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The Generalized Riemann Hypothesis and
Applications to Primality Testing

Peter Hall, B.A.

University of Connecticut, May 2021

ABSTRACT

The Riemann Hypothesis, posed in 1859 by Bernhard Riemann, is about zeros
of the Riemann zeta-function in the complex plane. The zeta-function can be repre-
sented as a sum over positive integers n of terms 1/ns when s is a complex number
with real part greater than 1. It may also be represented in this region as a prod-
uct over the primes called an Euler product. These definitions of the zeta-function
allow us to find other representations that are valid in more of the complex plane,
including a product representation over its zeros. The Riemann Hypothesis says that
all zeros of the zeta-function with real part between 0 and 1 fall exactly on the line
Re(s) = 1/2.

The Generalized Riemann Hypothesis deals with a similar class of functions to the
zeta-function called Dirichlet L-functions. This time, instead of a series with terms
1/ns, we consider the series with terms χ(n)/ns for a (primitive) Dirichlet character
χ. Similar to the zeta-function, this definition of a Dirchlet L-function leads to other
representations, including an Euler product over the primes and a Hadamard product
over its zeros. The Generalized Riemann Hypothesis says that all zeros of a Dirichlet
L-function with real part between 0 and 1 have real part 1/2. Comparing product
representations of the zeta-function and L-functions over prime numbers and over
zeros gives intuition as to why the Riemann Hypothesis and Generalized Riemann
Hypothesis about zeros of certain functions have implications for the prime numbers.

In this thesis we look at concepts necessary to build up an understanding of the
Generalized Riemann Hypothesis (including the zeta-function, Dirichlet characters,
and some background from complex analysis) and then discuss one application: pri-
mality testing. Specifically, we will show how the Generalized Riemann Hypothesis
implies a widely used probabilistic primality test could be turned into an efficient,
usable, deterministic primality test.
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Introduction

The Riemann Hypothesis says all nontrivial zeros of the Riemann zeta-function

have real part 1/2. This is one of the million dollar problems on the Clay Mathematics

Institute’s Millennium Problems list in 2000. Before the Millennium Problem list

was created, the Riemann Hypothesis was already regarded as the most important

problem in mathematics and was on Hilbert’s famous list of 23 problems in 1900.

The mere statement of the Riemann Hypothesis itself leaves a lot of questions

unanswered. What is the Riemann zeta-function? Why should it have zeros with

real part 1/2? What makes a zero of this function “nontrivial” (or “trivial”)? Why

is knowing where this function vanishes so intensely interesting? A partial answer to

the last question is that the Riemann Hypothesis is a special case of a much broader

conjecture called the Generalized Riemann Hypothesis, which is about the nontrivial

zeros of infinitely many functions, and there are hundreds of consequences that are

already known to follow from a positive solution to that problem.

In Chapter 1, we will introduce the Riemann zeta-function and some of its prop-

erties, finishing with a more nuanced statement of the Riemann Hypothesis for the

completed zeta-function. In Chapter 2, we will discuss background in complex analy-

sis that will be used elsewhere, including the Gamma function. In Chapter 3, we will

introduce Dirichlet characters and their L-functions, which lead to the Generalized

Riemann Hypothesis. Chapter 4 is about primality tests and their practical impor-

tance. Finally, in Chapter 5 we will see how the Generalized Riemann Hypothesis

turns some probabilistic primality tests into efficient deterministic primality tests.

Readers are expected to be familiar with basic complex analysis and number

theory, as well as asymptotic notation and big-O notation.
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Chapter 1

The Riemann Zeta-function

We introduce the Riemann zeta-function. While it has a simple definition in an initial

domain, we will see that complex analysis allows this function to be extended to the

whole complex plane. After explaining what the zeta-function is and its connection

to the primes through an Euler product, we will look at other topics related to the

zeta-function such as the Prime Number Theorem and the Riemann Hypothesis.

1.1 Primes and the Riemann zeta-function

To understand properties of prime numbers, either rigorously or heuristically, mathe-

maticians have used techniques from numerous areas of mathematics, such as abstract

algebra, probability, and analysis. This thesis is about applications of complex anal-

ysis to study the prime numbers. We will begin with Euler’s use of an infinite series

from calculus to prove the following old theorem of Euclid.

Theorem 1.1.1. There are infinitely many primes.

2



Proof. We argue by contradiction. Suppose there are finitely many primes, say

p1, . . . , pm. Since 0 < 1/pi < 1, we can expand the factors in the finite product

m∏
i=1

1

1− 1/pi
=

m∏
i=1

(
1 +

1

pi
+

1

p2i
+ . . .

)

as geometric series. In particular, 1/(1− 1/p) > 1 + 1/p+ 1/p2 + · · ·+ 1/pk for k ≥ 1.

We can multiply these finitely many geometric series together by picking one term

from each series and multiplying them. This leads to a term 1/n for each integer n ≥ 1:

writing the prime factorization of n as pe11 p
e2
2 · · · pemm , where each ei ≥ 0, multiplying

the ei-th term from the ith factor (the first term in each geometric series has ei = 0)

gives us

1

pe11 p
e2
2 . . . pemm

=
1

n
.

By unique factorization, 1/n arises in this way exactly once. Therefore

m∏
i=1

1

1− 1/pi
≥
∑
n≥1

1

n
.

The harmonic series on the right is infinite, but the product of 1/(1 − 1/pi) on the

left is finite since it has finitely many terms. This is a contradiction. Thus there are

infinitely many primes.

The above proof gives us a glimpse at one of the central topics of this thesis: the

Riemann zeta-function. It is denoted ζ(s) and is defined as follows.

Definition 1.1.2. For s ∈ C with Re(s) > 1, the Riemann zeta-function at s is

ζ(s) =
∑
n≥1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ · · · .

3



Let’s show this series makes sense. When working with complex numbers s, we

will use the traditional notation σ for Re(s) and t for Im(s), so s = σ + it.

Theorem 1.1.3. For s ∈ C with Re(s) > 1, the series ζ(s) converges.

Proof. We present two arguments.

First proof: We will show the series ζ(s) converges when Re(s) > 1 since it is in

fact absolutely convergent at such s. Writing s = σ + it,

ns = nσ+it = nσnit = nσeit logn,

so |ns| = nσ since |eiθ| = 1 by Euler’s formula for eiθ when θ is real. It was not

important that n ∈ Z+ here: |as| = aσ for all real a > 0 and all s ∈ C.

The series
∑

n≥1 1/nσ converges for σ > 1 by the integral test on
∫∞
1
dx/xσ, so∑

n≥1 1/ns is absolutely convergent when Re(s) > 1.

Second proof: We will more directly apply the Cauchy criterion for convergence.

Let 1 < A < B for natural numbers A and B. Then

∣∣∣∣∣
B∑

n=A

1

ns

∣∣∣∣∣ ≤
B∑

n=A

∣∣∣∣ 1

ns

∣∣∣∣ ≤ B∑
n=A

1

nσ
.

We have 1/nσ ≤
∫ n
n−1(1/x

σ) dx for n ≥ 2, so by adding these together for n =

A, . . . , B,

B∑
n=A

1

nσ
≤
∫ B

A−1

1

xσ
dx =

−1

(σ − 1)xσ−1

∣∣∣∣B
A−1

=
1

σ − 1

(
1

(A− 1)σ−1
− 1

Bσ−1

)
.

For σ > 1, that integral approaches 0 as A,B →∞. Therefore, by Cauchy’s conver-

gence test we have shown ζ(s) is absolutely convergent. This second proof is basically

4



a more careful account of why the integral test works in the first proof.

In Euler’s proof of Theorem 1.1.1 we were essentially working with ζ(s) at s = 1,

where the series doesn’t make sense. The following infinite product decomposition

for ζ(s), when Re(s) > 1, is inspired by the product over primes at s = 1 that led to

a contradiction in Euler’s argument.

Theorem 1.1.4. For s ∈ C with Re(s) > 1,

ζ(s) =
∏

prime p

1

1− 1/ps
.

Proof. To show the product on the right converges, we will apply a criterion for

convergence from [8, Prop. 7.4]: for a sequence {ak} in C such that |ak| < 1 for all k

and
∑

k≥1 |ak| converges, the infinite product
∏

k≥1 1/(1−ak) converges (to a nonzero

value). Apply this criterion to ak = 1/psk, where pk is the k-th prime number and

Re(s) > 1. The series
∑

k≥1 |1/psk| =
∑

k≥1 1/pσk converges since its terms are part of

the convergent series of positive numbers ζ(σ). Therefore the infinite product

∏
k≥1

1

1− 1/psk
=
∏
p

1

1− 1/ps
(1.1.1)

converges for σ > 1.

The expansion of this product over p into the series
∑

n≥1 1/ns defining ζ(s) when

Re(s) > 1 is a special case of [8, Prop. 7.5]: when we expand each of the factors into

a geometric series

∏
k≥1

1

1− 1/psk
=
∏
k≥1

(
1 +

1

psk
+

1

p2sk
+ · · ·

)

5



this product equals the infinite series of numbers obtained by multiplying together

one term from each of finitely many of the geometric series at a time (while intuitively

all the other geometric series contribute their first term 1).

By unique factorization of natural numbers, each integer n ≥ 2 can be written as

n = pe11 p
e2
2 . . . pemm , where the product is over finitely many primes and ei ≥ 1. Then

1

ns
=

1

pe1s1 pe2s2 · · · pemsm

=
1

pe1s1

1

pe2s2

· · · 1

pemsm

.

The numbers on the right are exactly what we get when we multiply together one

term each from the finitely many geometric series in (1.1.1) associated to primes pk

dividing n (and intuitively the geometric series for 1/(1 − 1/psk) at primes pk not

dividing n contribute their first term 1). Including also the constant term 1 = 1/ns

for n = 1, we obtain in this way all the terms of the series
∑

n≥1 1/ns exactly once,

and nothing more, and that series defines ζ(s).

For Re(s) > 1, the product representation of the zeta-function in Theorem 1.1.4

is called its Euler product. This product is naturally indexed by the prime numbers,

which is an indication that ζ(s) is linked to the primes.

1.2 Analytic continuation and the completed zeta-

function

The series and product representation of the Riemann zeta-function in the previous

section are defined on the right half-plane {s : Re(s) > 1}. We will use complex

analysis to extend the zeta-function outside this half-plane, when neither the series

nor the product can be used anymore.

6



The series ζ(s) is an analytic function when Re(s) > 1, as a special case of

Theorem 2.2.4 coming up. Recall that an analytic function f defined on a nonempty

connected open subset U of C (like an open disc or right half-plane Re(s) > c) has at

most one extension to an analytic function on a larger connected open subset V in C

[17, Chap.2, Cor. 4.9]: if f1 and f2 are analytic on V and

f1(s) = f2(s)

for all s ∈ U , then f1(s) = f2(s) for all s ∈ V . There is no guarantee that such a

function on V exists, but if it does then it is unique: two constructions of an analytic

function on V that both restrict to f on U must be the same function on all of V .

We can therefore speak about an analytic continuation of f from U to V to mean an

analytic function on V that equals f on U . Building an analytic continuation can be

hard work!

With analytic functions in mind, we will extend the Riemann zeta-function to the

half-plane Re(s) > 0 except at the point s = 1.

Theorem 1.2.1. There is an extension of the Riemann zeta-function to an analytic

function on the half-plane Re(s) > 0 except for a simple pole at s = 1 with residue 1.

Proof. We define the alternating zeta-function as

ζ±(s) :=
∑
n≥1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+ · · · ,

which converges for real s > 0 since it is an alternating series. Convergence at these

real numbers turns out to imply the series ζ±(s) converges and is analytic for all

complex s with Re(s) > 0: see Remark 2.2.3 and Theorem 2.2.4. Its value at s = 1

7



is the alternating harmonic series:

ζ±(1) =
∑
n≥1

(−1)n−1

n
= log 2.

For Re(s) > 1, we have a relation between ζ(s) and ζ±(s):

ζ±(s) =

(
1− 2

2s

)
ζ(s). (1.2.1)

This comes from multiplying out the right side carefully (when Re(s) > 1):

(
1− 2

2s

)
ζ(s) = ζ(s)− 2

2s
ζ(s)

=
∑
m≥1

1

ms
−
∑
m≥1

2

(2m)s

=
∑
m≥1

(
1

(2m− 1)s
+

1

(2m)s

)
−
∑
m≥1

2

(2m)s

=
∑
m≥1

(
1

(2m+ 1)s
− 1

(2m)s

)
=
∑
n≥1

(−1)n−1

ns

= ζ±(s).

Since the alternating zeta-function makes sense for Re(s) > 0, we can try to

extend ζ(s) to Re(s) > 0 by solving for ζ(s) in (1.2.1):

ζ(s) =
ζ±(s)

1− 2/2s
. (1.2.2)

This formula is consistent with the previous meaning of ζ(s) when Re(s) > 1, and

8



now gives a meaning to ζ(s) as an analytic function when Re(s) > 0 except at s where

2/2s = 1, which corresponds to s = 1 + 2πik/ log 2 for k ∈ Z.

Since 1 − 2/2s has a simple zero at s = 1, while ζ±(1) = log 2 6= 0, ζ(s) has a

simple pole at s = 1 and its residue there is

ζ±(1) lim
s→1

s− 1

1− 2/2s
= log 2 lim

s→1

s− 1

1− 2e−s log 2
= log 2

1

log 2
= 1.

To handle the points 1 + 2πik/ log 2 where k 6= 0, consider a series with every

third term negated:

ζ+±(s) = 1 +
1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ . . . .

This series converges for real s > 0. We can see this by viewing ζ+±(s) as an alter-

nating series: 1/ns+1/(n+1)s > 2/(n+2)s for n ≥ 1 and s > 0, so ζ+±(s) converges

for s > 0 by the alternating series test. The series therefore converges and is analytic

for s ∈ C with Re(s) > 0 (Remark 2.2.3 and Theorem 2.2.4). For Re(s) > 1 we have

ζ+±(s) =

(
1− 3

3s

)
ζ(s)

by an argument analogous to that for (1.2.1). Therefore we can try to define ζ(s) for

Re(s) > 0 in a second way as

ζ(s) =
ζ+±((s)

1− 3/3s
. (1.2.3)

This defines ζ(s) as an analytic function for Re(s) > 0 except perhaps at s where

3/3s = 1, which means except perhaps when s = 1 + 2πim/ log 3 for m ∈ Z. We

have 1 + 2πik/ log 2 = 1 + 2πim/ log 3 if and only if 3k = 2m, which occurs only when

9



k = m = 0 by unique factorization. So the uniqueness of analytic continuation, using

either ζ±(s) or ζ+±(s) depending on the value of s, shows ζ(s) extends analytically

from Re(s) > 1 to Re(s) > 0 except for a simple pole at s = 1 with residue 1.

This proof is a nice example of how the uniqueness of analytic continuation can

help us extend a function by different methods to a larger domain.

The function ζ(s) can be extended analytically to the entire complex plane except

for the simple pole at s = 1. We describe here one way to achieve that with the help

of the Gamma function Γ(s), which we will review in Section 2.4. The function Γ(s)

is initially defined on Re(s) > 0 as an integral:

Γ(s) =

∫ ∞
0

e−xxs−1 dx =

∫ ∞
0

e−xxs
dx

x
.

Among the properties we’ll see about Γ(s) in Section 2.4 is that

• it is analytic for Re(s) > 0,

• it can be extended to an analytic function on all of C except for simple poles at

0 and the negative integers and it has no zeros. In particular, 1/Γ(s) is entire

since simple poles of Γ(s) become simple zeros of 1/Γ(s), and 1/Γ(s) has no

poles since Γ(s) has no zeros.

Riemann extended ζ(s) from Re(s) > 1 to C by combining ζ(s) with Γ(s/2) and an

exponential factor to form the completed zeta-function.

Definition 1.2.2. For Re(s) > 1, the completed zeta-function Z(s) is defined by the

formula

Z(s) = π−s/2Γ
(s

2

)
ζ(s).

10



.

Using the integral defining Γ(s) for Re(s) > 0, the function Z(s) for Re(s) > 1

can be written as an integral over (0,∞) [17, Chap. 7, Theorem 2.2]:

Z(s) =

∫ ∞
0

(∑
n≥1

e−πn
2x

)
xs/2

dx

x
.

By splitting the integral over (0,∞) into two integrals over (0, 1] and [1,∞), making

a change of variables to turn (0, 1] into [1,∞), and using the Poisson summation

formula, an alternative formula for Z(s) is obtained that involves an integral over

[1,∞) plus two simple extra terms that have simple poles at 0 or 1:

Z(s) =

∫ ∞
1

(∑
n≥1

e−πn
2x

)(
xs/2 + x(1−s)/2

) dx
x
− 1

s
− 1

1− s
. (1.2.4)

The integral here, over [1,∞), is absolutely convergent for all s in C, and is an entire

function. The right side of (1.2.4) provides an analytic continuation of Z(s) to C

except for simple poles at 0 and 1, so we get an analytic continuation for ζ(s) to C

by writing ζ(s) in terms of Z(s):

ζ(s) =
πs/2Z(s)

Γ(s/2)
= πs/2

1

Γ(s/2)
Z(s). (1.2.5)

Since 1/Γ(s) is entire, (1.2.5) defines ζ(s) on C as an analytic function except

perhaps at s = 0 and s = 1, where Z(s) has simple poles. The simple pole of Z(s) at

s = 0 is canceled by the simple pole of Γ(s/2) at s = 0, so ζ(s) is actually analytic

and nonzero at s = 0 (in fact, ζ(0) = −1/2). The simple pole of Z(s) at s = 1 is not

canceled by the other factors πs/2 or 1/Γ(s/2), which are analytic and nonvanishing

11



at s = 1. Since Z(s) at s = 1 has residue 1 (its polar term at s = 1 in (1.2.4) is

−1/(1 − s) = 1/(s − 1)), from (1.2.5) the residue of ζ(s) at s = 1 is π1/2/Γ(1/2),

which is 1 since Γ(1/2) =
√
π (Theorem 2.4.4). Thus ζ(s) is analytic on C except

for a simple pole at s = 1 with residue 1. This is a second explanation of the pole at

s = 1 and its residue there, which we saw by another method in Theorem 1.2.1.

From the symmetric roles of s and 1 − s in (1.2.4), the completed zeta-function

satisfies the functional equation

Z(s) = Z(1− s).

We can turn this into an uglier (but sometimes useful) functional equation for the

Riemann zeta-function itself.

Theorem 1.2.3. For s ∈ C, ζ(1− s) = 2(2π)−sΓ(s) cos(πs/2)ζ(s).

Proof. Substituting the formula in Definition 1.2.2 at s and 1− s on both sides of the

equation Z(s) = Z(1− s) and solving for ζ(1− s),

ζ(1− s) =
π−s/2Γ(s/2)

π−(1−s)/2Γ((1− s)/2)
ζ(s) = π1/2−s Γ(s/2)

Γ((1− s)/2)
ζ(s). (1.2.6)

The Gamma function satisfies Γ(s)Γ(1−s) = π/ sin(πs) for all s in C. This is called

the reflection formula and we’ll meet it in Theorem 2.4.4. Replacing s with (1−s)/2 in

the reflection formula, Γ((1− s)/2)Γ((1 + s)/2) = π/ sin(π/2−πs/2) = π/ cos(πs/2).

Solving for Γ((1− s)/2) and subtituting into (1.2.6) gives us

ζ(1− s) = π−1/2−sΓ
(s

2

)
Γ

(
1 + s

2

)
cos
(πs

2

)
ζ(s). (1.2.7)
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Another identity for the Gamma function is the duplication formula Γ(s)Γ(s+1/2) =

21−2s√πΓ(2s) for s ∈ C [10, Prop. 8.9]. Replacing s with s/2 in the duplication

formula makes it Γ(s/2)Γ((s + 1)/2) = 21−s√πΓ(s). The left side is part of (1.2.7),

so

ζ(1− s) = π−1/2−s21−s√πΓ(s) cos
(πs

2

)
ζ(s) = 2(2π)−sΓ(s) cos

(πs
2

)
ζ(s).

The next theorem puts the functional equation for Z(s) in Theorem 1.2.2 to work.

Theorem 1.2.4. The function Z(s) is nonvanishing for Re(s) > 1 and Re(s) < 0.

Proof. The Euler product for ζ(s) implies that ζ(s) 6= 0 for Re(s) > 1. The Gamma

function is analytic with no zeros on Re(s) > 1, and the function π−s/2 = e−(s/2) log π is

analytic and nowhere vanishing on C. Therefore Z(s) has no zeros on the half-plane

Re(s) > 1.

If Re(s) < 0 then Re(1− s) > 1, so Z(1− s) 6= 0, and by the functional equation

Z(s) is also nonzero.

Thus all zeros of Z(s) lie in the vertical strip 0 ≤ Re(s) ≤ 1, which is called the

critical strip. What does this tell us about zeros of ζ(s)?

Theorem 1.2.5. The function ζ(s) has simple zeros at the negative even integers

and its other zeros are in the critical strip and are the same as the zeros of Z(s) with

the same multiplicities. It has no real zeros in the critical strip.

Proof. Since Γ(s) has no zeros and has poles at 0 and the negative integers, which are

all simple, Γ(s/2) has no zeros and has simple poles at 0 and the negative even integers.

Therefore the nonvanishing of Z(s) for Re(s) < 0 implies ζ(s) = πs/2Z(s)/Γ(s/2) has

13



simple zeros at the negative even integers and nowhere else when Re(s) < 0. Other

zeros for ζ(s) must lie in the critical strip.

Since πs/2 and Γ(s/2) are analytic and nonvanishing on the critical strip for s 6= 0,

and we already saw from (1.2.5) that ζ(0) ∈ C×, the zeros of ζ(s) in the critical strip

are the same as the zeros of Z(s) with the same multiplicities.

To show ζ(s) has no real zeros in the critical strip, we already mentioned that

ζ(0) 6= 0 and there is a pole at s = 1. For real s in (0, 1) we can use the alternating

zeta-function:

ζ(s) =

(
1− 2

2s

)
ζ±(s).

The factor 1 − 2/2s is negative while ζ±(s) > 0 due to its formula as an alternating

series, so ζ(s) < 0 when s ∈ (0, 1).

The negative even integers are called the trivial zeros of ζ(s) since they are easy to

explain (coming from poles of Γ(s/2) except at 0). All other zeros of ζ(s) are called

nontrivial, so the nontrivial zeros of ζ(s) are the same thing as the zeros of Z(s) (with

the same multiplicities). From the functional equation of Z(s), a zero ρ of Z(s) in

the critical strip (that is, a nontrivial zero of ζ(s)) leads to a zero 1 − ρ, and these

two numbers are symmetric with respect to the point s = 1/2: one is in the upper

half-plane and the other is in the lower half-plane since we have shown there are no

real zeros of Z(s).

