and extended for custom

shaders. Therefore, the two defining goals for the material system were:

1. Allow generality when dealing with shaders and the objects they are attached to

2. Encourage reuse of engine objects with custom shaders

In addition to preventing the need to rewrite engine classes, this system was designed to

eliminate having to hardcode shader parameters in effect classes and to adapt to changing data. The

Development of a 3D Game Engine

23

desire to build a data driven material system grew from frustration with XNA libraries that often

made it difficult using custom shaders. Since the creation of a shader library was a significant

portion of this honors project, getting the material system's design right was crucial to the overall

success of this honor's project.

The eventual design ultimately was simple and straight forward and consisted of three

components that comprise a material:

1. HLSL effect shader (.fx file)

2. Material definitions

3. Data render states

As discussed in the previous section, the MaterialState, TextureState, and

LightState are defined as the data render states. These states are independent from the shader,

which allows these objects to be reusable. Shaders may interpret these states differently from other

shaders. For example, a terrain texture splatting shader requires different textures than those

found in a normal map shader.

The MaterialDefinition object acts as the glue between the data states and the shader’s

effect parameters. Therefore Material class is nothing more than a container that consists of the

shader effect and a collection of material definitions. This is a significant departure from the design

of XNA’s BasicEffect class that has properties for setting the color, lighting, and texture

parameters of the shader hard coded. A MaterialDefinition object does two things: scans the

effect for specific effect parameters and sets shader constants. Normally the constants in the shader

are identified via an associated semantic (such as the semantic “WORLD” for the world matrix or

“DIFFUSE” for the diffuse texture), and once found are cached.

The Material class is responsible for updating definitions when the shader changes as well as

providing access to the Mesh that owns the Material during rendering. This allows for the

definitions to access the render state information of a Mesh, and bind that data to the shader

constants before drawing. Since the definitions provide the functionality for setting shader

constants, a Material object can shrink or expand to include new definitions. The Mesh and

Development of a 3D Game Engine

24

Material objects are entirely independent, which allows for a wide range of materials to be

applied to geometry without requiring any change in the geometric data.

When a custom shader is written, a new subclass of MaterialDefinition is typically the

only new class that is required for the new material to be applied to an object. During the

development of the shader library, this proved to be a very efficient and streamlined system. For

example, when normal mapping was introduced to the engine, only a definition for the normal map

was required. The definitions for material colors, world information, and lighting were unaffected

and reused by the normal map shader. The only pitfall involved in the system is that consistency is

needed – the definitions provided by the engine identify constants via semantics. A good example of

this is if a custom shader changes the lighting model, but wishes to reuse the lighting system, then

the shader must use the semantics that the engine is scanning for. The same is true for world

properties such as the camera (eye) position as well as the world, view, and projection matrices.

These are fed to shaders via a world definition, which can be extended or replaced entirely

depending on the needs of the developer (e.g. in addition to the world-view-projection matrix, the

inverse matrix may be needed).

While the material system allows for the Material class to be used directly with custom

material definitions, often it is convenient to extend the class. The engine provides subclasses that

correspond to the BasicMaterial.fx, NormalMapMaterial.fx, and RimLightMaterial.fx shaders. The

first is a shader that has permutations for basic texturing, vertex coloring, material colors, and

lighting. For convenience, the BasicMaterial class automatically adapts to the vertex

declaration and render states of a Mesh object. If the Mesh does not have normals, then lighting is

disabled or if it has vertex colors, then a vertex color enabled shader is selected. If it has a

TextureState, then a diffuse texture enabled shader is selected. These checks are performed

when the Material is updated before the draw call. The BasicMaterial class also supports the

functionality to disable texturing, coloring, or lighting. Every Mesh by default has a

BasicMaterial attached if no other Material instance is defined. The subclasses for the

normal mapping and rim lighted materials provide properties for disabling textures, or for

changing parameters such as rim color.

Development of a 3D Game Engine

25

Future Considerations

The design of the material system was not just intended for ease of use in creating custom

shaders, but in providing the means for material scripting in the future. This is very similar to that

of OGRE 3D’s material scripts. The ability to define such attributes of objects, through the use of

scripting, is an important feature of a game engine. This allows for artists – with minimal

programming experience – to create effects with ease, as well as reduces the amount of hard coding

in a game. For example, new types of materials could be defined in a script and created by the

engine programmatically – eliminating the need to create new definition classes or any C# code.

These material scripts could then be applied to any model and be reused between applications.

While the engine does not presently offer this feature, the material system was designed with

scripting in mind and its flexibility can certainly support the extension.

4.3.1. Lighting

The engine’s material system was largely conceived during the construction of the lighting

system. All lights in the engine inherit from the Light class that contains common properties such

as color and attenuation properties. Every light has ambient, specular, and diffuse color terms. The

three lights in the system are as follows:

 PointLight – Omni directional light with a world position that attenuates. (Figure 4-4)

 SpotLight – A specialized point light that has a direction and angles that restrict the light

into a cone. (Figure 4-5)

 DirectionalLight – A light that has a direction and is taken to be infinitely away from

the origin. This models light sources such as the sun, and since it does not have a position, it

does not attenuate. (Figure 4-6)

These light objects need to be attached to a LightState in order to be used by shaders. The

engine’s shader library supports lighting library functions that utilize a lighting model similar to the

default built in Blinn-Phong lighting found in OpenGL and DirectX fixed-function lighting. The

engine currently only supports per-pixel lighting (up to 8 lights per object) and requires Shader

Development of a 3D Game Engine

26

Model 3.0. The maximum lights per object are determined by the light state, for combination

purposes, and is adjustable. Future incarnations of the engine may have a Shader Model 2.0

compliant version of the engine’s built-in lighted materials.

The lighting system was created to address many shortcomings with the basic lighting provided

in the XNA Framework. XNA provides a single light class – a directional light, and allows up to 3 of

these lights in its basic effect shader. It cannot be extended, and to add new lights such as point and

spot lights requires a developer to write their own lighting system. Since design goals for the engine

were to promote flexibility and reusability, it would have been counterintuitive to follow XNA’s

design. It was undesirable to hard code the type of light required by the shader, for instance. This

meant that the light struct in the HLSL code had to be general enough, that any light – whether it is

a point, spot, or directional could be used with the shader. An object can have a directional light and

several point and spot lights affecting it at once, or any other combination. The engine provides a

shader library file that contains the light struct, and lighting functions, which allows them to be

used by any shader.

//Light struct that represents a Point, Spot, or Directional

//light. Point lights are with a 180 degree inner/outer angle,

//and directional lights have their position's w = 1.0.

struct Light {

 //Color properties

 float3 Ambient;

 float3 Diffuse;

 float3 Specular;

 //Attenuation properties

 bool Attenuate;

 float Constant;

 float Linear;

 float Quadratic;

 //Positional (in world space) properties

 float4 Position; //Note: w = 1 means direction is used

 float3 Direction;

 float InnerAngle;

 float OuterAngle;

};

Above is a snippet of HLSL code for the light struct. It contains all the properties of each type of

light; even if that light doesn’t use them (e.g. point lights do not have a direction). This is how the

lighting functions identify and process the light data. For instance, directional lights do not have

Development of a 3D Game Engine

27

positions, therefore the W component in the float4 Position is set to 1. This allows us to

determine if the Position or Direction properties should be used in the lighting computation.

This of course generates some slight overhead, as some properties need to be checked to identify

the type of light that is being used.

Figure 4-4 A scene with white and red point lights.

Figure 4-5 A scene with two white spot lights.

Development of a 3D Game Engine

28

Figure 4-6 A scene with a directional light. The cube faces in the direction of the light rays.

4.3.2. Shader Library

In addition to the lighting library functions, the engine hosts a shader library of basic and

advanced effects. The section details each shader that the engine provides as well as a discussion on

their advantages and disadvantages. Engine development for this area was significant because it

harks back to the original honors project concept for researching and implementing shader

algorithms. Therefore every shader in this library was researched and written from scratch to

support the rendering capabilities of the engine to meet those original project goals.