Theorem 1.2.6. The function Z(s) is nonvanishing for Re(s) = 1 and Re(s) = 0.

Proof. First we treat Re(s) = 1. The factors π−s/2 and Γ(s/2) are analytic and

nonvanishing on that line, so it remains to prove ζ(s) 6= 0 when Re(s) = 1.

The nonvanishing of ζ(s) on the line Re(s) = 1 can’t be seen from the series or
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Euler product for ζ(s), which converge only when Re(s) > 1. It is a more subtle

analytic argument, which proceeds by contradiction: if ζ(1 + it0) = 0 for a nonzero

real number t0 (there is no zero at 1 since there is a pole at 1), then by using a product

of functions such as

ζ(s)2ζ(s+ it0)ζ(s− it0),

or

ζ(s)3ζ(s+ it0)
4ζ(s+ 2it0)

and a trigonometric inequality, a contradiction is reached. Details are in [16, Theorem

4.2.3] using the first product and [1, Theorem 13.6], [5, Chap. 5, Lemma 3], and [17,

Chap. 7, Theorem 1.2] using the second product.

Since Z(s) = Z(1 − s), from Z(s) not vanishing on Re(s) = 1 we see that Z(s)

also does not vanish on Re(s) = 0.

The first few zeros of Z(s) (equivalently, of ζ(s)) in the upper part of the critical

strip have real part 1/2, and they are approximately

1

2
+ 14.13472i,

1

2
+ 21.02203i, and

1

2
+ 25.01085i.

The LMFDB page https://www.lmfdb.org/L/1/1/1.1/r0/0/0 has approximations

to further zeros. Whether all the nontrivial zeros have real part 1/2 is what the

Riemann Hypothesis is about.

Riemann Hypothesis : All nontrivial zeros of ζ(s) satisfy Re(s) = 1/2.

By Theorem 1.2.5, an equivalent formulation of the Riemann Hypothesis is that

all zeros of Z(s) have real part 1/2.

Riemann worked in analysis (Riemann integral, Cauchy-Riemann equations) and
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geometry (Riemann surfaces, Riemannian manifolds). He introduced ζ(s) and posed

the Riemann Hypothesis in an 1859 paper on number theory where he proposed a way

to settle what became known later as the Prime Number Theorem. That theorem

and its link to ζ(s) is explained in the next section.

1.3 The Prime Number Theorem

The Prime Number Theorem is about the growth of the prime counting function.

Definition 1.3.1. For x > 0, π(x) is the number of primes up to x.

For example, π(8.3) = 4 since there are 4 primes up to 8.3: 2, 3, 5, and 7.

Theorem 1.3.2 (Prime Number Theorem). As x→∞, π(x) ∼ x

log x
.

The proof of the Prime Number Theorem in 1896, independently by Hadamard

and de la Vallée Poussin, was a landmark achievement of 19th century mathematics.

We will not give the proof here, but will highlight some of the key ideas.

1. The Prime Number Theorem is equivalent to
∑

pk≤x log p ∼ x, where the sum

runs over prime powers pk up to x. It is technically simpler to prove a sum of

terms up to x is asymptotic to x instead of to x/ log x (note π(x) =
∑

p≤x 1).

2. The proof of the Prime Number Theorem does not directly use ζ(s), but instead

−ζ ′(s)/ζ(s), which for Re(s) > 1 is as a series over prime powers:

−ζ
′(s)

ζ(s)
=
∑
pk

log p

pks
,
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where p is prime and k ≥ 1. This series comes from the Euler product for ζ(s)

and will be explained in Section 2.2. The numerators in this series are precisely

the terms being added up in
∑

pk≤x log p, and the growth of this sum is analyzed

using −ζ ′(s)/ζ(s).

3. The key technical property of ζ(s) needed in the proof of the Prime Number

Theorem is that ζ(s) 6= 0 on the line Re(s) = 1 (see the proof of Theorem 1.2.6).

That implies −ζ ′(s)/ζ(s) is analytic on Re(s) = 1 except for a simple pole at

s = 1 and the behavior of −ζ ′(s)/ζ(s) around the line Re(s) = 1 is where most

of the analytic subtleties of the proof of the Prime Number Theorem occur.

The Prime Number Theorem can be proved using nothing hard about ζ(s) near

the line Re(s) = 1 other than its nonvanishing for Re(s) ≥ 1. That is the approach

of Newman (see [5, Chap. 5]). In order to prove the Prime Number Theorem with

an error term, estimates are needed for ζ(s) in a region on both sides of the line

Re(s) = 1, and this is carried out in [10, Chap. 6]. Getting a sharp error term for the

Prime Number Theorem is closely related to the Riemann Hypothesis, and to explain

that we need to express the Prime Number Theorem in terms of an approximation

to π(x) that is more complicated than x/ log x.

For x ≥ 2, the logarithmic integral at x is

Li(x) =

∫ x

2

dy

log y
.

Using integration by parts once (u = 1/ log y, dv = dy),

Li(x) =
x

log x
− 2

log 2
+

∫ x

2

dy

(log y)2
=

x

log x
+O

(
x

(log x)2

)
. (1.3.1)
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The O-estimates comes from the fact that
∫ x
2
dy/(log y)2 ∼ x/(log x)2. To see this,

we have
∫ x
2
dy/(log y)2 ≥

∫ x
2
dy/(log x)2 = (x− 2)/(log x)2. This tends to ∞ with x,

so both it and x/(log x)2 diverge as x→∞. We can therefore use L’Hopital’s rule:

lim
x→∞

∫ x
2
dy/(log y)2

x/(log x)2
= lim

x→∞

1/(log x)2

(log x− 2)/(log x)3
= lim

x→∞

log x

log x− 2
= 1.

This shows Li(x) ∼ x/ log x, so the Prime Number Theorem could be stated as

π(x) ∼ Li(x). It seems strange to introduce a more complicated function than the

simple x/ log x for the Prime Number Theorem, but a bound on the approximation of

π(x) by Li(x), not by x/ log x, turns out to be equivalent to the Riemann Hypothesis.

Theorem 1.3.3. The Riemann Hypothesis is equivalent to the estimate

π(x) = Li(x) +O(
√
x log x).

Proof. See [10, Section 10.2].

We can’t replace Li(x) with x/ log x since the difference Li(x)−x/ log x is nowhere

close to O(
√
x log x). That can be seen by carrying out integration by parts on Li(x)

in (1.3.1) a second time (u = 1/(log y)2, dv = dy),

Li(x) =
x

log x
− 2

log 2
+

x

(log x)2
− 2

(log 2)2
+

∫ x

2

2 dy

(log y)3

=
x

log x
+

x

(log x)2
+O

(
x

(log x)3

)
,

so the difference Li(x)−x/ log x is asymptotic to x/(log x)2, which is not O(
√
x log x).

In the error term O(
√
x log x) of Theorem 1.3.3, the exponent in

√
x = x1/2 comes

from the 1/2 in the Riemann Hypothesis: the error term can’t be O(xc) for some
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c < 1/2 because that can be shown to imply ζ(s) 6= 0 for Re(s) > c while we know

there are zeros with real part 1/2. It is far from obvious why real parts of zeros of

ζ(s) should be related to error terms in estimates on π(x). At the end of this thesis

we will see how real parts of zeros of ζ(s) (and related functions) all being 1/2 lead

to bounds on error terms for the running time of a primality test.
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Chapter 2

Analysis Background

This chapter lays out most of the tools from complex analysis that we will need in

order to build up an understanding of the Riemann Hypothesis and its implications.

First we will introduce general terminology and results in complex analysis. Then

we will discuss Dirichlet series, which are the class of functions that are modeled

on the zeta-function. We will next look at infinite products, such as Euler products

and Hadamard factorizations. Finally, we will see a particular meromorphic function

known as the Gamma function (already introduced in Section 1.2). These topics may

seem to jump around a bit, but later on we will see how they all come together.

2.1 Analytic functions

We present some definitions and concepts from complex analysis that will be generally

useful for understanding the rest of this chapter.

Definition 2.1.1. For a sequence {zn} in C, the series
∑

n≥1 zn is called absolutely
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convergent if
∑

n≥1 |zn| is finite.

As in real analysis, absolute convergence lets us to do much more with a series than

we would be able to otherwise. In particular, general commutativity and associativity

is valid: terms can be reordered or regrouped without changing the value of the series.

For a connected open set Ω ⊆ C, a function f : Ω→ C is called holomorphic or an-

alytic if it is complex differentiable at each point in Ω. This is much stronger than dif-

ferentiability in real analysis: functions on an open interval in R can be differentiable

once but not twice, or be infinitely differentiable with no power series representa-

tion (see https://en.wikipedia.org/wiki/Non-analytic smooth function), but

holomorphic (complex differentiable) functions on Ω are infinitely differentiable at

each point of Ω and have local power series expansions on a neighborhood of each

point in Ω. Functions that are holomorphic on the entire complex plane are called

entire.

Remark 2.1.2. If a holomorphic function on Ω extends continuously to the boundary

of Ω, then it might not be holomorphic on the boundary. For example, if a power series∑
cnz

n converges at a point on the unit circle then it converges and is holomorphic on

the open unit disc |z| < 1, but on the unit circle this series is a complex Fourier series

in disguise:
∑
cnz

n =
∑
cne

inθ when z = eiθ, and even basic convergence questions

about Fourier series have many subtleties.

When f is holomorphic in a neighborhood of a point a and limz→a |f(z)| = ∞,

then a is called a pole of the function. For example, the function 1/z is analytic on

C× and has a pole at z = 0. A function defined on a connected open set Ω except for

poles on a discrete subset of Ω is called a meromorphic function on Ω.

Logarithms on C× are much more complicated than on the positive real axis:
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there is no continuous or holomorphic function L(z) on all of C× where L(zw) =

L(z) +L(w) everywhere other than the zero function. To speak about the logarithm

of a holomorphic function, we need to be more careful than composing the function

with “the logarithm”.

Definition 2.1.3. A logarithm of a holomorphic function f : Ω→ C is a holomorphic

function g : Ω→ C such that eg(z) = f(z) for all z ∈ Ω.

Intuitively, if eg(z) = f(z) then g(z) = log f(z), but we already pointed out that

logarithms of nonzero complex numbers are tricky things. That is why we did not

define logarithms of holomorphic functions by using logarithms anywhere. We instead

defined them using inverted exponential relations: g is called a logarithm of f when f

is the exponential of g. Exponentials of complex numbers have none of the subtleties

of logarithms of complex numbers.

Necessarily f has to be nonvanishing on Ω in order to have a logarithm, since a

function of the form eg(z) is always nonvanishing. The next theorem, part of which

will be applied to the zeta-function in Theorem 2.2.6, shows that necessary condition

for f to have a logarithm is also sufficient as long as the domain of f is nice enough

(the domain does not have disjoint open pieces and has no holes).

Theorem 2.1.4. If f : Ω→ C is holomorphic and nowhere vanishing on a connected

and simply connected open set Ω, then f has a logarithm on Ω: there is a holomorphic

function g on Ω such that

f(z) = eg(z)

for all z ∈ Ω. This function g(z) is unique up to addition by 2πik for an integer k

and g′(z) = f ′(z)/f(z).
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Proof. (From [16, Theorem 2.2.7] and [17, Section 3.4]) Fix a point z0 in Ω, and pick

c0 ∈ C such that ec0 = f(z0). We can find c0 since f(z0) 6= 0 and the exponential

function takes on all nonzero values.

If we could find a holomorphic function g(z) such that eg(z) = f(z) then differenti-

ating both sides tells us eg(z)g′(z) = f ′(z), so g′(z) = f ′(z)/f(z). That suggests g(z),

if it exists at all, should be an integral of f ′(z)/f(z), which is why we now define

g(z) =

∫
γz

f ′(w)

f(w)
dw + c0,

where γz is a path in Ω connecting z0 to z.

This definition of g(z) makes sense on account of several properties.

1. A path γz from z0 to z in Ω exists because Ω is path-connected (connected open

sets in C are path-connected).

2. Since f is nonvanishing on Ω, f ′(w)/f(w) is holomorphic on Ω, so we can

integrate it on a path in Ω.

3. For two different paths in Ω from z0 to z, the integrals of f ′(w)/f(w) on those

paths are equal by the Cauchy integral formula: two different paths from z0 to z

in Ω form a loop if we traverse one path from z0 to z and then the reverse of the

other path from z back to z0. Since f ′(w)/f(w) is holomorphic on both paths

and in the region between them (since Ω is simply connected), the integral of

f ′(w)/f(w) along one path plus the reverse of the other is 0 by the Cauchy

integral formiula, so the integrals of f ′(w)/f(w) along both paths from z0 to z

are equal.

We put c0 in the definition of g(z) to make g(z0) = c0 (the path γz0 is a loop at
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z0 and an integral of f ′(w)/f(w) on that loop is 0 by the Cauchy integral formula),

so eg(z0) = ec0 = f(z0). Without c0, g(z0) would be 0, so eg(z0 = 1 and f(z0) need not

be 1.

Next we will show g′(z) = f ′(z)/f(z), which is intuitively reasonable since g(z) is

an integral of f ′(z)/f(z). The derivative of g at z is defined to be

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

1

h

∫ z+h

z

f ′(w)

f(w)
dw,

where the integral is along a small path from z to z + h. Integrals of holomorphic

functions on paths in Ω depend only on the endpoints and not on the specific path

between the endpoints (as long as the path is in Ω), so for small nonzero h we use

the straight line path from z to z + h. That path is z + th for 0 ≤ t ≤ 1, so

g(z + h)− g(z)

h
=

1

h

∫ z+h

z

f ′(w)

f(w)
dw,=

1

h

∫ 1

0

h
f ′(z + th)

f(z + th)
dt =

∫ 1

0

f ′(z + th)

f(z + th)
dt.

Since f is holomorphic, f ′/f is continuous and bounded on a neighborhood of z,so

we can take the limit inside the integral as h→ 0. Therefore

g′(z) =

∫ 1

0

f ′(z)

f(z)
dt =

f ′(z)

f(z)
.

Now we show eg(z) = f(z) for all z ∈ Ω. The product f(z)e−g(z) has derivative 0:

(
f(z)e−g(z)

)′
= f ′(z)e−g(z) − f(z)g′(z)e−g(z)

= f ′(z)e−g(z) − f(z)
f ′(z)

f(z)
e−g(z)

= f ′(z)e−g(z) − f ′(z)e−g(z),
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which is 0, so f(z)e−g(z) is constant. Evaluating this at z0, we find f(z0)e
−c0 =

ec0e−c0 = 1, so the constant value of f(z)e−g(z) is 1. Thus f(z) = eg(z) for z ∈ Ω.

Two analytic functions g1(z) and g2(z) such that f(z) = eg1(z) = eg2(z) on Ω differ

at each z by an integral multiple of 2πi: g2(z) = g1(z) + 2πik(z) for all z ∈ Ω, where

k(z) ∈ Z. Because Ω is connected and Z is a discrete set, k(z) must be constant.

Then g1 and g2 differ on Ω by 2πik for some k ∈ Z.

For a function f(z) fitting the hypotheses of the previous theorem, a logarithm of

it is denoted log f(z).

Because the derivative of log f(z) is f ′(z)/f(z), we refer to f ′(z)/f(z) as the

logarithmic derivative of f even when f has poles: we don’t need log f(z) to make

sense in order for f ′(z)/f(z) to make sense. The formation of logarithmic derivatives

converts products to sums. For a product of two terms this is the product rule:

(f1f2)
′(z)

(f1f2)(z)
=
f ′1(z)f2(z) + f1(z)f ′2(z)

f1(z)f2(z)
=
f ′1(z)

f1(z)
+
f ′2(z)

f2(z)
.

A helpful property of logarithmic derivatives is the information at their poles,

which are the zeros and poles of the original function.

Theorem 2.1.5. When a nonzero function f(z) is meromorphic at a number a and

its Laurent series at a has lowest-order term in degree m, f ′(z)/f(z) has a simple

pole at a with residue m (so no pole if m = 0): for z near a,

f(z) = cm(z − a)m +O((z − a)m+1) with cm 6= 0 =⇒ f ′(z)

f(z)
=

m

z − a
+O(1).

Proof. If f(z) has a Laurent series representation centered at a with lowest-order

term cm(z − a)m (so cm 6= 0), then f ′(z) has a Laurent series representation centered
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at a with lowest-order term mcm(z − a)m−1, so near a

f ′(z)

f(z)
=
mcm(z − a)m−1 +O((z − a)m)

cm(z − a)m +O((z − a)m+1)

=
mcm(z − a)m−1(1 +O(z − a))

cm(z − a)m(1 +O(z − a))

=
m

z − a
· 1 +O(z − a))

1 +O(z − a))

=
m

z − a
(1 +O(z − a)))

=
m

z − a
+O(1).

This shows logarithmic derivatives have simple poles when m 6= 0: that is at poles of

the original function (m < 0) and at zeros of the original function (m > 0). When

f(z) has neither a zero nor pole at a, f ′(z)/f(z) is analytic at a.

2.2 Dirichlet series

The function ζ(s) =
∑

n≥1 1/ns for Re(s) > 1 has a rather different appearance than

the more familiar representation of functions by power series in complex analysis.

Infinite series of this kind are quite prominent in number theory, and this general

type of function is called a Dirichlet series.

Definition 2.2.1. A Dirichlet series is a function of the form

f(s) =
∑
n≥1

an
ns
.

for a sequence of complex numbers {an},
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The zeta-function is the Dirichlet series where an = 1 for all n. Another Dirichlet

series is the alternating zeta-function from the proof of Theorem 1.2.1:

ζ±(s) =
∑
n≥1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+ · · · .

The series ζ(s) and ζ±(s) both converge absolutely at the same values of s, since the

terms in both series have the same absolute values. This is the half-plane Re(s) > 1.

A general result for all Dirichlet series is that if they converge absolutely somewhere

then their domains of absolute convergence are half-planes.

Theorem 2.2.2. Let f(s) =
∑

n≥1 an/n
s be a Dirichlet series. If f(s0) converges

absolutely for some s0 ∈ C, then f(s) converges absolutely for all s with Re(s) ≥

Re(s0).

Proof. For s = σ+ it, |1/ns| = 1/nσ (as we saw in the proof of Theorem 1.1.3). Write

s0 = σ0 + it0. Because f(s0) =
∑

n≥1 an/n
s0 converges absolutely, the series

∑
n≥1

|an|
nσ0

converges. For σ ≥ σ0, the series
∑

n≥1 |an|/nσ is term-by-term less than or equal to

the series
∑

n≥1 |an|/nσ0 , which is convergent. Therefore the series f(s) is absolutely

convergent when Re(s) ≥ Re(s0).

A consequence of this is that if we can show a Dirichlet series converges absolutely

at one complex number s0, we automatically get absolute convergence of the series

at every complex number s in the half-plane Re(s) ≥ σ0.
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Remark 2.2.3. Being more careful with the treatment of convergence, Theorem 2.2.2

can be extended to the case of a Dirichlet series converging perhaps only conditionally

at a point: if
∑
an/n

s converges at s0, but not necessarily absolutely there, then the

series
∑
an/n

s converges at all s with Re(s) > Re(s0) (an open half-plane, not a

closed half-plane). See [1, Theorem 11.8].

Just as a power series is infinitely differentiable and can be differentiated termwise

on any open disc where it converges, the same is true for a Dirichlet series.

Theorem 2.2.4. If a Dirichlet series f(s) =
∑
an/n

s converges on an open half-

plane σ > c then it is analytic on this half plane and its derivative there can be

computed by termwise differentiation of the Dirichlet series:

f ′(s) =
∑
n≥1

−an log n

ns
=
∑
n≥2

−an log n

ns
.

Proof. See [1, Theorem 11.12]. This result does not require the series to converge

absolutely on all of Re(s) > c.

Example 2.2.5. For Re(s) > 1, ζ ′(s) = −
∑
n≥2

log n

ns
.

Using this, we will find a Dirichlet series for the negative logarithmic derivative

of ζ(s).

Theorem 2.2.6. For Re(s) > 1, −ζ
′(s)

ζ(s)
=
∑
pk

log p

pks
.

Proof. This is based on taking logarithmic derivatives of the Euler product represen-

tation ζ(s) =
∏

p 1/(1− 1/ps).
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Since logarithmic differentiation turns products into sums, (fm)′/fm = mf ′/f for

all integers m. We will use this when m = −1: (1/f)′/(1/f) = −f ′/f , so

(1/(1− 1/ps))′

1/(1− 1/ps)
= −(1− 1/ps)′

1− 1/ps
=
−(log p)/ps

1− 1/ps

Therefore from ζ(s) =
∏

p 1/(1− 1/ps),

ζ ′(s)

ζ(s)
=
∑
p

−(log p)/ps

1− 1/ps

=
∑
p

− log p

ps

∑
k≥0

1

pks

=
∑
p

∑
k≥0

− log p

p(k+1)s

=
∑
pk

− log p

pks
,

where the last (absolutely convergent) sum runs over prime powers pk where k ≥ 1.

We did not justify why the logarithmic derivative of an infinite product is the sum

of the logarithmic derivatives of the factors, so here is a completely separate way to

derive that Dirichlet series for ζ ′(s)/ζ(s). From calculus,

1

1− x
= e− log(1−x) = exp

(∑
k≥1

xk

k

)

when |x| < 1. The series
∑

k≥1 z
k/k converges for z in the open unit disc, so

1

1− z
= exp

(∑
k≥1

zk

k

)
. (2.2.1)

when |z| < 1 because both sides are analytic there and agree on the interval (−1, 1).
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We’ll use (2.2.1) for z = 1/ps when Re(s) > 1:

ζ(s) =
∏
p

1

1− 1/ps
=
∏
p

exp

(∑
k≥1

(1/ps)k

k

)
=
∏
p

exp

(∑
k≥1

1

kpks

)
.

The product over p is a limit of finite products and the exponential function is con-

tinuous, so for Re(s) > 1

ζ(s) = exp

(∑
p

∑
k≥1

1

kpks

)
.

The single series
∑

pk 1/(kpks) over prime powers converges absolutely for Re(s) > 1,

so it can be rewritten as the double series in the exponent above, and we get

ζ(s) = exp

∑
pk

1

kpks


for Re(s) > 1. Thus

∑
pk 1/(kpks) is a logarithm of ζ(s), so by Theorems 2.1.4 and

2.2.4.

ζ ′(s)

ζ(s)
=

∑
pk

1

kpks

′ = ∑
pk

− log(pk)

kpks
=
∑
pk

− log p

pks
.

To make the Dirichlet series for −ζ ′(s)/ζ(s) a sum over Z+ rather than a sum

only over prime powers, we introduce a standard number-theoretic function.

Definition 2.2.7. The von Mangoldt function, denoted Λ(n), is defined on natural

numbers n by

Λ(n) =


log p if n = pk for prime p and k ≥ 1,

0 otherwise.
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Example 2.2.8. Here is a table of the values of Λ(n) for 1 ≤ n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10

Λ(n) 0 log 2 log 3 log 2 log 5 0 log 7 log 2 log 3 0

For Re(s) > 1 the Dirichlet series for −ζ ′(s)/ζ(s) over prime powers now becomes

− ζ ′(s)

ζ(s)
=
∑
n≥1

Λ(n)

ns
. (2.2.2)

One of the most important results about a Dirichlet series f(s) =
∑
an/n

s is a

formula for the partial sums of its coefficients
∑

n≤x an in terms of an integral along

a vertical line.

Theorem 2.2.9 (Perron’s Formula). Let an be a sequence such that the Dirichlet

series f(s) =
∑
an/n

s converges absolutely for Re(s) > 1. For c > 1 and x > 0,

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds =

∑
n≤x

∗
an,

where
∫ c+i∞
c−i∞ is defined to mean limT→∞

∫ c+iT
c−iT and the last term in the partial sum is

halved if x ∈ Z+.

Proof. See [1, Theorem 11.18]. The result in fact is true if the line Re(s) = c is in an

open half-plane of convergence for the series f(s) and the series converges on the line

Re(s) = c only conditionally.

The intuition behind Perron’s formula comes from interchanging a sum and inte-
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gral:

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s
ds =

1

2πi

∫ c+i∞

c−i∞

∑
n≥1

an
ns
xs

s
ds

=
∑
n≥1

an

(
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s
ds

)
(2.2.3)

and the vertical contour integrals can be computed from the following formula with

y = x/n:

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =


1, if y > 1,

1/2, if y = 1,

0, if 0 < y < 1.

(2.2.4)

The intuition behind these values when y 6= 1 is based on the residue theorem. Since

|ys/s| = yRe(s)/|s|, when y > 1 we want to push the contour we form to the left in

order to make ys/s tend to 0. This causes us to pass over the pole at the origin and

the residue of ys/s at s = 0 is 1. When y < 1, we want to push the contour to the

right to make ys/s tends to 0, which picks up no poles, so the integral will be 0.

When y = 1, neither of these intuitions work, so we must calculate the integral more

directly. The intuition behind (2.2.4) at y = 1 is that the halfway value between the

values 0 and 1 is like the halfway value at a jump discontinuity in a Fourier series.

Plugging (2.2.4) into (2.2.3) with y = x/n, the nth term in (2.2.3) is 0 when

x/n < 1, meaning n > x. For n < x, the nth term in (2.2.3) is an, and for n = x (if

x ∈ Z+) the nth term in (2.2.3) is (1/2)an. This gives us all the terms in the sum∑∗
n≤x an in Perron’s formula.

Example 2.2.10. Taking f(s) = ζ(s) in Perron’s formula, so an = 1 for all n, we
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have for c > 1 and x > 0

1

2πi

∫ c+i∞

c−i∞
ζ(s)

xs

s
ds =

∑
n≤x

∗
1 =


bxc, if x 6∈ Z+,

x− 1/2, if x ∈ Z+.

Example 2.2.11. Using f(s) = −ζ ′(s)/ζ(s) =
∑

Λ(n)/ns (by (2.2.2)) in Perron’s

formula, we have for c > 1 and x > 0

∑
n≤x

∗
Λ(n) =

1

2πi

∫ c+i∞

c−i∞
−ζ
′(s)

ζ(s)

xs

s
ds. (2.2.5)

The partial sums of the von Mangoldt function are traditionally denoted by

ψ(x) :=
∑
n≤x

Λ(n) =
∑
pk≤x

log p,

which was introduced by Chebyshev. We had mentioned this function of x in the

summary of key ideas in the proof of the Prime Number Theorem in Section 1.3,

where we said the relation π(x) ∼ x/ log x is equivalent to
∑

pk≤x log p ∼ x, and that

means ψ(x) ∼ x by the definition of ψ(x). The Prime Number Theorem is essentially

always proved by showing ψ(x) ∼ x.

In (2.2.5) we have a formula for ψ(x) when x is not a positive integer, or more

precisely, not a prime power. If x = pk is a prime power, then the sum on the left

side in (2.2.5) has last term (1/2) log p instead of log p. Thus the left side of (2.2.5),

while not always equal to ψ(x) is always ψ(x) +O(log x).
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2.3 Infinite products

Complex analysis focuses a lot on power series representations of functions, but prod-

uct representations for functions will be just as important for us as series representa-

tions. We already saw this in the setting of the Euler product for ζ(s), which is how

we got a Dirichlet series for −ζ ′(s)/ζ(s). The following theorem describes a more

general class of Euler products than just the one for ζ(s), and this will be useful in

the next chapter.

Theorem 2.3.1. An Euler product of the form
∏
p

1

1− ap/ps
with |ap| ≤ 1 for all

primes p, converges for Re(s) > 1 and there it can be written as the absolutely con-

vergent Dirichlet series
∑
n≥1

an
ns

, where an = ae1p1 · · · a
er
pr when n has prime factorization

pe11 · · · perr and a1 = 1.

Proof. See [8, Prop. 7.5].

We saw an example of an Euler product in Chapter 1, where we started with ζ(s) as

a series converging absolutely on Re(s) > 1 and then recognized it as having an Euler

product there with ap = 1 for all p. Theorem 2.3.1 allows us to reverse-engineer the

half-plane of absolute convergence for the series defining the Riemann zeta-function

if we had started with a definition of ζ(s) by its Euler product instead of by its series.

Some analogues of the Riemann zeta-function, such as Artin L-functions, are defined

as Euler products since the coefficients of their Dirichlet series representation don’t

have a simple interpretation.

A second type of product representation, which we have not met before, is applica-

ble to entire functions with a restricted type of growth on large circles. The following

theorem about these products is due to Hadamard and was inspired by Riemann’s
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paper on the zeta-function.

Theorem 2.3.2 (Hadamard). For an entire function f(s) that is not identically zero,

let |f |r := max|s|=r |f(s)| for r > 0. Suppose for all ε > 0 that log |f |r = Oε(r
1+ε) as

r →∞. Then we have a product representation

f(s) = eas+bsm
∏
n≥1

(
1− s

ρn

)
es/ρn ,

for all s ∈ C, where a and b are constant, m = ords=0 f(s), and ρn runs over the zeros

of f besides 0. The n-th factor in the product appears as often as the multiplicity of

ρn as a zero of f .

The product above is absolutely convergent and for each ε > 0, the series

∑
n≥1

1

|ρn|1+ε

converges, where each ρn is repeated with its multiplicity as a zero of f .

Proof. See [17, Section 5.1].

The product representation of f(s) in Theorem 2.3.2 is called its Hadamard fac-

torization. It is a generalization of the factorization of polynomials (a finite product

with a = 0), with one difference being that here we associate to a zero ρn the factor

(1− s/ρn)es/ρn with constant term 1 instead of the factors s− ρn with leading coef-

ficient 1. An infinite product of terms like
∏

n≥1(s − ρn) doesn’t make much sense:

what would the constant term be if ρn →∞?

The purpose of the exponential factors es/ρn is to improve the convergence (com-

pared to
∏

n≥1(1 − s/ρn)) without introducing additional zeros, as exponentials are
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always nonzero. Since 1− s/ρ makes no sense when ρ = 0, we need to treat zeros at

s = 0 separately and that is why there is a term sm outside the product.

The factor eas+b out front accounts for the only variations allowed when |f |r =

Oε(r
1+ε) if we know the zeros and their multiplicities: multiplication by eas+b main-

tains the growth condition on |f |r as r →∞. These extra factors eas+b are analogous

to the role of nonzero constants being multiplied by a factored polynomial, which

change a polynomial while keeping it a polynomial and not affecting its zeros.

Example 2.3.3. Consider the entire function f(s) = sin(πs). It has simple zeros at

the integers and no other zeros in C, which can be seen from the identity sin(πs) =

(eiπs − e−iπs)/2i, which vanishes only at the integers. When |s| = r for some real

r > 0, | sin s| = |(eiπs − e−iπs)/2i| ≤ (eπr + eπr)/2 = eπr, so | sin(πs)| = O(eπr),

which gives us log |f |r = O(πr) = O(r) = Oε(r
1+ε) for all ε > 0. So we can use

Theorem 2.3.2. In the same notation from there, we need m = 1 and a zero ρn = n

for each nonzero integer n. The Hadamard factorization of sin(πs) is

sin(πs) = eas+bs
∏

n∈Z−{0}

(
1− s

n

)
es/n

for some a and b. For n ∈ Z+, combining the terms in the product at n and −n

cancels out the exponential factors on those terms, so the Hadamard factorization for

sin(πs) simplifies to

sin(πs) = eas+bs
∏
n≥1

(
1− s2

n2

)
.

At this point we can solve for a and b.
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Determine b. Since sin(πs)/s→ π as s→ 0, we need eb = π. Thus

sin(πs) = easπs
∏
n≥1

(
1− s2

n2

)
.

Determine a. The infinite product over n ≥ 1 is an even function of s and

sin(πs)/(πs) is an even function of s, so eas must be an even function of s: eas = e−as

for all s ∈ C. Therefore e2as = 1 for all s ∈ C, which forces a = 0 (if a 6= 0 then

{2as : s ∈ C} = C, so {e2as : s ∈ C} is C× instead of 1).

As Theorem 2.3.2 predicts, for each ε > 0 the series

∑
n≥1

(
1

|n|1+ε
+

1

| − n|1+ε

)
=
∑
n≥1

2

n1+ε

converges, which we saw in Chapter 1.

We now apply the Hadamard factorization to the completed zeta-function Z(s).

In Chapter 1, we saw

Z(s) =

∫ ∞
1

(∑
n≥1

e−πn
2x

)
(xs/2 + x(1−s)/2)

dx

x
− 1

s
− 1

1− s

for all s ∈ C and this has zeros only in the critical strip 0 ≤ Re(s) ≤ 1. The integral

converges for all s ∈ C and is entire. Due to the simple poles at 0 and 1, multiply

Z(s) by s(s − 1) to make Z(s) entire without changing its zeros in the critical strip

or changing the functional equation.

Theorem 2.3.4. The function s(s− 1)Z(s) has a Hadamard factorization

s(s− 1)Z(s) = eBs
∏
ρ

(
1− s

ρ

)
es/ρ
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for some B ∈ C. Additionally,
∑

ρ 1/|ρ|1+ε converges for all ε > 0, where this sum is

over the zeros of s(s− 1)Z(s) and each zero appears with its multiplicity in Z(s).

Proof. The function s(s − 1)Z(s) can be shown to satisfy the growth hypotheses of

Theorem 2.3.2 (see [4, p. 79]), so there are A,B ∈ C and m ≥ 0 such that

s(s− 1)Z(s) = eA+Bssm
∏(

1− s

ρ

)
es/ρ.

On the left side, since Z(s) = −1/s + O(1) near s = 0, s(s − 1)Z(s) at s = 0 has

value 1: s(s − 1)Z(s) is nonvanishing at the origin. Thus m = 0 in the Hadamard

factorization and eA = 1. We are left with the product representation as in the

statement of the theorem.

The function s(s−1)Z(s) has a Hadamard product on C and the function ζ(s) has

an Euler product on the half-plane Re(s) > 1, so when Re(s) > 1 we have an equation

involving two infinite product representations together with the Gamma function:

eBs
∏
ρ

(
1− s

ρ

)
es/ρ = s(s− 1)π−s/2Γ

(s
2

)∏
p

1

1− 1/ps
.

This shows π−s/2Γ(s/2) can be considered comparable to the Euler factors in the

Euler product of ζ(s), even though it does not appear similar to 1/(1− 1/ps).

By carrying out the same analytic operations on both sides of this equation (form-

ing logarithmic derivatives, integrating, etc.), we can relate the zeros ρ on the left

side and the primes p on the right side. This is how nontrivial zeros of ζ(s) (the same

thing as zeros of Z(s)) can be related to prime numbers.

In Chapter 3 we’ll see generalizations of the zeta-function that lead to other pairs

of related infinite product representations.
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2.4 The Gamma function

We already met the Gamma function in Chapter 1 in the process of analytic contin-

uation of the Riemann zeta-function. It will appear again in the next chapter when

we analytically continue Dirichlet L-functions. Here we will discuss this function and

its properties that are useful for us.

Definition 2.4.1. For real s > 0, the Gamma function at s is defined as

Γ(s) =

∫ ∞
0

e−xxs−1 dx =

∫ ∞
0

e−xxs
dx

x
.

This integral converges for positive s since xs−1 as a function of x is integrable just

to the right of x = 0 (where e−x is nearly 1) and e−x decays much faster than xs−1

as x → ∞. For s ∈ C, since |xs−1e−x| = xσ−1e−x, the integral defining the Gamma

function is absolutely integrable when σ > 0. Therefore we can define Γ(s) by the

above (absolutely convergent) integral when Re(s) > 0, and it is analytic in s [17,

Chap. 6, Prop. 1.1].

We can extend the Gamma function to all of C, based on the following relation.

Theorem 2.4.2. For all s with Re(s) > 0,

Γ(s+ 1) = sΓ(s).

Proof. This is integration by parts. By definition,

Γ(s+ 1) =

∫ ∞
0

e−xxs dx.

Cut this integral down to a finite interval [ε, 1/ε] for small ε > 0 and apply integration
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by parts with u = xs and dv = e−x dx:

∫ 1/ε

ε

e−xxs dx = −xse−x
∣∣∣∣1/ε
ε

+

∫ 1/ε

ε

e−xsxs−1 dx.

As ε → 0+, the integral on the right tends to sΓ(s). As for the boundary terms, we

show they go to 0 as ε→ 0+:

| − xse−x| = xσ

ex
,

which at x = ε is εσ/eε and that tends to 0 as ε → 0+ since σ > 0. The other

boundary term is (1/ε)σ/e1/ε, which in term of the large number y = 1/ε has the

form yσ/ey, and this tends to 0 as y →∞ due to the exponential denominator.

Since

Γ(1) =

∫ ∞
0

e−x dx = − e−x
∣∣∣∣∞
0

= 1,

the relation Γ(s + 1) = sΓ(s) for positive integers n becomes Γ(n) = (n − 1)! for

positive integers n.

Using Γ(s + 1) = sΓ(s) repeatedly, we can extend the function Γ(s) to a mero-

morphic function on C with only simple poles.

Theorem 2.4.3. The function Γ(s) has an analytic continuation to a meromorphic

function on C with simple poles only at the nonpositive integers s = 0,−1,−2, . . . .

Proof. Rewrite the relation Γ(s + 1) = sΓ(s) when Re(s) > 0 as Γ(s) = Γ(s + 1)/s

and use the right of that to define Γ(s) when Re(s) > −1 as an analytic function

except for a simple pole at s = 0 (since Γ(s+ 1) at s = 0 has value Γ(1) = 1). Then

using

Γ(s) =
Γ(s+ 1)

s
=

Γ(s+ 2)

s(s+ 1)
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we can use the last expression on the right to define Γ(s) when Re(s) > −2 as an

analytic function except for simple poles at s = 0 and −1 (the numerator at s = −1

has value Γ(1) = 1). Iterating this, we eventually get Γ(s) defined on all of C as an

analytic function except for simple poles at the integers 0,−1,−2,−3, . . ..

To show the Gamma function has no zeros, we can use the following result, called

the reflection formula.

Theorem 2.4.4. For all s ∈ C,

Γ(s)Γ(1− s) =
π

sin(πs)
.

In particular, Γ(1/2) =
√
π.

Proof. Since both sides of the identity are meromorphic, it suffices to prove it on a

nonempty open subset of C. A proof for s in the strip 0 < σ < 1, where Γ(s) and

Γ(1− s) are both expressible as integrals, is in [10, Prop. 8.8] and [17, Theorem 1.4,

Chapter 6]. At s = 1/2 the reflection formula becomes Γ(1/2)2 = π, so Γ(1/2) =
√
π

since Γ(1/2) is positive by its definition as an integral at s = 1/2.

Corollary 2.4.5. The function Γ(s) has no zeros.

Proof. At positive integers n there is no zero since Γ(n) > 0 from its definition as an

integral (or because we know the exact value is (n− 1)!). At 0 and negative integers

the Gamma function has poles.

If s0 ∈ C is not an integer, then in the relation Γ(s0)Γ(1− s0) = π/ sin(πs0), the

right side is finite and nonzero. So if Γ(s) vanishes at s0, the function Γ(1− s) must

have a pole at s0. That means 1−s0 equals 0 or a negative integer, so s0 = 1−(1−s0)

must be a positive integer, which is a contradiction since s0 is not an integer.
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Thus Γ(s) has no zeros.

In later work we will need to compute logarithmic derivatives like (Γ′/Γ)(s) and

(ζ ′/ζ)(s) at negative numbers such as −1/4 and −3/2. While computer algebra pack-

ages ca n give us these values to as much accuracy as needed, we will express (Γ′/Γ)(s)

and (ζ ′/ζ)(s) at such negative numbers in terms of (Γ′/Γ)(s) and (ζ ′/ζ)(s) at posi-

tive numbers, where the logarithmic derivatives are absolutely convergent integrals or

series (their original definitions, not needing analytic continuation on Γ(s) or ζ(s)).

Lemma 2.4.6. The following identities hold for all s ∈ C.

Γ′

Γ
(s+ 1) =

Γ′

Γ
(s) +

1

s
, (2.4.1)

Γ′

Γ
(s) =

Γ′

Γ
(1− s)− π cot(πs), (2.4.2)

ζ ′

ζ
(s) = log(π)− 1

2

Γ′

Γ

(
1− s

2

)
− 1

2

Γ′

Γ

(s
2

)
− ζ ′

ζ
(1− s) , (2.4.3)(

ζ ′

ζ

)′
(s) =

1

4

(
Γ′

Γ

)′(
1− s

2

)
− 1

4

(
Γ′

Γ

)′ (s
2

)
+

(
ζ ′

ζ

)′
(1− s) . (2.4.4)

Proof. Equation (2.4.1) is the logarithmic derivative of the identity Γ(s+ 1) = sΓ(s).

The logarithmic derivative of the identity Γ(s)Γ(1− s) = π/ sin(πs) is (2.4.2):

Γ′

Γ
(s)− Γ′

Γ
(1− s) = −π cos(πs)

sin(πs)
= −π cot(πs)

and bring (Γ′/Γ)(1− s) to the right side.

To derive (2.4.3), we take the logarithmic derivative of the functional equation for

the completed zeta-function Z(s) = π−s/2Γ(s/2)ζ(s):

Z(s) = Z(1− s) =⇒ Z ′

Z
(s) = −Z

′

Z
(1− s)
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and in expanded form this says (since logarithmic differentiation turns products into

sums and (as)′/(as) = log a for a > 0)

−1

2
log(π) +

1

2

Γ′

Γ

(s
2

)
+
ζ ′

ζ
(s) = −

(
−1

2
log(π) +

1

2

Γ′

Γ

(
1− s

2

)
+
ζ ′

ζ
(1− s)

)
.

Bringing all terms except (ζ ′/ζ)(s) over to the right side, we get (2.4.3).

Equation (2.4.4) follows from (2.4.3) by differentiating both sides.
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Chapter 3

Dirichlet L-functions

In this chapter we will generalize the Riemann zeta-function by defining new Dirich-

let series that are called L-functions of Dirichlet characters, or Dirichlet L-functions.

They have many properties analogous to those of the zeta-function: a defining Dirich-

let series, an Euler product when Re(s) > 1, and a completed L-function formed by

multiplication of the Dirichlet L-function by an exponential and Gamma factor. The

completed L-function has an analytic continuation and functional equation and is

expected to satisfy an analogue of the Riemann Hypothesis that is called the Gen-

eralized Riemann Hypothesis. In contrast to ζ(s), Dirichlet L-functions (other those

those that are nearly equal to ζ(s)) don’t have poles: they are entire functions.

3.1 Dirichlet characters

An arithmetic function is a complex-valued function a : Z+ → C on the positive

integers. Totally multiplicative and multiplicative arithmetic functions are those that
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satisfy a(mn) = a(m)a(n) for all m,n ∈ Z+ or just for co-prime m,n respectively.

One of the most well-known multiplicative functions to students of number theory

is Euler’s totient function ϕ(n), which counts the number of positive integers up to n

that are relatively prime to n (or the number of units in (Z/nZ)×). The von Mangoldt

function Λ(n) is an example of an arithmetic function that is not multiplicative.

For any arithmetic function, we can form its Dirichlet series
∑

n≥1 a(n)/ns. As

long as the sequence a(n) does not grow too quickly, the Dirichlet series will con-

verge absolutely on a right half-plane: if |a(n)| = O(nc) then the Dirichlet series is

absolutely convergent when Re(s) > c + 1. For totally multiplicative functions a(n)

where |a(n)| ≤ 1 for all n (in practice here, |a(n)| will be 0 or 1 for all n), there is an

analogue of the Euler product for ζ(s):

∑
n≥1

a(n)

ns
=
∏
p

1

1− a(p)/ps
(3.1.1)

for Re(s) > 1. and reordering terms in the sum and product does not affect the value

by Theorem 2.3.1.

Here are the particular arithmetic functions we will use in this thesis.

Definition 3.1.1. A Dirichlet character (mod m) is a function χm : (Z/mZ)× → S1

that is a group homomorphism from the units modulo m to the unit circle.

We can turn χm into a function on Z by setting χm(n) = χm(n mod m) when

(n,m) = 1 and χm(n) = 0 when (n,m) > 1. Then χm(nn′) = χm(n)χm(n′) for all

integers n and n′, so χm is totally multiplicative as a function on Z.

Example 3.1.2. Define χ4 : (Z/4Z)× → S1 by χ4(1) = 1 and χ4(3) = −1. These
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are all the units modulo 4. We lift this to a function on Z by setting

χ4(n) =


1, if n ≡ 1 mod 4,

−1, if n ≡ 3 mod 4,

0, if n is even.

Example 3.1.3. Define χ5 : (Z/5Z)× → S1 as in the table below.

a 1 2 3 4

χ5(a) 1 i −i −1

This is a homomorphism since 2 generates the group (Z/5Z)×, of order 4, and

we set χ5(2
k mod 5) = ik. We can lift χ5 to a function on Z by setting χ5(n) =

χ5(n mod 5) when 5 - n and χ5(n) = 0 when 5 | n.