Quite a bit of experience was gained from the work done in implementing this library. For

instance, while shaders have gained much popularity over fixed-function rendering due to their

flexibility, they can be problematic when a large number of settings are supported. This can lead to

an exponential explosion of shader permutations. Shader permutations became a limiting factor in

the library’s development due to time constraints; not every shader effect has a wide number of

permutations, save for the basic material effect. This is also because the library is only intended to

be a starting point for other developers and for general use, to be used for many different

applications. This is a reasonable trade off, since the material system was designed to be easily

extended according to a developer’s requirements.

Development of a 3D Game Engine

29

A different approach from shader permutations is to create “uber” shaders, which are very large

and contain all the possible settings and effects for a complex material. While uber shaders are used

in many games, but they can cause problems with older hardware due to instruction count

limitations or frequent use of conditional statements to support the number of settings. The engine

also cannot possibly predict all the needs of every developer that works with it either, which is

another reason to favor creating shader permutations for general use.

As mentioned due to time constraints, not every shader written for the library has all possible

permutations covered. For example, not every shader supports vertex coloring. Of all the engine

shaders, there are approximately 30 possible permutations with 17 implemented. This is only

considering several options for each shader (vertex coloring, material colors, texturing, and

lighting). Some of these options are common between most of the shaders, but not all (e.g. normal

mapping always requires lighting). This also does not account for other options. If the engine were

to have its own implementation of fog as an option, this would add an additional 17 permutations.

Fog in the engine is a fixed-function controlled by FogState and not a shader solution. It was

decided to implement the permutations that would be used the most for each shader and then

move on to other engine details that required more immediate attention.

Some shaders are also only a basic implementation and do not fully support what may be

considered standard features – such as normal mapping on terrain and skinned materials. A shader

library can quickly grow to include hundreds of individual shaders, which often have dedicated

programmers in their creation and maintenance – a luxury that could not be afforded since the

entire engine had only a single dedicated programmer.

From this firsthand experience working with shaders and observing the drawbacks of the

library, it would be pertinent to describe how the library could be made better in the future. Ideally,

this would be to have the shaders’ functionality split into global library functions that can be used

by any shader such as how lighting is done. This would lead to the easy creation of new shaders that

simply chain these effects together, effectively reducing the amount of hard coded shader

permutations and eliminating the need for uber shaders. Shaders could be programmatically

generated during runtime, compiled, and cached based on the needs of the geometry (e.g. if vertex

coloring is needed, a new permutation is created without a programmer having to rewrite shader

code). This can make the existing engine shaders more efficient and support older harder. For

Development of a 3D Game Engine

30

instance, the engine’s lighting uses up to 8 lights and will always loop 8 times. A model that uses

only 2 lights would have a shader generated for this case thereby eliminating the instructions for 6

unused lights. While such a system would be extremely powerful, it also can be extremely difficult

to build, although this could be a worthy area for future development.

Basic Material

If the user does not specify a Mesh object’s material, the engine’s basic material shader is

applied using the BasicMaterial class. The basic material shader consists of a range of shader

permutations that form the engine’s basic rendering capability. This was the first set of shaders

completed for the engine and closely resembles that of XNA’s basic effect shader. There are four

options for the material:

 Material coloring (ambient, diffuse, emissive, specular)

 Diffuse texturing

 Vertex coloring

 Per-Pixel lighting

This results in 8 different shader permutations for these options. An example of one of these

permutations is geometry that has vertex coloring, a texture, and is lit. For every permutation that

is affected by lighting, there is a sibling permutation that is unlit. It should be noted that the basic

material is designed to closely resemble the functionality of a fixed-function graphics pipeline. This

is the reason why all possible shader permutations are implemented for this shader.

Figure 4-7 is representative of several permutations of the basic material shader. The shader

mimics the fixed-function pipeline by offering lighting, texturing, and vertex coloring for a Mesh.

While these effects may not render geometry in the most exciting manner, they are absolutely

necessary to have in the shader library as they form the backbone of the engine’s rendering

capabilities.