Example 3.1.4. For an odd prime p, the Legendre symbol is a Dirichlet character

χp : (Z/pZ)× → {±1}, where for n 6≡ 0 mod p,

χp(n mod p) =

(
n

p

)
=


1, if n is a nonzero square modulo p,

−1, if n is a nonsquare modulo p.

That this is a homomorphism (Z/pZ)× → {±1} is the well-known multiplicativity

of the Legendre symbol: (nn
′

p
) = (n

p
)(n

′

p
). Lift the Legendre symbol to all of Z in a

similar way as the previous examples, so χp(n) = 0 if p | n.

Example 3.1.5. For each modulus m ≥ 2 we have a trivial character mod m, denoted

1m, where 1m(n mod m) = 1 when (n,m) = 1. As a function on Z, 1m(n) = 1 if

(n,m) = 1 and 1m(n) = 0 if (n,m) > 1. We will allow a trivial character mod 1 too:

11(n) = 1 for all integers n.
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To each Dirichlet character χ we can associate a Dirichlet series by viewing χ as a

function on Z+ and using χ(n) as the coefficient in the nth term of the series. These

are called Dirichlet L-functions.

Definition 3.1.6. For a Dirichlet character χ, the Dirichlet L-function L(s, χ) is

defined for Re(s) > 1 as

L(s, χ) =
∑
n≥1

χ(n)

ns
.

Example 3.1.7. The L-function of χ4 is

L(s, χ4) =
∑
n≥1

χ4(n)

ns
= 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+ · · · .

For real s this is an alternating series, so the series converges for real s > 0 and thus

for complex s with Re(s) > 0 (Remark 2.2.3). More generally, it can be shown that

the series L(s, χ) for every nontrivial χ converges for Re(s) > 0. The half-plane of

absolute convergence is Re(s) > 1, as with the Riemann zeta-function.

Example 3.1.8. For m ≥ 1, the L-function of the trivial character 1m is

L(s,1m) =
∑
n≥1

(n,m)=1

1

ns
.

In particular, L(s,11) = ζ(s). The series L(s,1m) looks like ζ(s) but it is missing

terms at n where (n,m) > 1. For example,

L(s,14) = 1 +
1

3s
+

1

5s
+

1

7s
+

1

9s
+

1

11s
+ · · · .
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By Theorem 2.3.1, L(s, χ) has an Euler product for Re(s) > 1:

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p

1

1− χ(p)/ps
.

In the case of the trivial character mod m, this becomes the Euler product for ζ(s)

with factors at primes dividing m missing (or we can say those factors equal 1):

L(s,1m) =
∏
p

1

1− 1m(p)/ps
=
∏
p-m

1

1− 1/ps
. (3.1.2)

Dirichlet L-functions were first defined and studied by Dirichlet in order to prove

the following theorem.

Theorem 3.1.9 (Dirichlet, 1837). For integers a and m with (a,m) = 1, infinitely

many primes p satisfy p ≡ a mod m.

Proof. See [16]. In the proof, the key analytic input about Dirichlet L-functions is

that L(1, χ) 6= 0 for nontrivial χ.

3.2 Primitive characters

For each m, there can be many Dirichlet characters mod m. In fact, there are ex-

actly ϕ(m) Dirichlet characters mod m, so when m > 2 there is always a nontrivial

character, and when m 6= 1, 2, 3, 4, 6 there is more than one nontrivial character since

ϕ(m) > 2.

Example 3.2.1. The four Dirichlet characters mod 5 are 15, χ5 (see Example 3.1.3),

the complex conjugate χ5, and the Legendre symbol ( ·
5
). The table below shows all
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of their values on (Z/5Z)×.

a 1 2 3 4

15(a) 1 1 1 1

χ5(a) 1 i −i −1

χ5(a) 1 −i i −1

(a
5
) 1 −1 −1 1

In order to formulate an analytic continuation and especially functional equation

for a Dirichlet L-function L(s, χ), we need to focus on a particular type of Dirichlet

character called a primitive character. These will have a rather technical-sounding

definition, but the basic point is that the these Dirichlet characters χ will turn out

to have two good properties:

• χ is defined for the “right” modulus (not one that is too big),

• there are no “missing” factors in the Euler product of L(s, χ).

For example, in (3.1.2) we see that L(s,1m) for m > 1 is missing Euler factors

at primes p that divide m. The “best” trivial character is the one with modulus 1,

which is identically 1 on all positive integers: the L-function of 11 is ζ(s).

Definition 3.2.2. Let d | m. A Dirichlet character χ modulo m is said to be lifted

from modulus d if χ is a composition of group homomorphisms

(Z/mZ)×
redn.−−−→ (Z/dZ)×

χ′−→ S1,

where the first mapping is reduction of units from modulus m to modulus d and the

second mapping is a Dirichlet character modulo d.
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In this definition, when we lift χ and χ′ to functions on Z, they have the same

nonzero values on integers relatively prime to m. So the only difference between χ

and χ′ as functions on Z is that χ′ might be nonzero sometimes where χ is 0 (at

integers relatively prime to d that are not relatively prime to m). We’ll see examples

of this below.

Definition 3.2.3. A Dirichlet character χ modulo m is called primitive if, for each

proper divisor d of m, χ can’t be lifted from modulus d.

Example 3.2.4. The character χ4 is primitive since the only characters mod 2 and

mod 1 are trivial, while χ4 is nontrivial (it has values other than 1 on (Z/4Z)×), so

χ4 can’t be lifted from modulus 1 or 2.

If we compose χ4 : (Z/4Z)× → S1 with reduction from modulus 8 and modulus

12 to modulus 4 then we get nonprimitive characters χ8 mod 8 and χ12 mod 12, as

shown in the table below.

a 1 2 3 4 5 6 7 8 9 10 11 12

χ4(a) 1 0 −1 0 1 0 −1 0 1 0 −1 0

χ8(a) 1 0 −1 0 1 0 −1 0 1 0 −1 0

χ12(a) 1 0 0 0 1 0 −1 0 0 0 −1 0

Notice χ8 is the same function on Z+ as χ4. That is because an integer is relatively

prime to 8 if and only if it is relatively prime to 4. The character χ12 agrees with χ4

at positive integers that are relatively prime to 12, but χ12 is zero at the multiples

of 3 and χ4 is sometimes 0 and sometimes not 0 at multiples of 3. This is a general

result — the lift of character to a larger modulus is the same function on Z except

perhaps at some integers where the original character is not 0 and the lifted character

is 0.
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Example 3.2.5. For a prime p, each nontrivial character mod p is primitive. The

trivial character mod p is not primitive. More generally, 1m is not primitive when

m > 1.

When Dirichlet characters are collected together from being lifts of a common

Dirichlet character, there is always one character in a collection that, as a function

on Z, is zero as little as possible. The character that on Z is zero as little as possible

is a primitive character and the rest are not.

We look at how primitivity of a character affects the L-function of the character.

For each of the characters χ4, χ8, and χ12 above, here are the first few terms of the

Dirichlet series for their L-functions:

L(s, χ4) =
∑
n≥1

χ4(n)

ns
= 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+

1

13s
− 1

15s
+ · · ·

L(s, χ8) =
∑
n≥1

χ8(n)

ns
= 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+

1

13s
− 1

15s
+ · · ·

L(s, χ12) =
∑
n≥1

χ12(n)

ns
= 1 +

1

5s
− 1

7s
− 1

11s
+

1

13s
+ · · · .

As we see from the fact that χ4 = χ8 as functions on Z+, their L-functions match

completely. More generally, if χ is a nontrivial primitive character modulo a prime

power pk > 1, each lift of it to a character modulo a higher power of p has exactly

the same L-function.

On the other hand, L(s, χ12) is missing terms where χ12(n) = 0 but χ4(n) 6= 0

(i.e., the odd multiples of 3). This has an effect on the Euler product. We see from
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Theorem 2.3.1 that the L-function of the primitive character χ4 is

L(s, χ4) =
∏
p

1

1− χ4(p)/ps
=

(
1

1+1/3s

)(
1

1−1/5s

)(
1

1+1/7s

)(
1

1+1/11s

)
· · · .

while the Euler product of L(s, χ12) is the same except it is missing the factor at 3:

L(s, χ12) =
∏
p

1

1− χ12(p)/ps
=

(
1

1− 1/5s

)(
1

1 + 1/7s

)(
1

1 + 1/11s

)
· · · .

What this is showing is that L-functions of nonprimitive characters may sometimes

be missing Euler factors. This has an effect on the analytic continuation that we

discuss later.

The Euler product of L(s, χ) allows us to write −L′(s, χ)/L(s, χ) as a Dirichlet

series in a similar way to that of −ζ ′(s)/ζ(s) in (2.2.2): for Re(s) > 1,

−L
′(s, χ)

L(s, χ)
=
∑
n≥1

χ(n)Λ(n)

ns
=
∑
pk

χ(pk) log p

pks
.

Here, Λ(n) is the von Mangoldt function from Definition 2.2.7. We can think of the

terms in this series as a “twisting” by χ of the terms of the series for −ζ ′(s)/ζ(s),

which means each term in the series for −ζ ′(s)/ζ(s) is multiplied by a value of χ.

The function ζ(s) has a completed function Z(s) with a nice functional equation.

It turns out that Dirichlet L-functions of all primitive characters have a completed

L-function with a nice functional equation (note ζ(s) = L(s,11) and 11 is primitive),

and having a nice functional equation is the reason primitivity of a character matters.

In order to describe the functional equation we will use a particular “character sum”.
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Definition 3.2.6. For a Dirichlet character χ modulo m, its Gauss sum is

G(χ) :=
∑

j∈(Z/mZ)×
χ(j)e2πij/m. =

m−1∑
j=0

χ(j)e2πij/m.

The sum can extend over all integers from 0 to m− 1 since χ(j) = 0 if (j,m) > 1.

When χ mod m is primitive, it turns out that |G(χ)| =
√
m [1, Theorems 8.11,

8.19], and this is always false if χ mod m is not primitive: |G(χ)| <
√
m. We may

even have G(χ) = 0.

Example 3.2.7. Let’s look at the Gauss sums of χ4, χ8, and χ12:

G(χ4) = χ4(1)e2πi/4 + χ4(3)e3·2πi/4)

= (1)i+ (−1)(−i)

= 2i,

G(χ8) = χ8(1)e2πi/8 + χ8(3)e3·2πi/8) + χ8(5)e5·2πi/8 + χ8(7)e7·2πi/8

=
1 + i√

2
+ (−1) · −1 + i√

2
+ 1 · −1− i√

2
+ (−1) · 1− i√

2

= 0,

G(χ12) = χ12(1)e2πi/12 + χ12(5)e5·2πi/12 + χ12(7)e7·2πi/12 + χ12(11)e11·2πi/12

= eπi/6 + e5πi/6 − e7πi/6 − e11πi/6

= 2(eπi/6 + e5πi/6)

= 2i.

So |G(χ4)| = 2 =
√

4, |G(χ8)| = 0, and |G(χ12)| = 2 <
√

12.
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Example 3.2.8. The Gauss sums of χ5 and ( ·
5
) in Example 3.2.1 are:

G(χ5) = χ5(1)e2πi/5 + χ5(2)e2·2πi/5 + χ5(3)e3·2πi/5 + χ5(4)e4·2πi/5

= e2πi/5 + ie4πi/5 − ie6πi/5 − e8πi/5

≈ −1.17557 + 1.90211i,

G
(( ·

5

))
=

(
1

5

)
e2πi/5 +

(
2

5

)
e2·2πi/5 +

(
3

5

)
e3·2πi/5 +

(
4

5

)
)e4·2πi/5

= e2πi/5 − e4πi/5 − e6πi/5 + e8πi/5

=
√

5.

The absolute value of G(χ5) is precisely
√

5.

3.3 Analytic continuation and the completed L-

function

For each Dirichlet character χ, we know χ(−1) = ±1 since χ(−1)2 = χ(1) = 1. We

call χ even if χ(−1) = 1 and odd if χ(−1) = −1. This corresponds to χ being an

even or odd function since χ(−n) = χ(−1)χ(n). It turns out that the parity of χ

(whether it is even or odd) affects the additional factors we multiply L(s, χ) by to get

a function with an analytic continuation and nice functional equation. Notationally,

for a character χ, define δ to be the integer in {0, 1} such that χ(−1) = (−1)δ.

Definition 3.3.1. For a primitive Dirichlet character χ mod m, the completed L-

function for χ is

Λ(s, χ) =
( π
m

)−(s+δ)/2
Γ

(
s+ δ

2

)
L(s, χ). (3.3.1)
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for Re(s) > 1.

This use of Λ has nothing to do with the von Mangoldt function Λ(n). It will be

obvious from context what “Λ” means.

Notice that in the definition of Λ(s, χ) we need δ to be the integer 0 or 1, not just

0 or 1 as an integer mod 2 (which would be good enough for saying χ(−1) = (−1)δ),

since δ is being used in the functions (π/m)−(s+δ)/2 and Γ((s+ δ)/2).

Example 3.3.2. For the primitive character 11, m = 1 and δ = 0. Then L(s,11) =

ζ(s) and Λ(s,11) = π−s/2Γ(s/2)ζ(s), which is the completed zeta-function Z(s).

Example 3.3.3. For the primitive character χ4, m = 4. Since χ4(−1) = χ4(3) = −1,

δ = 1. Therefore

Λ(s, χ4) =
(π

4

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ4).

Example 3.3.4. Nontrivial characters mod 5 are primitive. For the characters χ5

and ( ·
5
) in Example 3.2.1, χ5(−1) = χ5(4) = −1 and (−1

5
) = (4

5
) = 1, so χ5 has δ = 1

and ( ·
5
) has δ = 0. Therefore

Λ(s, χ5) =
(π

5

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ5),

Λ
(
s,
( ·

5

))
=
(π

5

)−s/2
Γ
(s

2

)
L
(
s,
( ·

5

))
.

The completed L-function of a primitive Dirichlet character χ has an analytic con-

tinuation and functional equation, where the functional equation involves the com-

pleted L-function of the conjugate character χ. It is straightforward to see that χ is

primitive when χ is, as otherwise χ could be lifted from the conjugate of the character
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χ is lifted from.

Theorem 3.3.5. If χ mod m is primitive and m > 1 then Λ(s, χ) is an entire func-

tion and satisfies the functional equation

Λ(1− s, χ) = W (χ)Λ(s, χ), (3.3.2)

where W (χ) = G(χ)/(iδ
√
m) is a complex number of absolute value 1.

Saying |W (χ)| = 1 is equivalent to saying |G(χ)| =
√
m for primitive χ mod m, a

property of primitive Dirichlet characters that we mentioned before.

Proof. See [10, Prop. 8.11]. This is done by a method similar to that for Z(s): write

Λ(s, χ) as an integral over (0,∞), split up the integral into (0, 1] and [1,∞), and

use a change of variables and a “twisted” version of the Poisson summation formula

to write Λ(s, χ) as an integral over [1,∞) that is analogous to (1.2.4) and satisfies

the functional equation (3.3.2). The terms that would be analogous to −1/s and

−1/(1− s) from (1.2.4) don’t appear since χ(0) = 0 when χ is a nontrivial primitive

character, in contrast to 11(0) = 1.

Corollary 3.3.6. If χ mod m is primitive and m > 1 then L(s, χ) is an entire

function.

Proof. For Re(s) > 1, solving for L(s, χ) in (3.3.1) tells us

L(s, χ) =
( π
m

)(s+δ)/2 1

Γ((s+ δ)/2)
Λ(s, χ), (3.3.3)

and the right side is an entire function since each of the three factors is an entire

function. Therefore (3.3.3) shows us L(s, χ) extends analytically to all of C.
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We could show L(s, χ) is analytic for Re(s) > 0 without using Λ(s, χ): the initial

Dirichlet series definition of L(s, χ) when Re(s) > 1 converges conditionally for 0 <

Re(s) ≤ 1 and therefore is analytic there.

Unlike ζ(s), L(s, χ) for nontrivial primitive χ has no pole.

Example 3.3.7. The function Λ(s, χ4) satisfies Λ(1− s, χ4) = W (χ4)Λ(s, χ4) where

W (χ4) = G(χ4)/(i
√

4) = 2i/(2i) = 1 and Λ(s, χ4) = Λ(s, χ4) since χ4 = χ4. Thus

the functional equation for Λ(s, χ4) becomes

Λ(1− s, χ4) = Λ(s, χ4), (3.3.4)

which looks like the one for the completed zeta-function Z(s). The first few nontrivial

zeros of Λ(s, χ4) in the upper half-plane are on the critical line Re(s) = 1/2 and they

are approximately

1

2
+ 6.02095i,

1

2
+ 10.24377, and

1

2
+ 12.98810i.

The LMFDB page https://www.lmfdb.org/L/1/2e2/4.3/r1/0/0 has approxima-

tions to further zeros.

Example 3.3.8. We consider the L-function for χ5:

L(s, χ5) =
∑
n≥0

χ5(n)

ns
=

1

1s
+

i

2s
− i

3s
− 1

4s
+ . . . .

This character is primitive, so it satisfies

Λ(1− s, χ5) = W (χ5)Λ(s, χ5),
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where W (χ5) = G(χ5)/(i
√

5) and |W (χ5)| = 1. Approximations to the initial zeros

of Λ(s, χ5) are on the LMFDB page https://www.lmfdb.org/L/1/5/5.2/r1/0/0.

The L-function of a primitive Dirichlet character has an ugly functional equation

that is analogous to the one for ζ(s) in Theorem 1.2.3.

Theorem 3.3.9. For a primitive Dirichlet character χ mod m,

L(1− s, χ) =
2W (χ)√

m

(
2π

m

)−s
Γ(s) cos

(π
2

(s− δ)
)
L(s, χ).

Proof. When χ = 11, so L(s, χ) = ζ(s), we have m = 1 and δ = 0, and the formula

in the theorem is precisely the ugly functional equation for ζ(s). When m > 1, solve

for L(1 − s, χ) in (3.3.2) and use the Gamma function identities from the proof of

Theorem 1.2.3.

There are analogues of Theorems 1.2.4, 1.2.5, and 1.2.6 about the location of zeros

of Λ(s, χ) and L(s, χ).

Theorem 3.3.10. For nontrivial primitive χ, the function Λ(s, χ) is nonvanishing

for Re(s) > 1 and Re(s) < 0.

Proof. For Re(s) > 1, L(s, χ) 6= 0 by the Euler product. Additionally, the π and

Gamma factors in Λ(s, χ) do not vanish in this half-plane, so Λ(s, χ) 6= 0 when

Re(s) > 1. For Re(s) < 0, Λ(s, χ) = W (χ)Λ(1 − s, χ) and Re(1 − s) > 1. We

have Λ(1 − s, χ) 6= 0 when Re(1 − s) > 1, and |W (χ)| = 1, so Λ(s, χ) 6= 0 when

Re(s) < 0.

So as with the completed zeta-function Z(s), all zeros of Λ(s, χ) are in the critical

strip 0 ≤ Re(s) ≤ 1.
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Theorem 3.3.11. For nontrivial primitive χ, L(s, χ) has simple zeros at the negative

even integers when χ is even and simple zeros at the negative odd integers when χ is

odd. All of its other zeros satisfy 0 ≤ Re(s) ≤ 1.

Proof. The function L(s, χ) is nonzero for Re(s) > 1 by its Euler product. For

Re(s) < 0, L(s, χ) is described by (3.3.3), where the exponential term (π/m)(s+δ)/2 is

nonvanishing on C and Λ(s, χ) 6= 0 for Re(s) < 0 by Theorem 3.3.10. Therefore zeros

of L(s, χ) for Re(s) < 0 come from 1/Γ((s + δ)/2), which has simple zeros where

(s + δ)/2) is 0 or a negative integer. That means s = 0,−2,−4,−6,−8, . . . when

δ = 0 and s = −1,−3,−5,−7,−9, . . . when δ = 1. Ignoring s = 0, which is outside

the half-plane Re(s) < 0, we conclude that L(s, χ) for even nontrivial primitive χ has

simple zeros at the negative even integers and L(s, χ) for odd primitive χ (always

nontrivial) has simple zeros at the negative odd integers when Re(s) < 0

Theorem 3.3.12. For nontrivial primitive χ, the functions Λ(s, χ) and L(s, χ) are

nonvanishing for Re(s) = 1 and Re(s) = 0 except L(s, χ) has a simple zero at s = 0

when χ is even. The zeros of Λ(s, χ) and L(s, χ) when 0 < Re(s) < 1 are at the same

numbers and have the same multiplicity.

Proof. First we treat Re(s) = 1. The functions (π/m)−(s+δ)2/ and Γ((s + δ)/2) for

δ = 0 and 1 are analytic and nonvanishing when Re(s) = 1, so the nonvanishing of

Λ(s, χ) on this line follows from showing L(s, χ) 6= 0 when Re(s) = 1. As with the

proof that ζ(s) 6= 0 on Re(s) = 1, the proof that L(s, χ) 6= 0 on Re(s) = 1 is by

contradiction and uses a product of three functions built out of L(s, χ). Details are

in [16, Theorem 4.2.3].

When Re(s) = 0 we can show Λ(s, χ) 6= 0 by using the functional equation in

Theorem 3.3.5. For a primitive character χ, the number W (χ) in Theorem 3.3.5
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is nonzero (in fact |W (χ)| = 1). Therefore Λ(s, χ) 6= 0 when Re(s) = 0 because

Λ(s, χ) 6= 0 when Re(s) = 1 by the argument above with χ in place of χ.

To determine where L(s, χ) is 0 on the line Re(s) = 0, note (π/m)−(s+δ)2/ and

Γ((s+ δ)/2) are analytic and nonvanishing when Re(s) = 0 except for Γ(s/2) having

a simple pole at s = 0. Therefore Λ(s, χ) being nonzero on Re(s) = 0 implies

L(s, χ) 6= 0 for Re(s) = 0 except perhaps at s = 0 by (3.3.3) if χ is even (and so

δ = 0). In this case, the term 1/Γ(s/2) in (3.3.3) gives L(s, χ) a simple zero at s = 0.

When 0 < Re(s) < 1, the zeros of Λ(s, χ) and L(s, χ) are at the same numbers

with the same multiplicities because the terms (π/m)(s+δ)/2 and 1/Γ((s + δ)/2) in

(3.3.3) introduce no zeros or poles in this region. So the only zeros for L(s, χ) in this

region come from Λ(s, χ), with the same multiplicity.

For nontrivial primitive χ, zeros of L(s, χ) coming from poles of 1/Γ((s + δ)/2)

are called the trivial zeros of L(s, χ). By Theorems 3.3.11 and 3.3.12, the trivial zeros

of L(s, χ) are

• 0 and negative even integers for even χ,

• negative odd integers for odd χ.

Notice ζ(s) = L(s,11) does not have a zero at s = 0, which is a distinction between

the trivial even primitive character 11 and all other primitive even characters. As

with the zeta-function, the nontrivial zeros of L(s, χ) are the same thing (locations

and their multiplicities) as the zeros of Λ(s, χ).

We are now ready to state a first form of the Generalized Riemann Hypothesis.

The Generalized Riemann Hypothesis states that, for all primitive Dirichlet char-

acters χ, the nontrivial zeros of L(s, χ) have real part 1/2. Equivalently, all zeros of
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Λ(s, χ) have real part 1/2.

This includes the Riemann Hypothesis for the zeta-function using the trivial prim-

itive character 11.

Just as ζ(s) is known to have no real zeros in the critical strip (see Theorem

1.2.5), it is expected that all L(s, χ) have no real zeros in the critical strip, but this is

still an unsolved problem in general. Specific examples can be checked, for instance,

L(s, χ4) 6= 0 for 0 < s < 1 since the the Dirichlet series representation of L(s, χ4) for

real s > 0 is an alternating series:

L(s, χ4) = 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− 1

11s
+ · · · .

This shows L(s, χ4) 6= 0 for real s > 0 since the value is positive.

By relating the L-function of each nonprimitive nontrivial character to the L-

function of a primitive character, we can extend the analytic continuation of L(s, χ)

in Corollary 3.3.6 to the nonprimitive case.

Theorem 3.3.13. For all nontrivial Dirichlet characters χ, L(s, χ) extends analyti-

cally to C as an entire function.

Proof. When χ is primitive this follows from Corollary 3.3.6.

When χ is nonprimitive, we will prove L(s, χ) is entire by relating it to the L-

function of the primitive character that lifts to χ, which is already known to be entire.

The basic point is that these two L-functions are related by removing a finite number

of Euler factors, and that involves multiplication by very simple entire functions. This

is best understood with an example.

In Section 3.2 we saw that the Euler product of the L-function of the nonprimitive
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character χ12 is the same as the L-function of the primitive character χ4 except for a

missing Euler factor at 3: for Re(s) > 1,

L(s, χ12) =
∏
p

1

1− χ12(p)/ps

=

(
1

1− 1/5s

)(
1

1 + 1/7s

)(
1

1 + 1/11s

)
· · ·

=

(
1 +

1

3s

)
L(s, χ4)

=

(
1− χ4(3)

3s

)
L(s, χ4). (3.3.5)

Since χ4 is primitive, L(s, χ4) is an entire function. The factor 1 + 1/3s is also entire.

Therefore (3.3.5) provides us with an analytic continuation of L(s, χ12) to C.

For a general nonprimitive χ mod m, it is a lifting to modulus m of some primitive

character χ′ mod d, where d | m. We can express L(s, χ) in terms of L(s, χ′) when

Re(s) > 1 by comparing their Euler products. Similar to (3.3.5),

L(s, χ) =
∏
p∈S

(
1− χ′(p)

ps

)
L(s, χ′), (3.3.6)

where S is the set of primes dividing m and not dividing d. That subset might be

empty, for instance when χ = χ8 (m = 8 and d = 4), but it is always finite and each

factor 1− χ′(p)/ps for p ∈ S is entire. Also L(s, χ′) is entire since χ′ is primitive, so

the right side of (3.3.6) is an analytic continuation of L(s, χ) to C.

Remark 3.3.14. In (3.3.6), the function L(s, χ′) has no zeros on the imaginary

axis except at s = 0 if χ′ is even, but if S 6= ∅ then the factors 1 − χ′(p)/ps for

p ∈ S each have an infinite periodic set of zeros on the imaginary axis with period

2πi/ log p (these zeros are the s where ps = χ′(p)). So the L-function of a nonprimitive
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character χ sometimes reveals the nonprimitivity of χ through the presence of zeros

on the imaginary axis other than at s = 0. But sometimes this does not happen, such

as L(s, χ8), which equals L(s, χ4).

Theorem 3.3.15. For the trivial Dirichlet character 1m, L(s,1m) extends analyti-

cally to C except for a simple pole at s = 1 with residue
∏

p|m(1− 1/p).

Proof. For Re(s) > 1, the Euler product for L(s,1m) in (3.1.2) can be written as

L(s,1m) =
∏
p-m

(
1− 1

ps

)
ζ(s).

On the right side, ζ(s) is analytic on C except for a simple pole at s = 1 and each

factor 1 − 1/ps is analytic and is nonzero at s = 1, so the right side of the above

formula gives an analytic continuation of L(s,1m) to C except for a simple pole at

s = 1 with residue
∏

p|m(1− 1/p).

While ζ(s) has no zeros on the imaginary axis, L(s,1m) for m > 1 has infinitely

many zeros there: they are the zeros of 1− 1/ps for primes p dividing m.

We are now ready to state a second form of the Generalized Riemann Hypothesis,

where the restriction to primitive characters is dropped by focusing on the interior of

the critical strip.

The Generalized Riemann Hypothesis states that, for all Dirichlet characters χ,

the zeros of L(s, χ) with 0 < Re(s) < 1 have real part 1/2.

This second form is equivalent to the first form because the only way zeros of

L(s, χ) might occur on the boundary has a simple explanation:

• a zero of L(s, χ) at s = 0 for nontrivial even χ,
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• zeros from a reciprocal Euler factors 1 − χ′(p)/ps where χ′ is the primitive

character that lifts to χ and p is a prime where χ′(p) 6= 0 and χ(p) = 0.

We defined Λ(s, χ) only when χ is primitive, but for a nontrivial Dirichlet character

χ that is not primitive, the definition of Λ(s, χ) makes sense and both sides of the

functional equation from the primitive case make sense since L(s, χ) is an entire

function for all nontrivial χ. However, the functional equation from the primitive

case is simply wrong when χ is not primitive. Here are two examples.

Example 3.3.16. Set Λ(s, χ8) := (π/8)−(s+1)/2Γ((s+1)/2)L(s, χ8), since χ8 is defined

on (Z/8Z)× and χ8(−1) = χ4(−1) = −1. We don’t have a functional equation

Λ(1 − s, χ8) = W (χ8)Λ(s, χ8) since W (χ8) = 0 and the left side is not identically 0.

Instead,

Λ(s, χ8) :=
(π

8

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ8)

=

(
1

2

)−(s+1)/2 (π
4

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ4)

= 2(s+1)/2Λ(s, χ4),

so by the functional equation for Λ(s, χ4) in (3.3.4),

Λ(s, χ8) = 2(s+1)/2Λ(1− s, χ4) = 2(s+1)/2Λ(1− s, χ8)

2(1−s+1)/2
= 2s−1/2Λ(1− s, χ8). (3.3.7)

This has an extra factor 2s−1/2 due to using the wrong modulus for the character:

the 8 instead of 4 led to π/8 instead of π/4 when defining Λ(s, χ8) to complete the

Dirichlet L-function L(s, χ8) = L(s, χ4).

Example 3.3.17. Set Λ(s, χ12) := (π/12)−(s+1)/2Γ((s + 1)/2)L(s, χ12) since χ12 is
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defined on (Z/12Z)× and χ12(−1) = χ4(−1) = −1. Then

Λ(s, χ12) =
( π

12

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ12)

=

(
1

3

)−(s+1)/2 (π
4

)−(s+1)/2

Γ

(
s+ 1

2

)(
1 +

1

3s

)
L(s, χ4) by (3.3.5)

= 3(s+1)/2

(
1 +

1

3s

)
Λ(s, χ4). (3.3.8)

= 3(s+1)/2

(
1 +

1

3s

)
Λ(1− s, χ4) by (3.3.4)

= 3(s+1)/2

(
1 +

1

3s

)
·
[

3−((1−s+1)/2)

1 + 1/31−s Λ(1− s, χ12)

]
by (3.3.8)

= 3s−1/2
1 + 1/3s

1 + 1/31−sΛ(1− s, χ12). (3.3.9)

The 3s−1/2 in (3.3.9) is analogous to the 2s−1/2 in (3.3.7) (using the wrong modulus

12 instead of 4 for the character) and the ratio in (3.3.9) is due to the missing Euler

factor 1/(1 + 1/3s) in L(s, χ12) compared to L(s, χ4).

Similarly to how there is a Hadamard factorization for s(s − 1)Z(s) in Theo-

rem 2.3.4, there is a similar factorization for Λ(s, χ) for nontrivial primitive χ. Unlike

Z(s), which used multiplication by s and s − 1 to become entire due to the simple

poles at 0 and 1, Λ(s, χ) for nontrivial primitive χ is entire as is.

Theorem 3.3.18. Let χ be a nontrivial primitive Dirichlet character. There is a

Hadamard factorization of Λ(s, χ) of the form

Λ(s, χ) = eA+Bs
∏
ρχ

(
1− s

ρχ

)
es/ρχ

where eA = Λ(0, χ) and B ∈ C. Additionally,
∑

ρχ
1/|ρχ|1+ε converges for all ε > 0,

where this sum is over the zeros of Λ(s, χ) counted with multiplicity.
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Proof. The function Λ(s, χ) fits the growth hypotheses of Theorem 2.3.2 by [4, p. 82].

Therefore there are A,B ∈ C and m ≥ 0 such that

Λ(s, χ) = eA+Bssm
∏
ρχ

(
1− s

ρχ

)
es/ρχ

Since Λ(0, χ) 6= 0 (Theorem 3.3.12), m = 0 and eA = Λ(0, χ).

We can express eA in the Hadamard product directly in terms of a Dirichlet L-

function at s = 1 by using the functional equation of Λ(s, χ):

eA = Λ(0, χ) = W (χ)Λ(1, χ) = W (χ)
( π
m

)−(1+δ)/2
Γ

(
1 + δ

2

)
L(1, χ).

Let’s separately consider δ = 0 and δ = 1 to make eA more explicit. When δ = 0,

eA = W (χ)

√
m

π
Γ

(
1

2

)
L(1, χ)

=
G(χ)√
m

√
m√
π

√
πL(1, χ) by Theorem 2.4.4

= G(χ)L(1, χ).

When δ = 1,

eA = W (χ)
(m
π

)
Γ(1)L(1, χ)

=
G(χ)

i
√
m

(m
π

)
L(1, χ) since Γ(1) = 1

=
G(χ)

√
m

iπ
L(1, χ).
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Chapter 4

Primality Tests

The distribution of the primes is interesting for its own sake, and the Riemann Hy-

pothesis has applications to questions about primes besides an error term in the Prime

Number Theorem. We will see in the next chapter how the Riemann Hypothesis and

the Generalized Riemann Hypothesis can be applied to primality testing. In this

chapter, we discuss some primality tests and how they are useful in computer science.

4.1 Cryptography and cryptosystems

We give a brief overview of some concepts in cryptography. A good general reference

on the subject is [7].

Cryptography is the study of exchanging messages secretly. Until the availability

of computers in the second half of the 20th century, implementing a cryptosystem

may have involved parties sharing code words in advance in order to encrypt commu-

nications. The security of a cryptosystem was regarded as depending on keeping the
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code words for encryption hidden from adversaries, as knowledge of how to encrypt

made it very easy to decrypt. This is similar to how a permutation or matrix easily

determines and is determined by its inverse. An encryption process where knowledge

of how to encrypt makes it easy to decrypt is called symmetric.

Today, the security of a cryptosystem is no longer measured in part by keeping the

overall process of encryption unknown to others. To the contrary, we are in the era of

public-key cryptography, where all parties can send an encrypted message to someone

(like a computer or phone sending a customer’s PIN code to a credit card company

or bank) using a public key and procedure made available to all, while decryption

depends on a private key known only to the receiver of the encrypted messages.

Public-key cryptography is necessary for most of the secure internet to function, from

sending end-to-end encrypted messages on various applications to safely inputting

passwords on websites. Old-fashioned symmetric encryption still runs far faster than

public-key (asymmetric) encryption, so in practice both systems are used together:

an initial public-key encrypted message is often sent that generates a secret key for a

symmetric encryption process.

What is used to make modern cryptosystems secure (we hope) is apparently

“hard” mathematical problems as the tool for encryption. Vastly oversimplifying,

public-key cryptography relies on “trapdoor” or one-way functions. Such functions

are easy or efficient to compute in one direction, but appear to be hard to compute

in the other direction without some extra information. A basic example of a one-way

function is multiplying compared to factoring. Or rather multiplication appears to be

a one-way function. There is no actual proof that factoring is hard, and in fact there

is no actual proved example of a one-way function. But there are many candidates.

The (apparent) one-way functions used in modern cryptography often depend on
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large prime numbers. An example of this is the RSA cryptosystem, named after its

discoverers Rivest, Shamir, and Adleman. RSA is one of the most successful and

commonly used public-key cryptography protocols. The difficult problem its security

is based on is not factoring of general numbers, but factoring of numbers that are

a product of two large primes of approximately the same size (bit length). Some

specific assumptions related to this problem are in [7, Section 7.2].

Here is a broad overview of how RSA works, before formally defining it. The

goal is to transmit a plaintext message m from one party to another securely as an

encoded message c, called the ciphertext. At the receiving end, the ciphertext has

to be decrypted to reveal m. The whole process depends on an initial choice of two

different primes p and q. Set N = pq, so ϕ(N) = (p − 1)(q − 1). The primes p

and q will no longer play roles individually, but only through the derived numbers N

and ϕ(N). We need an integer e, called the encryption exponent, that is invertible

modulo ϕ(N). All plaintext messages need to be expressed as numbers from 0 to

N −1 (so they can be recovered from knowing them modulo N). The encryption and

decryption procedures are as follows:

(1) A message m is encrypted as me mod N .

(2) An encoded message c is decrypted as cd mod N , where de ≡ 1 mod ϕ(N) and

d is called the decryption exponent (it only matters modulo ϕ(N)).

What makes this work is that (by Fermat’s little theorem, not by Euler’s theorem)

(me)d ≡ m mod N for all m ∈ Z/NZ.

(This is true even in the rare case that (m,N) > 1.)
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A key point here is that for other people to encrypt messages, all they need to

know is N and e; they do not need to know (and should not know) p or q or d. To

decrypt messages requires knowledge of d, and that has to kept secret. While the

math allows p and q to be arbitrary primes (with p 6= q), in practice they are primes

having the same (or nearly the same) bit length.

In RSA, the public key is N and e while the private key is N and d. Since

de ≡ 1 mod ϕ(N), anyone who can figure out ϕ(N) from the publicly announced N

and e can quickly determine d with Euclid’s algorithm on e and ϕ(N).

With this background, we can define the RSA cryptosystem in terms of 3 ingre-

dients: the process Gen that generates the public and private keys 〈N, e〉 and 〈N, d〉,

the process Enc〈N,e〉 that converts plaintext messages to ciphertext messages (using

N and e), and the process Dec〈N,d〉 that converts ciphertext messages to plaintext

messages (using N and d).

Definition 4.1.1. The RSA public-key cryptosystem is a triple (Gen,Enc,Dec) where

1. Gen(1n) uses the even positive integer n (a unary security parameter) to generate

two different n/2-bit primes p and q, and computes N = pq as well as a member

e of the group (Z/ϕ(N)Z)×. It outputs (N, e, d), where de ≡ 1 mod ϕ(N). Note

ϕ(N) = (p− 1)(q − 1).

2. Enc〈N,e〉(m) takes in a plaintext message m from Z/NZ to be encrypted, as well

as the public key 〈N, e〉 and computes a ciphertext message c = me mod N. It

outputs c.

3. Dec〈N,d〉(c) takes in a ciphertext message c from Z/NZ, as well as the private

key 〈N, d〉 and computes a plaintext message m′ = cd mod N . It outputs m′.
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We can see from the congruences

m′ ≡ cd ≡ (me)d ≡ med ≡ m mod N

that this definition of RSA satisfies correctness of an encryption process — that is,

Dec(Enc(m)) = m for all possible messages m. For more justification on this defini-

tion’s security properties, as well as how RSA is used in practice, see [7, Section 10.4]

or [12]. Essentially, because there is no known efficient way to find the prime factors

of N = pq from knowing only N , and no known way to find d mod ϕ(N) (or even find

ϕ(N)) from knowing only N and e, RSA is believed to be secure for computations with

classical computers. If quantum computers ever become practical then RSA is will be

broken. At present, the largest number factored with quantum computers by Shor’s

algorithm is 21, but other quantum computer algorithms have factored much larger

numbers as one-time stunts; see https://crypto.stackexchange.com/questions/

59795/largest-integer-factored-by-shors-algorithm.

Remark 4.1.2. What keeps RSA (apparently) secure is that for numbers N of the

form pq,there is no known method to find ϕ(N) from N other than factoring N . It is

not currently known whether factoring N and computing the inverse of e mod ϕ(N)

given only N and e are equivalent. Miller [9] showed in 1975 that for numbers N of

the form pq, factoring N is equivalent to finding the inverse of e mod ϕ(N) assuming

the Generalized Riemann Hypothesis.

A core part to RSA is the generation of (two) large random primes in Gen. Their

product N is recommended to be 2048 bits now, which requires primes of bit-length

around 1024, or prime numbers in the range [21023, 21024]. While these can vary, the

main takeaway for us is that modern cryptography uses very large primes.
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4.2 Primality Tests

A primality test is an algorithm that takes in an integer N > 1 and determines

whetherN is prime or composite. The simplest primality test is dividing the candidate

N by every integer from 2 to
√
N . If any divide N , then N must be composite.

Otherwise, N is prime. This is called trial division.

Clearly, trial division up to
√
N is too slow to be useful as a primality test for N .

Here is a more refined test due to Fermat.

Definition 4.2.1. For an integer N ≥ 2, the Fermat primality test first chooses an

integer a randomly in [1, N − 1]. If

aN−1 6≡ 1 mod N

then N is composite. Otherwise, N may be prime.

This test is based on Fermat’s Little Theorem, which states that, for each prime p

and all a from 1 to p− 1, we have ap−1 ≡ 1 mod p. If aN−1 6≡ 1 mod N for some a in

[1, N −1] then N must be composite, in which case we call a a Fermat witness for N .

We note that the Fermat primality test does not determine specifically whether N is

prime or composite. It can determine that N is definitely composite if the congruence

aN−1 ≡ 1 mod N doesn’t hold for some a in [1, N − 1], but the test can only suggest

(not prove) a number is prime when compositeness is not revealed after applying the

test.

To test N for primality, we may want to run the Fermat test many times with

different values of a in [1, N−1]. When we run it many times without finding N to be

composite, then we may think N is “very likely prime”, although it’s not clear what
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that really means if we don’t know that composite N always have a definite positive

proportion of compositeness witnesses in the range [1, N − 1] from the Fermat test.

Theorem 4.2.2. Let WN = {1 ≤ a ≤ N −1 : aN−1 6≡ 1 mod N} be the set of Fermat

witnesses for N . If N is prime, then WN = ∅. If N is composite and there exists at

least one Fermat witness in (Z/NZ)×, then |WN | ≥ (N − 1)/2.

Proof. See [13, Theorem 10.1].

This appears to give us a very good lower bound: over half the numbers in [1, N−1]

are witnesses in the Fermat test on N if N is composite. But that’s not what Theorem

4.2.2 says: the theorem includes the assumption that some witness for N is relatively

prime to N . This doesn’t always happen, and in that case the proportion of witnesses

in the Fermat test could be very small.

Example 4.2.3. Let N = 2,301,745,249. Performing the Fermat test 100 times with

random a in the range [1, N − 1], we find no witnesses to this N being composite by

the Fermat test: aN−1 ≡ 1 mod N each time. We’d like to say that Theorem 4.2.2

tells us the probability this N is prime is at least 1− 1/2100, which is extremely close

to 1. However, N is composite:

2,301,745,249 = 727 · 1453 · 2179

. The same thing happens with 9,624,742,921 and 113,654,675,587: running the

Fermat test on these N with 100 random a in [1, N − 1] leads to aN−1 ≡ 1 mod N

each time, but these N are composite:

9,624,742,921 = 1171 · 2341 · 3511 and 113,654,675,587 = 2473 · 3709 · 12391.
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The proportion of Fermat witnesses for the N here is far less than 1%: it is around

0.25% for 2,301,745,249, 0.16% for 9,624,742,921, and 0.075% for 113,654,675,587.

For a composite number N , an a in [1, N − 1] such that (a,N) > 1 will always be

a Fermat witness since aN−1 ≡ 1 mod N only if (a,N) = 1. There are composite N

whose only Fermat witnesses are of that type: integers sharing a common factor with

N . Such N are called Carmichael numbers. The first few Carmichael numbers are

561, 1105, 1729, 2465.

All three N in Example 4.2.3 are Carmichael numbers. Finding a Fermat witness for a

Carmichael number N requires finding a in [1, N−1] such that (a,N) > 1 and that is

as slow as deciding if N is composite by doing trial division. For Carmichael numbers

N , the proportion of a in [1, N − 1] such that aN−1 6≡ 1 mod N is the proportion of a

in [1, N−1] such that (a,N) > 1. This is (N−1−ϕ(N))/(N−1) = 1−ϕ(N)/(N−1),

and that could be extremely small, as we saw in Example 4.2.3.

Theorem 4.2.2 says that a composite N that is not a Carmichael number (meaning

N has a Fermat witness relatively prime to N) has over 50% of the numbers less than

N being witnesses to N in the Fermat test. Therefore if aN−1 ≡ 1 mod N for many

random values of a, the correct conclusion is not that N is very likely to be prime, but

instead that N is very likely to be a prime number or a Carmichael number. Since it

is known that there are infinitely many Carmichael numbers [13, p. 308], the Fermat

test in fact is not an effective method of primality testing on its own.
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4.3 The Miller-Rabin Primality Test

For RSA and other public-key cryptosystems to be practical, we need an efficient and

effective primality test: a test for which prime numbers put into the test have no

witness to their compositeness and composite numbers put into the test always have

a substantial proportion of witnesses to their compositeness. Trial division and the

Fermat test have drawbacks in that regard. In the late 1970s and early 1980s, better

tests were developed.

The Solovay-Strassen primality test, discovered by Solovay and Strassen in 1977,

is based on a generalization of the Legendre symbol from Example 3.1.4 called the

Jacobi symbol and it can be applied to odd numbers n > 1. (For even n or n = 1,

deciding primality of n is easy.) We define a round of the Solovay-Strassen test.

Definition 4.3.1. For odd input N , the Solovay-Strassen primality test first chooses

an integer a randomly from [1, N − 1]. If ( a
N

) = 0 or

a(N−1)/2 6≡
( a
N

)
mod N,

then N is composite. Otherwise, N may be prime. Here ( a
N

) is the Jacobi symbol.