Development of a 3D Game Engine

46

Figure 4-15 Collision volumes rendered in the engine.

Future Considerations

In order to reduce the amount of redundant content classes (currently each runtime class for

scene graph objects, bounding volumes, and materials have mirrored content classes in the

pipeline) it may be more efficient dealing with the runtime classes directly. This would require the

engine to be split up among multiple assemblies. Also, the ability to save the scene graph back into a

XNB file, or some other format is future development worth investigating. However the heavy use

of reflection may pose difficulties with porting the engine to the Xbox 360 platform, which is an

eventual goal. Currently the engine was developed for the Windows platform and is only tested for

that, but theoretically could work on Xbox 360.

4.7. Application Usage

A typical application that uses Spark Engine follows closely to that of how an XNA game is

created. The XNA Framework provides a Game class that manages the game loop. This serves as the

Development of a 3D Game Engine

47

entry point to the application, and provides the means to update and draw the scene graph each

frame. The reason why the engine uses the XNA Game class in lieu of its own implementation is

because the XNA implementation is quite sophisticated – it will try to keep the number of frames

rendered per second to a target value. For example, the XNA Game class by default targets 60

frames per second. The advantage for this is to prevent the game loop from running as fast as

possible, as that is an unnecessary waste of resources due to the refresh rate of monitors.

The Game class also provides support for game services and components, which is a system that

XNA employs for developing independent modules for games. A game service is an interface for an

object that functions as a singleton. Any module can query the Game class for a service that

implements the interface, without having to require an explicit reference to the service object. The

engine utilizes this system for the concept of game screens, which is how engine systems such as

the scene graph, scene renderer, and input system are combined with XNA components.

A game screen represents a portion of the screen – thus it requires a scene renderer and a

camera. It also supports an input layer and holds a reference to a scene graph. Screens can be

chained together in hierarchy – every game screen can have a number of child game screens, each

of which can have their own scene data, input layer, and renderer. A typical usage of this feature

would be to have the root screen represent the 3D world space, and children game screens would

be the user interface and menu systems. This organization automatically allows layering of user

interface elements, since child screens are drawn on top of their parent. Additionally, this can allow

for easy compositing.

Since scene, input, and renderers are their own modules these objects can be shared between

screens also. For example, a split screen game would have two game screens with two renderers (a

camera for each player), two different input layers, but both screens would use the same scene

data. Game screens are handled by a game screen service that is registered with the XNA Game class

automatically by the engine at startup.

Development of a 3D Game Engine

48

5. Performance and Optimization Work

In all real time graphics application, speed is certainly the key. Good performance is a must and

simple optimizations can drastically influence an application’s performance. Conversely, subtle

details can adversely impact how well an application runs or even halt it completely. Attaining an

idea of how well the engine functioned under stressed conditions, and attempting to optimize it

became a large focus late in the project.

The discussion of the rendering system (Section 4.2.) touched on the subject of optimization

with the use of render state caching and sorting geometry before drawing them. Sorting geometry

and preventing redundant state switching can significantly increase the number of objects that the

engine can render in a single frame. For example, the original culling testing described in Section

4.2 only had 1024 individual draw calls. When all the meshes were visible, frame rate dropped to

20-30 frames per second. After the introduction of the new renderer functionality, the cull test ran

at a consistent 60 frames per second even when the entire scene was visible. This required the cull

test to be expanded to an object count of over 3375 (each a unique draw call), which saw a similar

performance drop when the entire scene was visible. This was a 3.3x increase in the number of

draw calls the engine could perform until performance dropped. In addition, the new test used

more textures and required more state switching than the old test. Although the number of

different materials in a scene would be much higher than used in these tests, material sharing is a

common optimization trick. A typical high end game may have upwards to 4000 draw calls, so these

results were very promising.

While this is easily one of the more effective optimizations, it was still a significant feature that

the engine was previously lacking. The rest of this section will discuss other such features that

improved performance, as well as dealing with the subtle details of optimization such as memory

allocation. All of this effort was in the pursuit of gaining as much performance out of the engine as

possible so that it could be competitive with other similar software.