Like the Fermat test, the Solovay-Strassen test can be run multiple times with

different a to test primality of N . For a in [1, N − 1], if ( a
N

) = 0 or a(N−1)/2 6≡

( a
N

) mod N then N is definitely composite and we call a a Solovay-Strassen witness

for N . Odd prime p have no Solovay-Strassen witness, since a(p−1)/2 ≡ (a
p
) 6≡ 0 mod p

for all a in [1, p− 1] by Euler’s congruence for the Legendre symbol.

Unlike the Fermat test, the Solovay-Strassen test has no analogue of Carmichael

numbers: every odd composite number N has a large proportion of Solovay-Strassen
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witnesses to its compositeness in [1, N − 1] in this test.

Theorem 4.3.2 (Solovay-Strassen). For odd N > 1, let WN be the set of Solovay-

Strassen witnesses in [1, N − 1]. If N is prime then WN = ∅. If N is composite

then

|WN | ≥
N − 1

2
.

Proof. See [14] and [15].

Because the proportion of Solovay-Strassen witnesses for each odd composite N

has a positive lower bound that is independent of N (always at least 50%), the

Solovay-Strassen test is called a probabilistic primality test. It was the first example

of such a test. The Fermat test is not a genuine probabilistic primality test because

of Carmichael numbers.

In 1980, two years after the paper of Solovay and Strassen appeared, Rabin’s

paper [11] came out in which a probabilistic primality test was described based on a

test proposed by Miller [9] from 1976. Miller’s test was originally in a deterministic

form, not using random inputs, and we’ll see later that its running time depends on

an unsolved problem.

Definition 4.3.3. For odd N > 1, write N −1 = 2rd, where r ≥ 1 and d is odd. The

Miller-Rabin primality test chooses an integer a randomly in [1, N − 1] and computes

ad, a2d, . . . , a2
id, . . . , a2

r−1d mod N. (4.3.1)

If the first term in the list is not 1 mod N and the number −1 mod N never occurs

in the list, then declare N to be composite. Otherwise, N may be prime.
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For a in [1, N−1], if the Miller-Rabin test with a terminates and calls N composite

then N really is composite and a is called a Miller-Rabin witness for N . Odd prime

p have no Miller-Rabin witness.

Remark 4.3.4. Here is motivation for the Miller-Rabin test. The last power in the

test is a2
r−1d ≡ a(N−1)/2 mod N . If p were an odd prime then a(p−1)/2 ≡ ±1 mod p

since (a(p−1)/2)2 = ap−1 ≡ 1 mod p and the only square roots of 1 mod p are±1 mod p.

If a(p−1)/2 ≡ 1 mod p and p ≡ 1 mod 4 then (a(p−1)/4)2 = a(p−1)/2 ≡ 1 mod p so

a(p−1)/4 ≡ ±1 mod p. More generally, if p− 1 = 2rd for r ≥ 1 and d odd, the terms in

the Miller-Rabin sequence ad, a2d, . . . , a2
r−1d mod p either start with 1 mod p or some

term in it is −1 mod p. So if the Miller-Rabin sequence for an odd number N > 1

doesn’t start with 1 mod N and no term is −1 mod N , N must be composite.

The Miller-Rabin test is very effective because it is efficient to run each round and

when N is odd composite there is always a large proportion of witnesses for N . For

the large Carmichael numbers in Example 4.2.3, a Miller-Rabin witness was able to

be found within 10 random trials for each.

Theorem 4.3.5 (Rabin). For odd N > 1, let WN be the set of Miller-Rabin witnesses

for N in [1, N − 1]. If N is prime then WN = ∅. If N is composite then

|WN | ≥
3(N − 1)

4
.

Proof. See [3, Theorem 3.5.4] or [11, Theorem 1].

What this is saying is that the proportion of Miller-Rabin witnesses for odd com-

posite numbers is at least 3/4. So for odd composite N , the probability that we run

k rounds of the Miller-Rabin test without finding a witnesses for N is at most 1/4k.
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The Miller-Rabin test completely replaced the Solovay-Strassen test and is the

most commonly used primality test today. This is for three reasons. First, the

Miller-Rabin test is a simpler test to describe and run, as the computations for it are

based only on repeated squaring. Second, the proportion of Miller-Rabin witnesses for

an odd composite number has a guaranteed lower bound that exceeds the guaranteed

lower bound of the Solovay-Strassen test. And finally, every Solovay-Strassen witness

for an odd composite number is a Miller-Rabin witness for that number, (though

the converse is not true in general: N = 341 is composite with a = 2 as a Miller-

Rabin witness, but 2 is not a Solovay-Strassen witness for this N . In particular,

( 2
341

) = −1 and 2(341−1)/2 ≡ −1 mod 341.) That means the Solovay-Strassen test will

never involve a witness that wouldn’t be found with the Miller-Rabin test. A proof

that every Solovay-Strassen witness for N is a Miller-Rabin witness for N is in [3,

Theorem 4.2.8].

The Miller-Rabin test was originally described by Miller (before Rabin) using a in

[1, N − 1] deterministically as a = 1, 2, 3, . . . until a witness for N is found or the test

ends and says N is prime, rather than probabilistically with random a. That Miller’s

deterministic version of the test can run efficiently (in polynomial time) is based on

assuming the Generalized Riemann Hypothesis for Dirichlet L-functions.

Theorem 4.3.6 (Miller). For odd N > 1, let WN be the set of Miller-Rabin witnesses

in [1, N − 1]. If N is prime then WN = ∅. If N is composite and the Generalized

Riemann Hypothesis is true for Dirichlet L-functions then there is a witness for N

that is O((logN)2).

Proof. See [9, Theorem 2].

Unfortunately, Miller did not compute a value for the O-constant in his theorem,
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and without that such a deterministic test (assuming the Generalized Riemann Hy-

pothesis) is not practical. A few years later Bach [2] made the O-constant in Miller’s

theorem explicit assuming the Generalized Riemann Hypothesis, and explaining how

that works is the goal of our next and final chapter.
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Chapter 5

The Generalized Riemann
Hypothesis and Primality Tests

In previous chapters, we met the zeta-function, Dirichlet L-functions, and the Rie-

mann Hypothesis and Generalized Riemann Hypothesis for them. In Chapter 4, we

saw examples of primality tests that are probabilistic. While these are sufficient for

cryptographic uses, it is of interest to see if these tests can be made into determinis-

tic algorithms. We will show how the Generalized Riemann Hypothesis can help us

quantify the O-constant in the bound from Theorem 4.3.6.

5.1 Bounding the size of compositeness witnesses

As stated in Chapter 4, the commonly-used primality tests now are all based on

probablistically searching for a witness to the compositeness of a candidate number.

When there are known lower bounds on the proportion of witnesses for composite

numbers in a certain test, we may be reasonably sure a number is prime if no witnesses
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to compositeness is found after running that test enough times to make the probability

of a false positive (declaring a number prime when it is really composite) less than

the chance of a computer error. We can make such a test deterministic if we can

bound how many nonwitnesses we need to find for the test before we can say with

absolute certainty that the number we are testing is prime.

Let N > 1 be an odd composite number. There is a witness to its compositeness

in {1, 2, . . . , N − 1} for the Fermat test, the Solovay-Strassen test, and the Miller-

Rabin test: a factor of N strictly between 1 and N , or really any number strictly

between 1 and N whose gcd with N is bigger than 1, will be a witness for each of

those tests. Relying on such witnesses to reveal compositeness of N is no better than

doing trial division, so we want to take advantage of witnesses to compositeness that

are relatively prime to N . Here the Fermat test runs into a problem, because if N is a

Carmichael number then its only witnesses for the Fermat test are numbers sharing a

factor bigger than 1 with N . In contrast, the Solovay-Strassen test and Miller-Rabin

test are guaranteed to have compositness witnesses relatively prime to N , and that

leads to the proportion of all numbers below N that are compositeness witnesses for

N to be at least 50% or 75% for those respective two tests (Theorems 4.3.2 and 4.3.5).

To make these tests deterministic, we ask how small the first witness for each test

can be guaranteed to be, as a function of N . How long could a string of nonwitnesses

for N be (numbers not witnessing compositeness of N in the test) before we can be

sure N is prime?

Nonwitnesses in the Solovay-Strassen test for odd N > 1 are the a ∈ Z/NZ such

that a(N−1)/2 ≡ ( a
N

) ≡ ±1 mod N . These form a subgroup of (Z/NZ)×, and it is a

proper subgroup if and only if N is composite. For composite N , we mentioned in

Section 4.3 that each Solovay-Strassen witness for N is a Miller-Rabin witness for
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N , so every Miller-Rabin nonwitness for N is a Solovay-Strassen nonwitness for N .

Therefore when N is composite, the Miller-Rabin nonwitnesses for N are part of a

proper subgroup of (Z/NZ)×, but they do not necessarily fill up a proper subgroup

(see Example 5.1.1). When N is prime, no number from 1 to N − 1 is a Solovay-

Strassen witness or Miller-Rabin witness for N , so the subgroup of nonwitnesses for

N for each test is all of (Z/NZ)×.

Example 5.1.1. Consider N = 145 with the unit group (Z/145Z)×. The numbers

12 and 17 are not Miller-Rabin witnesses for N : N − 1 = 144 = 24 · 9, so to test if

a mod N is a Miller-Rabin witness we look at a2
i9 mod N for 0 ≤ i ≤ 3.

a a9 mod N a18 mod N a36 mod N a72 mod N

12 12 144 ≡ −1 1 1

17 17 144 ≡ −1 1 1

However, the product 12 · 17 ≡ 59 mod 145 is a Miller-Rabin witness for N .

a a9 mod N a18 mod N a36 mod N a72 mod N

59 59 1 1 1

Thus the set of Miller-Rabin nonwitnesses for 145 is not closed under multiplication in

(Z/145)×, and thus does not form a proper subgroup. (All three are Solovay-Strassen

nonwitnesses for N , since ( a
N

) = 1 for all three of these a, which agrees with the last

entry a(N−1)/2 mod N in the tables above.)

Our task now is group-theoretic: for all odd N > 1, if H is a proper subgroup of

(Z/NZ)× and we think of H as a set of integers in {1, . . . , N − 1}, then we want an

upper bound on the smallest number in {1, . . . , N − 1} that is not in H. It is okay if

that first number is not relatively prime to N , so it is not in H because it is not even

in (Z/NZ)×.
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The following theorem shows bounds of the form (A logN+B)2+1 for the smallest

number not in H are equivalent to similar bounds on the first time a nontrivial

primitive Dirichlet character is not 1 (in terms of the modulus).

Theorem 5.1.2. For constants A > 0 and B ≥ 0, the following conditions are

equivalent.

(1) For all N > 1, each proper subgroup of (Z/NZ)× omits a positive integer that

is at most (A logN +B)2 + 1.

(2) For all m > 1, each primitive Dirichlet character χ mod m has χ(a) 6= 1 for

some positive integer a ≤ (A logm+B)2 + 1.

For some m there is no primitive character mod m (like m = 6), but that case

easily fits (2), which is quantified over all m > 1.

Proof. (1) ⇒ (2): When χ mod m is primitive and m > 1, χ is nontrivial, so its

kernel is a proper subgroup of (Z/mZ)×. By (1) there is a positive integer a ≤

(A logm + B)2 + 1 not in that proper subgroup, so χ(a) 6= 1. (Perhaps χ(a) = 0, so

a is not even in (Z/mZ)×.)

(2)⇒ (1): Let H be a proper subgroup of (Z/NZ)×. We want to find a nontrivial

Dirichlet character mod N that is trivial on the subgroup H.

The quotient group (Z/NZ)×/H is a nontrivial finite abelian group, so it is iso-

morphic to a direct product of nontrivial cyclic groups by the structure theorem for

finite abelian groups. Say

f : (Z/NZ)×/H → C1 × · · · × Cr (5.1.1)
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is an isomorphism for nontrivial cyclic groups Ci. Let C1 = 〈g〉, and let n > 1 be

the order of C1. Define ψ : C1 → S1 by ψ(gk) = e2πik/n, where k ∈ Z/nZ. The map

ψ is an isomorphism from C1 to the nth roots of unity in S1. Finally, let χ be the

composition

(Z/NZ)× → (Z/NZ)×/H → C1 → S1,

where the first map is reduction, the second map is the isomorphism (5.1.1) followed

by projection to C1, and the third map is ψ. This is a composition of homomorphisms,

so χ : (Z/NZ)× → S1 is a Dirchlet character. It is trivial on H since the first map is

trivial on H, and it is nontrivial at an a mod N that under the isomorphism in (5.1.1)

corresponds on the right side with an r-tuple whose C1-component is nontrivial. Thus

we have formed a nontrivial character χ mod N that is trivial on the proper subgroup

H of (Z/NZ)×.

The character χ mod N might not be primitive. Let χ′ mod m be the primitive

character that lifts to χ, where m | N . The character χ′ must be nontrivial, as

χ mod N is nontrivial, so the primitive character lifting to χ can’t have m = 1. By

(2), χ′(a mod m) 6= 1 for a positive integer a ≤ (A logm + B)2 + 1. Since m ≤ N

we have a ≤ (A logN + B)2 + 1. Also a mod N 6∈ H: since χ has value 1 on H, if

a mod N ∈ H then χ(a mod N) = 1, so (a,N) = 1 and χ′(a mod m) = 1, which is

not true.

We will see in Section 5.4 that the Generalized Riemann Hypothesis implies part

(2) of Theorem 5.1.2 with the specific values A = 1.125 and B = 9.1558 That is,

for those values of A and B every primitive character χ mod m for m > 1 doesn’t

have the value 1 at a positive integer that’s at most (A logm + B)2 + 1. Then for

all N > 1 each proper subgroup of (Z/NZ)× omits a positive integer that’s at most
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(A logN + B)2 + 1, so each odd composite N > 1 has a witness in the Miller-Rabin

test (and in the Solovay-Strassen test) that’s at most (A logN + B)2 + 1. Therefore

an odd N > 1 is prime if and only if no positive integer up to (A logN + B)2 + 1 is

a Miller-Rabin witness (or Solovay-Strassen witness) for N .

Running the Miller-Rabin test on all positive integers a up to (A logN+B)2+1 is

a deterministic algorithm, not a probabilistic algorithm like before (where we ran the

test on randomly chosen a) and this makes the Miller-Rabin test a polynomial-time

primality test. Specifically, because the Miller-Rabin test for N on one number a in

[1, N−1] has running time O((logN)3) — first O(logN) steps to compute the binary

expansion of N and then O((logN)2) steps to compute powers by repeated squaring

– Miller-Rabin applied to all positive integers up to (A logN + B)2 + 1 has running

time

O((A logN +B)2) ·O((logN)3) = O((logN)5).

Remark 5.1.3. Especially if A and B are kept small in these computations, this

would make the deterministic Miller-Rabin test more efficient than the AKS test,

which is the only unconditionally provable polynomial-time primality test. The AKS

test has run-time O((logN)7), and in practice it is not used to verify primality.

Getting explicit constants A and B in part (2) of Theorem 5.1.2 is our task now,

and this is how the Generalized Riemann Hypothesis finally makes an appearance in

our treatment of primality tests.

To find the first n ≥ 1 such that a primitive Dirichlet character χ mod m has

χ(n) 6= 1, suppose χ(n) = 1 when 1 ≤ n ≤ x. We want to bound how big x can get.
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Perron’s formula (Theorem 2.2.9) tells us for c > 1 and x > 1 that

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

s
ds =

∑
n≤x

∗
Λ(n)

and

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

s
ds =

∑
n≤x

∗
χ(n)Λ(n),

where Λ(n) is the von Mangoldt function. When χ(n) = 1 for 1 ≤ n ≤ x, the two

partial sums on the right sides match, so the integrals on the left sides match:

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

s
ds =

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

s
ds.

We actually will use not the integral from Perron’s formula, which is based on the

vertical integral
∫ c+i∞
c−i∞ (ys/s) ds, but a modified integral based on

∫ c+i∞
c−i∞ (ys/s2) ds.

Lemma 5.1.4. For c > 1 and y > 0,

1

2πi

∫ c+i∞

c−i∞

ys

s2
ds =


0 if 0 < y ≤ 1,

log y if y ≥ 1.

Proof. We consider 0 < y < 1, y > 1, and y = 1 separately.

Case 1: 0 < y < 1. Pick c′ > c. We use the counterclockwise rectangular contour

with right side [c′− iT, c′+ iT ] and left side [c+ iT, c− iT ] (oriented top to bottom).

The integral ys/s2 on this rectangle is 0 since the only pole for ys/s2 is at the origin,

which is outside the rectangle.

Let σ = Re(s) and t = Im(s). We first consider the horizontal components of our

contour, from c′ + iT to c+ iT and from c− iT to c′ − iT (eventually taking c′ →∞
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and T →∞). Because |ys/s2| = yσ/|s|2 ≤ yσ/T 2, the integrals of ys/s2 along the top

and bottom of the rectangle each have absolute value bounded above by

∫ c′

c

yσ

T 2
dσ =

yσ

T 2 log y

∣∣∣c′
c

=
yc
′ − yc

T 2 log y
=

yc − yc′

T 2| log y|
<

yc

T 2| log y|
, (5.1.2)

where the third equation makes the numerator and denominator both positive since

0 < y < 1 and c′ > c. The upper bound is independent of c′ and tends to 0 as

T →∞.

For the integral along the right side of the rectangle, from c′ − iT to c′ + iT ,

∣∣∣∣∣
∫ c′−iT

c′+iT

ys

s2
ds

∣∣∣∣∣ ≤
∫ T

−T

yc
′

|c′ + it|2
dt = 2yc

′
∫ T

0

dt

(c′)2 + t2
< 2yc

′
∫ T

0

dt

1 + t2

since c′ > c > 1. Since
∫∞
0
dt/(1 + t2) = π/2 by calculus,

∣∣∣∣∣
∫ c′−iT

c′+iT

ys

s2
ds

∣∣∣∣∣ < πyc
′
. (5.1.3)

The upper bound is independent of T and tends to 0 as c′ →∞.

Since the integral of ys/s2 around the whole rectangle is 0, the integral along the

left side is a sum of integrals along the other three sides (suitably oriented), so after

dividing by 2πi in (5.1.2) and (5.1.3) we get

∣∣∣∣ 1

2πi

∫ c+iT

c−iT

ys

s2
ds

∣∣∣∣ < 1

2π

(
2yc

T 2| log y|
+ πyc

′
)

=
yc

π| log y|
1

T 2
+

1

2
yc
′

(5.1.4)

for c′ > c and T > 0. Let c′ → 0 to make the second term in the upper bound tend

to 0 without changing the integral being bounded. Then let T →∞ to make the first

term in the upper bound tend to 0 and we get the desired vanishing integral for the
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lemma when 0 < y < 1.

Case 2: y > 1. Pick c′ > 1. We create a new counterclockwise rectangular contour

with right side [c−iT, c+iT ] and left side [−c′+iT,−c′−iT ] (oriented top to bottom).

This contour passes around the origin, where ys/s2 has a pole. To determine the

residue of ys/s2 at s = 0,

ys

s2
=
es log y

s2
=

1

s2

(
1 + (log y)s+

(log y)2

2
s2 + · · ·

)
=

1

s2
+

log y

s
+O(1),

so Ress=0(y
s/s2) = log y. Therefore the residue theorem tells us the integral of

1
2πi

(ys/s2) around the rectangle is log y. To prove the integral in the lemma for

y > 1 is log y, it suffices to show the sum of the integrals over the top, bottom, and

left sides of the rectangle tend to 0 as c′ → −∞ and T →∞ in a suitable way.

We first bound the integral of ys/s2 along the top and bottom. Each integral has

absolute value at most

∫ c

−c′

∣∣∣∣yss2
∣∣∣∣ dσ < 1

T 2

∫ c

−c′
yσ dσ =

yc − y−c′

T 2 log y
<

yc

T 2 log y
, (5.1.5)

which is analogous to (5.1.2). The upper bound is independent of c′ and tends to 0

as T →∞.

For the integral along the left side [−c′ + iT,−c′ − iT ],

∣∣∣∣∫ −c−iT
−c′+iT

ys

s2
ds

∣∣∣∣ ≤ ∫ T

−T

y−c
′

(−c′)2 + t2
dt < 2y−c

′
∫ T

0

1

1 + t2
dt

since c′ > 1. The integral on the right is less than π/2 just as in the case where
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0 < y < 1, so ∣∣∣∣∫ −c−iT
−c′+iT

ys

s2
ds

∣∣∣∣ < πy−c
′
, (5.1.6)

which is analogous to (5.1.3). The upper bound is independent of T and tends to 0

as c′ →∞.

Now we can use the residue theorem for the integral around the rectangle to get

∣∣∣∣ 1

2πi

∫ c+iT

c−iT

ys

s2
ds− log y

∣∣∣∣ < 1

2π

(
2yc

T 2 log y
+ πy−c

′
)

=
yc

π log y

1

T 2
+

1

2
y−c

′
,

which is analogous to (5.1.4). Letting c′ →∞ and then T →∞ produces the desired

formula in the lemma when y > 1.

Case 3: y = 1. We calculate the integral directly. Writing s = c+ it, so ds = i dt,

1

2πi

∫ c+i∞

c−i∞

ys

s2
ds = lim

T→∞

1

2πi

∫ c+iT

c−iT

ds

s2
= lim

T→∞

1

2π

∫ T

−T

dt

(c+ it)2

The antiderivative of 1/(c+ it)2 with respect to t is i/(c+ it), so

∫ T

−T

dt

(c+ it)2
=

i

c+ it

∣∣∣T
−T

=
i

c+ iT
− i

c− iT
=

2T

c2 + T 2
.

This tends to 0 as T →∞, so

1

2πi

∫ c+i∞

c−i∞

ys

s2
ds = lim

T→∞

T

π(c2 + T 2)
= 0.

Lemma 5.1.5. If f(s) =
∑
an/n

s converges absolutely for Re(s) > 1, then for c > 1

and x > 0,

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s2
ds =

∑
n≤x

an log(x/n).
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A key difference between this result and Perron’s formula in Theorem 2.2.9 is the

denominator being s2 rather than s. We don’t weight the last term in the partial sum

if x ∈ Z+, as we do in Perron’s formula, since log(x/n) = 0 if x = n.

Proof. This is proved similarly to Perron’s formula:

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

s2
ds =

1

2πi

∫ c+i∞

c−i∞

(∑
n≥1

an
ns

)
xs

s2
ds

=
∑
n≥1

an
1

2πi

∫ c+i∞

c−∞

(x/n)s

s2
ds

=
∑
n≤x

an log(x/n) by Lemma 5.1.4.

A more rigorous proof would use truncated integrals
∫ c+iT
c−iT and bounds on integrals

on sides of rectangles in the proof of Lemma 5.1.4, and let T →∞ at the end.

We will need a modification of the integral in Lemma 5.1.5, using denomiator

(s+ b)2 for 0 < b < 1 that will be picked later:

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

(s+ b)2
ds.

By the change of variables s 7→ s− b in this integral, we get for c > 1 and x > 0

1

2πi

∫ c+i∞

c−i∞
f(s)

xs

(s+ b)2
ds =

1

2πi

∫ c+b+i∞

c+b−i∞
f(s− b)x

s−b

s2
ds

=
1

xb
1

2πi

∫ c+b+i∞

c+b−i∞
f(s− b)x

s

s2
ds

=
1

xb

∑
n≤x

ann
b log(x/n) (5.1.7)

since f(s− b) =
∑
ann

b/ns converges absolutely for Re(s) > 1 + b and c+ b > 1 + b.
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Theorem 5.1.6. For c > 1, x > 0, and 0 < b < 1,

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

(s+ b)2
ds =

1

xb

∑
n≤x

Λ(n)nb log(x/n) (5.1.8)

and

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

(s+ b)2
ds =

1

xb

∑
n≤x

χ(n)Λ(n)nb log(x/n). (5.1.9)

Proof. In (5.1.7), use the functions f(s) = −ζ ′(s)/ζ(s) =
∑

Λ(n)/ns and f(s) =

−L′(s, χ)/L(s, χ) =
∑
χ(n)Λ(n)/ns.

Suppose χ mod m is a primitive Dirichlet character such that χ(n) = 1 when

1 ≤ n ≤ x. Then the technical-looking sums on the right side of (5.1.8) and (5.1.9)

match, so the integrals on the left side match:

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

(s+ b)2
ds =

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

(s+ b)2
ds (5.1.10)

for c > 1. We will compute these integrals in a second way in order to obtain an

upper bound on x, and that will bound how long we could have χ(n) = 1.

Theorem 5.1.7. For c > 1, x > 1, 0 < b < 1, and a nontrivial primitive Dirichlet

character χ,

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

(s+ b)2
ds =

x

(1 + b)2
−
∑
ρ

xρ

(ρ+ b)2
−
(
ζ ′

ζ

)′
(−b) 1

xb

− ζ ′

ζ
(−b) log x

xb
−
∑
n≥1

1

(2n− b)2x2n
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and

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

(s+ b)2
ds = −

∑
ρχ

xρχ

(ρχ + b)2
−
(
L′

L

)′
(−b, χ)

1

xb

− L′

L
(−b, χ)

log x

xb
−


∑
n≥0

1

(2n− b)2x2n
χ even

∑
n≥0

1

(2n+ 1− b)2x2n+1
χ odd

where ρ and ρχ run over the nontrivial zeros of ζ(s) and L(s, χ) with multiplicity.

Proof. We will use the residue theorem to calculate these integrals by adding the

residues of the respective functions to the left of the line Re(s) = c, pushing the

contour of integration to the left rather than to the right because |xs| → 0 as Re(s)→

−∞ when x > 1. See [6, Theorem 28] for a more complete justification of a similar

result with denominator s(s + 1). In this proof, we will focus on the calculation of

the residues at the poles for both integrands.

We first consider

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

(s+ b)2
ds.

Recall from Theorem 2.1.5 that the logarithmic derivative f ′(s)/f(s) of a meromor-

phic function f(s) has a pole at s = a only if f(s) has a zero or pole at s = a,

and Ress=a(f
′(s)/f(s)) is the order of vanishing of f(s) at s = a (positive at zeros,

negative at poles). Therefore the poles of (ζ ′/ζ)(s)(xs/(s+ b)2) are in four places:

(i) the pole of ζ(s) at s = 1,

(ii) the trivial zeros of ζ(s) at negative even numbers,

(iii) the nontrivial zeros of ζ(s) in the critical strip,
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(iv) the double pole at s = −b introduced by (s+ b)2 in the denominator.

Since c > 1, all poles in (i), (ii), (iii), and (iv) are to the left of the line Re(s) = c.

At s = 1, ζ ′(s)/ζ(s) has a pole with residue −1 since ζ(s) has a simple pole there

by Theorem 1.2.1. Therefore the residue of the integrand at s = 1 is

− (−1)
x

(1 + b)2
=

x

(1 + b)2
. (5.1.11)

Trivial zeros of ζ(s) at s = −2n, for n ≥ 1, are simple, so the residue of (ζ ′/ζ)(s)

at s = −2n is 1, which makes the residue of the integrand at s = −2n equal to

−x−2n

(−2n+ b)2
=

−1

(2n− b)2x2n
. (5.1.12)

Similarly, the residue of the integrand at a nontrivial zero ρ of ζ(s) is

− ords=ρ(ζ(s))
xρ

(ρ+ b)2
. (5.1.13)

It is expected that nontrivial zeros of ζ(s) have order 1, so ords=ρ(ζ(s)) should be 1.

For a function f(s) analytic at s = −b, f(s) = f(−b) + f ′(−b)(s+ b) +O((s+ b)2)

near b, so

Ress=−b
f(s)

(s+ b)2
= f ′(−b).

Apply this to f(s) = −(ζ ′(s)/ζ(s))xs. Using the product rule,

Ress=−b

(
−ζ
′(s)

ζ(s)

xs

(s+ b)2

)
= −

(
ζ ′

ζ

)′
(−b)x−b − ζ ′

ζ
(−b)x−b log x

= −
(
ζ ′

ζ

)′
(−b) 1

xb
− ζ ′

ζ
(−b) log x

xb
. (5.1.14)
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Adding together all the residues in (5.1.11), (5.1.12), (5.1.13), (5.1.14) gives us

the terms in the first equation of the theorem. The first term accounts for the pole at

s = 1, the second term accounts for poles at nontrivial zeros of ζ(s) when we sum over

nontrivial zeros with multiplicity, the third and fourth terms account for the double

pole at s = −b, and the final sum accounts for poles at trivial zeros of ζ(s).

The calculation of

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

(s+ b)2
ds

for a nontrivial primitive Dirichlet character χ is done in a similar way. Let δ ∈ {0, 1}

be the parity of χ. We have three types of poles to account for:

(i) the trivial zeros of L(s, χ) at at −2n− δ for n ≥ 0,

(ii) the nontrivial zeros of L(s, χ) in the critical strip,

(iii) the double pole at s = −b introduced by (s+ b)2 in the denominator.

This list differs from that for ζ(s) in two ways: no pole at s = 1 and if δ = 0 there

is a trivial zero of L(s, χ) at s = 0. The lack of a pole at s = 1 is crucial.

At the trivial zero −2n− δ, similarly to (5.1.12) the integrand has residue

−x−2n−δ

(−2n− δ + b)2
=

−1

(2n+ δ − b)2x2n+δ
. (5.1.15)

At a nontrivial zero ρχ in the critical strip, we calculate the residue of the integrand

similarly to (5.1.13) and get value

− ords=ρχ(L(s, χ))
xρχ

(ρχ + b)2
. (5.1.16)

94



At s = −b, compute the residue as in (5.1.14) to get

Ress=−b

(
−L

′(s, χ)

L(s, χ)

xs

(s+ b)2

)
= −

(
L′

L

)′
(−b, χ)

1

xb
− L′

L
(−b, χ)

log x

xb
. (5.1.17)

Adding up the residues in (5.1.15), (5.1.16), and (5.1.17), we get the second for-

mula in the theorem. The first sum accounts for poles at the nontrivial zeros when we

sum over nontrivial zeros with multiplicity, the second and third terms account for

the double pole at s = −b, and the final sum accounts for the poles at trivial zeros.

The sum over n on the right side of the equation involving ζ ′/ζ starts at n = 1,

while the sum over n on the right side of the equation involving L′/L starts at n = 0

because the trivial zeros of the zeta-function start at −2 while the trivial zeros of

L(s, χ) for nontrivial primitive χ start at either 0 (if δ = 0) or −1 (if δ = 1).

If a primitive Dirichlet character χ mod m satisfies χ(n) = 1 when 1 ≤ n ≤ x,

then (5.1.10) is true, so the right sides of the equations in Theorem 5.1.7 are equal:

x

(1 + b)2
−
∑
ρ

xρ

(ρ+ b)2
−
(
ζ ′

ζ

)′
(−b) 1

xb
− ζ ′

ζ
(−b) log x

xb
−
∑
n≥1

1

(2n− b)2x2n

equals

−
∑
ρχ

xρχ

(ρχ + b)2
−
(
L′

L

)′
(−b, χ)

1

xb
−L

′

L
(−b, χ)

log x

xb
−


∑
n≥0

1

(2n− b)2x2n
χ even

∑
n≥0

1

(2n+ 1− b)2x2n+1
χ odd.

Set these long expressions equal to each other and move all the terms except x/(1+b)2
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to the right side:

x

(1 + b)2
=
∑
ρ

xρ

(ρ+ b)2
−
∑
ρχ

xρχ

(ρχ + b)2(
ζ ′

ζ

)′
(−b) 1

xb
+
ζ ′

ζ
(−b) log x

xb
−
(
L′

L

)′
(−b, χ)

1

xb
− L′

L
(−b, χ)

log x

xb

+
∑
n≥1

1

(2n− b)2x2n
−


∑
n≥0

1

(2n− b)2x2n
χ even

∑
n≥0

1

(2n+ 1− b)2x2n+1
χ odd.

For even χ, the terms in the sums over n cancel out except at n = 0, leaving just

−1/b2. For odd χ, the two sums over n combine to form the alternating series

∑
k≥1

(−1)k

(k − b)2xk
= − 1

(1− b)2x
+

1

(2− b)2x2
− 1

(3− b)2x3
+ +

1

(4− b)2x2
− · · ·

whose successive terms are strictly decreasing in absolute value, so the absolute value

of the sum is less than the absolute value of the first term:

∣∣∣∣∣∑
k≥1

(−1)k

(k − b)2xk

∣∣∣∣∣ < 1

(1− b)2x
<

1

(1− b)2

since x > 1. This bound is 1/(b− δ)2 for δ = 0 and 1, so by the triangle inequality,

x

(1 + b)2
≤
∑
ρ

xRe(ρ)

|ρ+ b|2
+
∑
ρχ

xRe(ρχ)

|ρχ + b|2

+

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣ 1

xb
+

∣∣∣∣ζ ′ζ (−b)
∣∣∣∣ log x

xb

+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣ 1

xb
+

∣∣∣∣L′L (−b, χ)

∣∣∣∣ log x

xb
+

1

(b− δ)2
.
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Finally it is time to assume the Generalized Riemann Hypothesis. It implies

Re(ρ) = 1/2 and Re(ρχ) = 1/2 for nontrivial zeros of ρ and ρχ, so

x

(1 + b)2
≤

∑
ρ

1

|ρ+ b|2
+
∑
ρχ

1

|ρχ + b|2

√x
+

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣ 1

xb
+

∣∣∣∣ζ ′ζ (−b)
∣∣∣∣ log x

xb

+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣ 1

xb
+

∣∣∣∣L′L (−b, χ)

∣∣∣∣ log x

xb
+

1

(b− δ)2
.

This shows x can’t get too large: on the left side is an x and on the right side is
√
x

and other terms that are bounded for x > 1: 1/xb < 1 and (log x)/xb ≤ 1/(be) (the

maximum value is at x = b
√
e by calculus), so

x

(1 + b)2
≤

∑
ρ

1

|ρ+ b|2
+
∑
ρχ

1

|ρχ + b|2

√x+

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣ (5.1.18)

+

∣∣∣∣ζ ′ζ (−b)
∣∣∣∣ 1

be
+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣+

∣∣∣∣L′L (−b, χ)

∣∣∣∣ 1

be
+

1

(b− δ)2
.

Until now b has been arbitrary in (0, 1). To make things concrete, set b = 1/2.

Then 1/(b− δ)2 = 4 for δ = 0 and 1, so (5.1.18) becomes

4

9
x ≤

∑
ρ

1

|ρ+ 1
2
|2

+
∑
ρχ

1

|ρχ + 1
2
|2

√x+

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣ (5.1.19)

+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4.

The sum over ρ and the terms involving the zeta-function are concrete numbers,

having nothing to do with x or χ. In Section 5.2 we’ll see −(L′/L)(−1/2, χ) =
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logm+O(1), (L′/L)′(−1/2, χ) = O(1), and that the Generalized Riemann Hypothesis

implies the sum over ρχ is O(logm), where all three O-constants are absolute (they

do not depend on χ or m). Therefore (5.4.1) tells us if χ(n) = 1 for 1 ≤ n ≤ x,

4

9
x = O((logm)

√
x) +O(logm) =⇒

√
x = O(logm) =⇒ x = O((logm)2). (5.1.20)

So the Generalized Riemann Hypothesis implies every primitive Dirichlet character

χ mod m can be 1 on all integers in [1, x] only when x = O((logm)2), so χ(a) 6= 1

at some integer that is O((logm)2). Combining this with Theorem 5.1.2, the Gen-

eralized Riemann Hypothesis implies the first witnesses in the Miller-Rabin test and

Solovay-Strassen test for every odd composite number N are O((logN)2). That shows

the Miller-Rabin test and Solovay-Strassen test are polynomial-time primality tests

in principle, but to make them so in practice (assuming the Generalized Riemann

Hypothesis) we want to make the O-constant in (5.1.20) explicit.

Remark 5.1.8. While we bounded 1/xb by 1 and (log x)/xb by 1/(be) for x > 1, we

could do it differently. The function 1/xb is decreasing for x > 1 and the function

(log x)/xb is decreasing for x > b
√
e, so for an integer n0 > b

√
e and all x ≥ n0 we

could bound 1/xb by 1/nb0 and (log x)/xb by (log n0)/n
b
0. Then, for the calculations

in Section 5.4, we use these bounds instead of 1 and 1/(be), achieving a different,

tighter bound on x (in terms of the modulus m of χ) if x ≥ n0. Then every nontrivial

primitive character is not 1 at some positive integer that is either less than n0 or is

less than the tighter bound we could have worked out. That could then be translated

into an upper bound on the first Miller-Rabin witness for odd composite numbers: it

is less than n0 or less than a bound related to the estimates with primitive Dirichlet

characters. For our work, we will use the bounds 1 and 1/(be).
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5.2 Intermediate calculations

To bound the terms on the right side of (5.1.19) using explicit numbers, we will need

values of several functions at −1/2 and (for the sums over nontrivial zeros) ±1/4.

Such values (and a few more) are in the next theorem. We express values at specific

negative numbers in terms of values at s > 1, where Γ(s), ζ(s), and L(s, χ) are given

by their initial definitions as absolutely convergent integrals or sums.

Theorem 5.2.1. We have the following numerical formulas.

(1)
Γ′

Γ

(
−1

4

)
=

Γ′

Γ

(
3

4

)
+ 4 =

Γ′

Γ

(
5

4

)
+ π.

(2)
Γ′

Γ

(
1

4

)
=

Γ′

Γ

(
3

4

)
− π =

Γ′

Γ

(
5

4

)
− 4.

(3)

(
Γ′

Γ

)′(
3

2

)
=
π2

2
− 4.

(4)
ζ ′

ζ

(
−1

2

)
= log(π)−2−Γ′

Γ

(
3

4

)
− ζ

′

ζ

(
3

2

)
= log(π)+2−π−Γ′

Γ

(
5

4

)
− ζ

′

ζ

(
3

2

)
.

(5)

(
ζ ′

ζ

)′(
−1

2

)
=

(
ζ ′

ζ

)′(
3

2

)
− 4

(6) For a nontrivial primitive character χ mod m,

− L′

L

(
−1

2
, χ

)
= log

(m
2π

)
+

Γ′

Γ

(
3

2

)
+ (−1)δ

π

2
+
L′

L

(
3

2
, χ

)
. (5.2.1)

(7) For a nontrivial primitive character χ mod m,

(
L′

L

)′(
−1

2
, χ

)
=

(
Γ′

Γ

)′(
3

2

)
− π2

2
+

(
L′

L

)′(
3

2
, χ

)
. (5.2.2)
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Proof. (1) The first formula for (Γ′/Γ)(−1/4) comes from setting s = −1/4 in (2.4.1):

Γ′

Γ

(
3

4

)
=

Γ′

Γ

(
−1

4

)
− 4 =⇒ Γ′

Γ

(
−1

4

)
=

Γ′

Γ

(
3

4

)
+ 4.

The second formula for (Γ′/Γ)(−1/4) in (1) comes from setting s = −1/4 in (2.4.2):

Γ′

Γ

(
−1

4

)
=

Γ′

Γ

(
5

4

)
− π cot

(
−π

4

)
=

Γ′

Γ

(
5

4

)
+ π.

(2) Setting s = 1/4 in (2.4.2),

Γ′

Γ

(
1

4

)
=

Γ′

Γ

(
3

4

)
− π.

Setting s = 1/4 in (2.4.1) and moving terms around,

Γ′

Γ

(
1

4

)
=

Γ′

Γ

(
5

4

)
− 4.

(3) Differentiating (2.4.1),

(
Γ′

Γ

)′
(s+ 1) =

(
Γ′

Γ

)′
(s)− 1

s2
, (5.2.3)

so setting s = 1/2, (
Γ′

Γ

)′(
3

2

)
=

(
Γ′

Γ

)′(
1

2

)
− 4. (5.2.4)

Differentiating (2.4.2),

(
Γ′

Γ

)′
(s) = −

(
Γ′

Γ

)′
(1− s) + π2 csc2(πs),
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so setting s = 3/2 (
Γ′

Γ

)′(
3

2

)
= −

(
Γ′

Γ

)′(
−1

2

)
+ π2. (5.2.5)

To get rid of (Γ′/Γ)′(−1/2) here, set s = −1/2 in (5.2.3) to find

(
Γ′

Γ

)′(
1

2

)
=

(
Γ′

Γ

)′(
−1

2

)
− 4,

so (5.2.5) becomes

(
Γ′

Γ

)′(
3

2

)
= −

(
Γ′

Γ

)′(
1

2

)
− 4 + π2.

Using this to write (Γ′/Γ)′(1/2) in terms of (Γ′/Γ)′(3/2) and substituting the result

into the right side of (5.2.4), we get the formula for (Γ′/Γ)′(3/2) in (3).

(4) Setting s = −1/2 in (2.4.3),

ζ ′

ζ

(
−1

2

)
= log(π)− 1

2

Γ′

Γ

(
3

4

)
− 1

2

Γ′

Γ

(
−1

4

)
− ζ ′

ζ

(
3

2

)
.

Substituting in here the first formula for (Γ′/Γ)(−1/4) from (1), we get the first

equation in (4). Writing (Γ′/Γ)(3/4) in terms of (Γ′/Γ)(5/4) using (1) leads to the

second equation in (4).

(5) Set s = −1/2 in (2.4.4):

(
ζ ′

ζ

)′(
−1

2

)
=

1

4

(
Γ′

Γ

)′(
3

4

)
− 1

4

(
Γ′

Γ

)′(
−1

4

)
+

(
ζ ′

ζ

)′(
3

2

)
=

(
ζ ′

ζ

)′(
3

2

)
− 1

4

((
Γ′

Γ

)′(
−1

4

)
−
(

Γ′

Γ

)′(
3

4

))
.
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To calculate (Γ′/Γ)′(−1/4)− (Γ′/Γ)′(3/4), set s = −1/4 in (5.2.3):

(
Γ′

Γ

)′(
3

4

)
=

(
Γ′

Γ

)′(
−1

4

)
− 16,

Therefore (Γ′/Γ)′(−1/4)− (Γ′/Γ)′(3/4) = 16, so we get (5).

(6) Recall from Theorem 3.3.9 the ugly functional equations for L(s, χ):

L(1− s, χ) =
2W (χ)√

m

(
2π

m

)−s
Γ(s) cos

(π
2

(s− δ)
)
L(s, χ)

for s ∈ C. Take logarithmic derivative of both sides. Products go to sums and we get

− L′

L
(1− s, χ) = log

(m
2π

)
+

Γ′

Γ
(s)− π

2
tan
(π

2
(s− δ)

)
+
L′

L
(s, χ) . (5.2.6)

Setting s = 3/2 in (5.2.6) and taking cases if δ is 0 and 1,

−L
′

L

(
−1

2
, χ

)
= log

(m
2π

)
+

Γ′

Γ

(
3

2

)
+ (−1)δ

π

2
+
L′

L

(
3

2
, χ

)
.

(7) Differentiating (5.2.6), setting s = 3/2, and taking cases if δ is 0 or 1,

(
L′

L

)′(
−1

2
, χ

)
=

(
Γ′

Γ

)′(
3

2

)
− π2

2
+

(
L′

L

)′(
3

2
, χ

)
.

The following exact formulas for sums over nontrivial zeros use the Generalized

Riemann Hypothesis.

Theorem 5.2.2. For 0 < b < 1 and a primitive Dirichlet character χ mod m, the
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Generalized Riemann Hypothesis for ζ(s) and L(s, χ) implies

∑
ρ

1

|ρ+ b|2
=

1

1/2 + b

(
1

2
log π − 1

2

Γ′

Γ

(
−b
2

)
− ζ ′

ζ
(−b) +

1

b
+

1

b+ 1

)

and

∑
ρχ

1

|ρχ + b|2
=

1

1/2 + b

(
1

2
log
( π
m

)
− 1

2

Γ′

Γ

(
−b+ δ

2

)
− Re

(
L′

L
(−b, χ)

))
,

where δ ∈ {0, 1} is the parity of χ and the sums run over nontrivial zeros counted

with multiplicity.

Proof. A more general formula of this kind is in [2, Lemma 5.6], where the Riemann

Hypothesis is used to write

1

ρ+ b
+

1

ρ+ b
=

2b+ 1

|ρ+ b|2

and similarly with ρ replaced by a nontrivial zero of L(s, χ) assuming the Generalized

Riemann Hypothesis. Both sides should be multiplied by the order of the zero when

we sum over all nontrivial zeros counting multiplicity. We will explain how to rewrite

the formulas in our theorem in a way that matches [2, Lemma 5.6].