Development of a 3D Game Engine

49

Frustum Culling

An optimization implemented in the engine was the ability to cull branches of the scene graph

while the engine processes it for rendering. This feature was an early ambition for the engine, since

XNA does not have built in methods for processing data that will be rendered. If all the meshes in a

scene graph were allowed to be sent to the graphics card, the application’s performance would drop

off very quickly. Small scenes may not adversely impact performances, but large scenes certainly

will. It is a tremendous waste of resources to draw something that ultimately will be clipped from

view by the graphics card. For very large scenes, the application may freeze up completely. Most

high end professional games today do not go beyond several thousand individual draw calls.

Therefore aggressive culling is absolutely required for a scene that potentially has tens of

thousands of objects in it.

Figure 5-1 presents screen captures of two iterations of the engine’s frustum culling test, which

used a large 3D array of cubes. The picture on the left is the original test that contained 3,375 cubes

with 12 triangles each. This yielded a 40,500 triangle count for the scene, a number that a graphics

card can easily handle. However, the focus in this test is not on triangle count, but on individual

draw calls. This may not be the case for other situations, such as rendering large terrains containing

millions of triangles. In that case, the terrain would be split up into a number of smaller pieces, each

with its own bounding volume that allows those blocks to be culled when not in view. The frustum

culling test ran at a consistent 60 frames per second when only a portion of the 3D array was

visible. Performance dropped to 20-30 frames per second when all the cubes were in view.

The screen capture on the right is an interesting side note that arose from the original cull test,

as a mistake during one execution of the test yielded in a 3D array with the dimensions 15 by 150

by 15. This meant 33,750 cubes were in the scene, with 405,000 triangles total. That many

individual draw calls would slow down the application to the point where real time interaction

would be non-existent. In fact, this was the case when the entire (or a reasonably large chunk) of

the scene was in view. However, when only a fraction of the cube array was in view, the application

still ran at a consistent 60 frames per second. The significance of this case is that it demonstrates

that the engine is capable of managing and processing tens of thousands of objects in its scene

graph. While care needs to be taken in such extreme cases, it was good to gain an understanding in

how big of a scene the engine can handle while updating and rendering the scene.

Development of a 3D Game Engine

50

Figure 5-1 Left: A 15 by 15 by 15 array of cubes. Right: An erroneous 15 by 150 by 15 array of cubes.

Good Programming Practices

The saying “the devil is in the details” is a very good way to sum up the engine’s development.

Many lessons were learned the hard way in how little details can adversely impact a program

significantly – either a reduction in the application’s performance or outright crashing it. Most of

these instances had a common issue – memory management. The C# language is managed, meaning

it has a garbage collector and the developer does not have to explicitly de-allocate memory.

However, this does not exclude C# developers from understanding memory – it still is one of the

most important concepts that can make or break a graphics application.

In addition to reference types such as a class, C# has the concept of a value type. Value types are

allocated on the stack and consist of two categories: structs and enumerations. Therefore they do

not produce garbage, as they are not heap objects. Since structs support inheritance from interfaces

and extend from the root Object class, they can be considered light weight classes. Small data types

like vectors or matrices are typically implemented as structs. In fact, primitive types in C# such as

float and int are structs.

Development of a 3D Game Engine

55

8. Works Cited

Blinn, James. "Simulation of Wrinkled Surfaces." ACM SIGGRAPH Computer Graphics, 1978: 268-292.

Bloom, Charles. Terrain Texture Compositing. November 2, 2000.

http://www.cbloom.com/3d/techdocs/splatting.txt.

Eberly, David. 3D Game Engine Design: A Practical Approach to Real-Time Computer graphics.

Morgan Kaufmann Publishers, 2007.

Fernando, Randima, and Mark J. Kilgard. The Cg Tutorial. Addison-Wesley, 2003.

Mitchell, Jason, Moby Francke, and Eng Dhabih. "Illustrative Rendering in Team Fortress 2."

International Symposium on Non-Photorealistic Animation and Rendering, 2007.