First we will rewrite the right side of both formulas in our theorem. Taking the

logarithmic derivatives of both sides of the functional equations of the completed

zeta-function and completed L-function,

1

2

Γ′

Γ

(s
2

)
+
ζ ′

ζ
(s) = log π − 1

2

Γ′

Γ

(
1− s

2

)
− ζ ′

ζ
(1− s)
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and

1

2

Γ′

Γ

(
s+ δ

2

)
+
L′

L
(s, χ) = log

( π
m

)
− 1

2

Γ′

Γ

(
1− s+ δ

2

)
− L′

L
(1− s, χ)

Using s = −b in these equations and taking real parts on both sides of the second

equation, the right side of the first formula in the theorem is

1

1/2 + b

(
−1

2
log π +

1

2

Γ′

Γ

(
1 + b

2

)
+
ζ ′

ζ
(1 + b) +

1

b
+

1

b+ 1

)
(5.2.7)

and the right side of the second formula in the theorem is

1

1/2 + b

(
−1

2
log
( π
m

)
+

1

2

Γ′

Γ

(
1 + b+ δ

2

)
+ Re

(
L′

L
(1 + b, χ)

))
. (5.2.8)

What we really need is not the individual formulas in this theorem, but their sum,

since it is the sum of two sums over nontrivial zeros of ζ(s) and L(s, χ) that occurs on

the right side of (5.1.18) and its special case (5.1.19) when b = 1/2. Adding (5.2.7)

and (5.2.8) produces the formula on the right side of [2, Lemma 5.6] with the following

translation of notation from [2, pp. 360, 362]: ρ runs over nontrivial zeros of ζ(s) and

L(s, χ) (with multiplicity), ∆ = 1, Aχ = m, n = 1, α = 1− δ, ψ(s) = (Γ′/Γ)(s), and

lastly

1

2

Γ′

Γ

(
1 + b

2

)
+

1

2

Γ′

Γ

(
1 + b+ δ

2

)
=

(
1− δ

2

)
Γ′

Γ

(
1 + b

2

)
+
δ

2

Γ′

Γ

(
1 +

b

2

)

by a direct comparison when δ is 0 and 1.

Now we can justify the bound x = O((logm)2) in (5.1.20). It was based on
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• −L
′

L

(
−1

2
, χ

)
= logm+O(1),

•
(
L′

L

)′(
−1

2
, χ

)
= O(1),

•
∑
ρχ

1

|ρχ + 1/2|2
= O(logm) assuming the Generalized Riemann Hypothesis.

In (5.2.1) and (5.2.2) are formulas for −(L′/L)(−1/2, χ) and (L′/L)′(−1/2, χ).

The right sides of those formulas use (L′/L)(3/2, χ) and (L′/L)′(3/2, χ), which are

absolutely convergent Dirichlet series:

L′

L

(
3

2
, χ

)
= −

∑
n≥1

χ(n)Λ(n)

n3/2
,

(
L′

L

)′(
3

2
, χ

)
=
∑
n≥1

χ(n)Λ(n) log n

n3/2
.

Since |χ(n)| ≤ 1,

∣∣∣∣L′L
(

3

2
, χ

)∣∣∣∣ ≤∑
n≥1

Λ(n)

n3/2
,

∣∣∣∣(L′L
)′(

3

2
, χ

)∣∣∣∣ ≤∑
n≥1

Λ(n) log n

n3/2
. (5.2.9)

Therefore the right side of (5.2.1) is logm+O(1) and the right side of (5.2.2) is O(1).

Assuming the Generalized Riemann Hypothesis. the second formula in Theorem

5.2.2 at b = 1/2 implies
∑

ρχ
1/|ρχ+1/2|2 = −(1/2) logm+O((L′/L)(−1/2, χ)) since

|Re(z)| ≤ |z|. From −(L′/L)(−1/2, χ) = logm+O(1),
∑

ρχ
1/|ρχ+1/2|2 = O(logm).

5.3 An explicit bound

Being more careful with estimates, we can convert the O-constants in our bounds into

explicit numbers that fit the roles of A and B in part (2) of Theorem 5.1.2, leading

to the next result.
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Theorem 5.3.1. For m > 1 and primitive χ mod m, the Generalized Riemann Hy-

pothesis implies χ(n) 6= 1 for some positive integer n such that

n ≤ (1.125 log(m) + 9.1558)2 + 1.

If χ is not primitive, then the above bound still holds for m being the modulus of the

primitive character of which χ is a lift.

The proof for this is in Section 5.4 for even χ and Appendix A.1 for odd χ. The

bound we get for the least n such that χ(n) 6= 1 when χ is even is a bit smaller than

the bound when χ is odd.

Applying Theorem 5.3.1 to Theorem 5.1.2, each proper subgroup of (Z/mZ)×

omits an integer n ≤ (1.125 log(m)+9.1558)2+1. So for odd composite N , the proper

subgroup of Solovay-Strassen nonwitnesses in (Z/NZ)× (which contains the Miller-

Rabin nonwitnesses) omits an integer that is at most (1.125 log(N) + 9.1558)2 + 1.

Therefore, if we assume the Generalized Riemann Hypothesis, we only have to search

for witnesses for the Miller-Rabin test or Solovay-Strassen test on an odd N > 1 up

to (1.125 log(N) + 9.1558)2 + 1. In this range, all odd composite N have a witness

for both tests and all odd prime N do not.

Our proof of Theorem 5.3.1 is based on work of Bach [2, p. 373], who was more

careful with estimates in a few places and achieved the upper bound

x ≤ 2(logm)2.

Comparing Theorem 5.3.1 to the bound by Bach, we can find for which values of m
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our calculated bound is lower than 2(logm)2. Setting

(1.125 logm+ 9.1558)2 + 1 = 2(logm)2,

the bound we work out becomes sharper for m above approximately 5.6 × 1013, or

about 56 trillion. For the size of primes that are used in cryptography (on the order of

10300), our bound gives a shorter range to test for deterministic primality testing than

the bound 2(logm)2, assuming the Generalized Riemann Hypothesis. In practice, the

Miller-Rabin test is used around 50 times as a probabilistic test.

Example 5.3.2. In Rabin’s paper [11, p. 136], N = 2400 − 593 is an example of a

number expected to be prime by the probabilistic form of the Miller-Rabin test. Since

(1.125 log(N) + 9.1558)2 + 1 ≈ 103088.24,

the Generalized Riemann Hypothesis implies N is prime if it has no Miller-Rabin

witnesses in the interval [1, 103088]. It took a personal computer 37 seconds to run

the Miller-Rabin test for N on that range of values, concluding that N is prime under

the Generalized Riemann Hypothesis. Bach’s bound for this number is 2(logN)2 ≈

153744.96.

Bach showed in [2, Theorem 1] that the coefficient 2 in his bound can be taken

arbitrarily close to 1 from above for sufficiently large m: for each ε > 0 and all

sufficiently large m depending on ε, each primitive character mod m is not 1 at some

positive integer below (1 + ε)(logm)2. We will explain this in Section 5.5.
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5.4 Bounding x for even characters

Let’s return to (5.1.19): it tells us that if the Generalized Riemann Hypothesis is true

and a primitive character χ mod m, where m > 1, has χ(n) = 1 for 1 ≤ n ≤ x then

4

9
x ≤

∑
ρ

1

|ρ+ 1
2
|2

+
∑
ρχ

1

|ρχ + 1
2
|2

√x+

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣ (5.4.1)

+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4

= Aχ
√
x+Bχ, (5.4.2)

where Aχ and Bχ are the following positive numbers:

Aχ =
∑
ρ

1∣∣ρ+ 1
2

∣∣2 +
∑
ρχ

1∣∣ρχ + 1
2

∣∣2 ,

Bχ =

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4.

The numbers Aχ and Bχ are independent of x, so the inequality (4/9)x ≤ Aχx+Bχ

puts an upper bound on x that depends on χ. The following two theorems give us

upper bounds on Aχ and Bχ that depend on χ only through its modulus.

Theorem 5.4.1. For nontrivial primitive even χ mod m,

Aχ <
1

2
log(m) + 0.436076.
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Proof. By Theorem 5.2.2 at b = 1/2, the two series in the definition of Aχ are

∑
ρ

1∣∣ρ+ 1
2

∣∣2 =
1

2
log(π)− 1

2

Γ′

Γ

(
−1

4

)
− ζ ′

ζ

(
−1

2

)
+ 2 +

2

3
,

∑
ρχ

1∣∣ρχ + 1
2

∣∣2 =
1

2
log(π)− 1

2
log(m)− 1

2

Γ′

Γ

(
−1

4

)
− Re

(
L′

L

(
−1

2
, χ

))

Adding these formulas together,

Aχ = log(π) +
8

3
− 1

2
log(m)− Γ′

Γ

(
−1

4

)
− ζ ′

ζ

(
−1

2

)
− Re

(
L′

L

(
−1

2
, χ

))
. (5.4.3)

From Theorem 5.2.1,

Γ′

Γ

(
−1

4

)
+
ζ ′

ζ

(
−1

2

)
= log(π) + 2− ζ ′

ζ

(
3

2

)
, (5.4.4)

and (ζ ′/ζ)(3/2) can be computed using the absolutely convergent Dirichlet series for

(ζ ′/ζ)(s) at s = 3/2, since 3/2 > 1. Substituting (5.4.4) into (5.4.3) and simplifying,

Aχ = −1

2
log(m) +

2

3
+
ζ ′

ζ

(
3

2

)
− Re

(
L′

L

(
−1

2
, χ

))
. (5.4.5)

To bound the negative of the real part of (L′/L)(−1/2, χ), we could use the

inequality −Re(z) ≤ |z| for z = (L′/L)(−1/2, χ), but that brings in an absolute value

sooner than necessary. Instead, let’s apply the functional equation for L-functions to

express (L′/L)(−1/2, χ) in terms of (L′/L)(3/2, χ): using (5.2.1) with δ = 0,

−L
′

L

(
−1

2
, χ

)
= log(m)− log(2π) +

Γ′

Γ

(
3

2

)
+
π

2
+
L′

L

(
3

2
, χ

)
.

All terms on the right side are real except perhaps the last term, so when we take the
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real part of both sides,

−Re

(
L′

L

(
−1

2
, χ

))
= log(m)− log(2π)+

Γ′

Γ

(
3

2

)
+
π

2
+Re

(
L′

L

(
3

2
, χ

))
. (5.4.6)

Using the right side of (5.4.6) in place of the last term in (5.4.5) and using the bound

Re(z) ≤ |z| for z = (L′/L)(3/2, χ), we get

Aχ = −1

2
log(m)+

2

3
+
ζ ′

ζ

(
3

2

)
+log(m)− log(2π)+

Γ′

Γ

(
3

2

)
+
π

2
+ Re

(
L′

L

(
3

2
, χ

))
≤ 1

2
log(m) +

2

3
+
π

2
− log(2π) +

Γ′

Γ

(
3

2

)
+
ζ ′

ζ

(
3

2

)
+

∣∣∣∣(L′L
(

3

2
, χ

))∣∣∣∣ .
Using the Dirichlet series for (L′/L)(3/2, χ), |(L′/L)(3/2, χ)| ≤ |(ζ ′/ζ)(3/2)|. So

Aχ ≤
1

2
log(m) +

2

3
+
π

2
− log(2π) +

Γ′

Γ

(
3

2

)
+
ζ ′

ζ

(
3

2

)
+

∣∣∣∣ζ ′ζ
(

3

2

)∣∣∣∣ . (5.4.7)

Since (ζ ′/ζ)(s) < 0 for s > 1, by its Dirichlet series (all terms are negative), the last

two terms in (5.4.7) cancel. Using the estimate (Γ′/Γ)(3/2) ≈ 0.036489973978, we

get 2/3 + π/2− log(2π) + (Γ′/Γ)(3/2) ≈ .436075901, so

Aχ <
1

2
log(m) + 0.436076.

Theorem 5.4.2. For nontrivial primitive even χ mod m,

Bχ <
2

e
log(m) + 14.55429899.
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Proof. Recall that we had defined

Bχ =

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4.

From Theorem 5.2.1, we have estimates for the first two terms:

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣ =

∣∣∣∣(ζ ′ζ
)′(

3

2

)
− 4

∣∣∣∣ ≈ 0.1450370843, (5.4.8)∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
=

∣∣∣∣log(π) + 2− π − Γ′

Γ

(
5

4

)
− ζ ′

ζ

(
3

2

)∣∣∣∣ 2

e
≈ 1.27714948. (5.4.9)

To estimate the terms involving L-functions, we use (5.2.1) with δ = 0 and (5.2.2):

L′

L

(
−1

2
, χ

)
= log(2π)− log(m)− Γ′

Γ

(
3

2

)
− π

2
− L′

L

(
3

2
, χ

)
(5.4.10)(

L′

L

)′(
−1

2
, χ

)
=

(
Γ′

Γ

)′(
3

2

)
− π2

2
+

(
L′

L

)′(
3

2
, χ

)
(5.4.11)

Recall (Γ′/Γ)(3/2) ≈ 0.036489973978 from the end of the proof of Theorem 5.4.1.

In Theorem 5.2.1 we showed that (Γ′/Γ)′(3/2) − π2/2 = −4. Using these and the

triangle inequality in (5.4.10) and (5.4.11),

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ ≤ logm+

∣∣∣∣log(2π)− Γ′

Γ

(
3

2

)
− π

2

∣∣∣∣+

∣∣∣∣L′L
(

3

2
, χ

)∣∣∣∣
≈ logm+ 0.2305907656 +

∣∣∣∣ζ ′ζ
(

3

2

)∣∣∣∣
≈ logm+ 0.2305907656 + 1.5052353557

< logm+ 1.735826122 (5.4.12)
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and ∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣ ≤ 4 +

∣∣∣∣(L′L
)′(

3

2
, χ

)∣∣∣∣ ≤ 4 +

∣∣∣∣(ζ ′ζ
)′(

3

2

)∣∣∣∣ .
Since |(ζ ′/ζ)′(3/2)| ≈ 3.8549629156, adding 4 to this implies

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣ < 7.8549629157. (5.4.13)

Putting (5.4.8), (5.4.9), (5.4.12), and (5.4.13) into the definition of Bχ, we get

Bχ <
2

e
log(m) + 14.55429899.

Feeding the bounds on Aχ and Bχ in Theorems 5.4.1 and 5.4.2 into the inequality

(4/9)x ≤ Aχ
√
x+Bχ,

x ≤ 9

4
Aχ
√
x+

9

4
Bχ

<

(
9

8
log(m) +

9

4
0.436076

)√
x+

9

4

(
2

e
log(m) + 14.55429899

)
<

(
9

8
log(m) + 0.981171

)√
x+

(
9

2e
log(m) + 32.74717273

)
.

Let y =
√
x, so we are looking at the quadratic inequality

y2 −
(

9

8
log(m) + 0.981171

)
y −

(
9

2e
log(m) + 32.74717273

)
< 0.

We now look at this problem in the form

y2 − (C log(m) +D)y − (C ′ log(m) +D′) < 0, (5.4.14)
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where C = 9/8, D = 0.981171, C ′ = 9/(2e), and D′ = 32.74717273. Such y must be

less than the larger real root of the quadratic polynomial in y on the left side of the

inequality, so

y <
(C log(m) +D) +

√
(C log(m) +D)2 + 4(C ′ log(m) +D′)

2
. (5.4.15)

To simplify the expression under the square root, we complete the square:

(C log(m) +D)2 + 4(C ′ log(m) +D′)

= C2(log(m))2 + 2CD log(m) +D2 + 4C ′ log(m) + 4D′

= C2

(
(log(m))2 + 2

(
CD + 2C ′

C2

)
log(m) +

D2 + 4D′

C2

)
= C2

((
log(m) +

CD + 2C ′

C2

)2

+
D2 + 4D′

C2
− (CD + 2C ′)2

C4

)

= C2

((
log(m) +

CD + 2C ′

C2

)2

+
4

C2

(
D′ −DC

′

C
−
(
C ′

C

)2
))

.

Using the values of C, D, C ′, and D′ above, D′−D(C ′/C)− (C ′/C)2 ≈ 29.13, which

is positive. Since
√
a+ b <

√
a+
√
b for positive a and b, from (5.4.15) we get

y <
C

2
log(m)+

D

2
+
C

2

√(log(m) +
CD + 2C ′

C2

)2

+
2

C

√
D′ −DC

′

C
−
(
C ′

C

)2


=
C

2
log(m) +

D

2
+
C

2

(
log(m) +

CD + 2C ′

C2

)
+

√
D′ −DC

′

C
−
(
C ′

C

)2

= C log(m) +

D +
C ′

C
+

√
D′ −DC

′

C
−
(
C ′

C

)2
 . (5.4.16)

Using the values for C,D,C ′, andD′, the expression in parentheses is around 7.850651,
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so y < 1.125 log(m) + 7.850652. Since y =
√
x, squaring both sides gives us an upper

bound on x:

x < (1.125 log(m) + 7.80652)2.

The calculations for odd characters, which have some different estimates due to

δ = 1, are in Appendix A.1. It turns out that the bound on x for odd characters is

larger: x < (1.125 log(m) + 9.1558)2. In order to have a single bound for the even

and odd cases, we use the larger of the two bounds. So if we assume the Generalized

Riemann Hypothesis, an overall bound on x when χ(n) = 1 for 1 ≤ n ≤ x and χ is a

nontrivial primitive character mod m (even or odd) is

x < (1.125 log(m) + 9.1558)2. (5.4.17)

5.5 Reducing the coefficient of log m

In Section 5.4 and Appendix A.1 we compute a bound on the maximum possible

x such that χ(n) = 1 for all integers n in [1, x] when χ is a nontrivial primitive

character, assuming the Generalized Riemann Hypothesis. We did this through the

use of Theorems 5.1.7 and 5.2.2 with b = 1/2 in order to get an explicit upper bound

on x. Let’s return to the setting of arbitrary b in (0, 1), to see how varying b affects

the upper bound on x.

In Appendix A.2 we will show that x is less than

(
(1 + b)2

1+2b
logm+

(
Db,δ+

1

be
+

2

e
+

√
D′b,δ−

(be+ 2b2e)Db,δ−1−4b−4b2

b2e2

))2

, (5.5.1)
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where

Db,δ =
(1 + b)2

1 + 2b

[
Γ′

Γ

(
1 + b

2

)
+ 2

Γ′

Γ
(1 + b)− Γ′

Γ

(
1 +
−b+ δ

2

)
−π tan

(π
2

(1 + b− δ)
)
− 2 log(2π)− 2

b− δ
+

2

b
+

2

b+ 1

]

and

D′b,δ =

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣+∣∣∣∣ζ ′ζ (−b)

∣∣∣∣ 1

be
+

∣∣∣∣(Γ′

Γ

)′
(1+b)−π

2

4
sec2

(π
2

(1+b−δ)
)∣∣∣∣

+

∣∣∣∣(ζ ′ζ
)′

(1 + b)

∣∣∣∣+

∣∣∣∣ζ ′ζ (1 + b)

∣∣∣∣ 1

be

+

∣∣∣∣Γ′Γ (1 + b)− π

2
tan
(π

2
(1 + b− δ)

)
− log(2π)

∣∣∣∣ 1

be
+

1

(b− δ)2
.

In (5.5.1), the coefficient of log(m) for b = 1/2 is the familiar 9/8 = 1.125 that

we have seen before. As a function of b, (1 + b)2/(1 + 2b) for 0 ≤ b ≤ 1 is increasing

and continuous, so for b near 0 this value is very close to 1 from above. Therefore

by bounding x using b close to 0 instead of b = 1/2, we can make the coefficient of

log(m) arbitrarily close to 1. At the same time, the complicated expression after the

log(m)-term in (5.5.1), which depends on b, gets very large as b gets close to 0: it is

a sum of positive terms and the second term is 1/(be).

Remark 5.5.1. At b = 1/2, using the numerical values (ζ ′/ζ)(3/2) ≈ −1.5052353557

and (ζ ′/ζ)′(3/2) ≈ 3.854962915676 from computer software gives us

D1/2,0 ≈ 0.981171, D′1/2,0 ≈ 14.554299,
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and

D1/2,1 ≈ 1.649942, D′1/2,1 ≈ 16.865753

which implies the (overall) bound x < (1.125 logm + 7.196162)2. That is slightly

smaller than the bound on x in (5.4.17).

In Appendix A.2, we calculate the values of |(ζ ′/ζ)(s)| and |(ζ ′/ζ)′(s)| at select

points with Re(s) > 1. We present those here:

b s = b+ 1 (ζ ′/ζ)(s) (ζ ′/ζ)′(s)

1/4 5/4 −3.4666544812 15.835789189977

1/2 3/2 −1.5052353557 3.854962915676

3/4 7/4 −0.8727702750 1.6487381284572

We use these to calculate different bounds on x when χ(n) = 1 for 1 ≤ n ≤ x and

χ is a nontrivial primitive even character mod m. (The case of odd χ changes the

constants only slightly, as it did when we considered b = 1/2). Using computational

software, here are approximate values for Db,0 and D′b,0.

b Db,0 D′b,0

1/4 4.588669478 62.95641488

1/2 0.981171 14.554299

3/4 −10.9928266 7.8091676

With these, we can calculate constants in the bound on x using each b and δ = 0: Let

Ab,δ and Bb,δ be the coefficient of logm and the constant term in (5.5.1), respectively.

Then for even χ we have x < (Ab,0 logm+Bb,0)
2 for the following b.
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b Ab Bb x < (Ab,0 logm+Bb,0)
2

1/4 1.042 13.028103 x < (1.042 logm+ 13.028103)2

1/2 1.125 6.497279 x < (1.125 logm+ 6.497279)2

3/4 1.225 2.177631 x < (1.225 logm+ 2.177631)2

Example 5.5.2. Using N = 2400 − 593 from Example 5.3.2, let’s see how the above

bounds affect how many x we must check up to in a deterministic Miller-Rabin test

for N . The number −1 mod N is a Miller-Rabin nonwitness for N , so a nontrivial

Dirichlet character mod N that is trivial on a proper subgroup of (Z/NZ)× containing

the Miller-Rabin nonwitnesses for N will be a nontrivial even character mod N . That

character is the lift of a nontrivial primitive even character mod m for some m dividing

N . Since m ≤ N , the x-bounds in the table plus 1 with logm replaced by logN is how

far we have to search for Miller-Rabin witnesses for N if the Generalized Riemann

Hypothesis is true.

1. For b = 1/4, we see (1.042 logN+13.028103)2+1 ≈ 91163.8, so the Generalized

Riemann Hypothesis implies that N is prime if it has no Miller-Rabin witnesses

in the interval [1, 91163].

2. For b = 1/2, we see (1.125 logN+6.497279)2+1 ≈ 101388.1, so the Generalized

Riemann Hypothesis implies that N is prime if it has no Miller-Rabin witnesses

in the interval [1, 101388].

3. For b = 3/4, we see (1.225 logN+2.177631)2+1 ≈ 116841.7, so the Generalized

Riemann Hypothesis implies that N is prime if it has no Miller-Rabin witnesses

in the interval [1, 116841].

For this N , using the first bound results in the least number of computations among
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the three choices of b.

How does the choice of b affect Ab,δ and Bb,δ in the bound x < (Ab,δ logm+Bb,δ)
2

when b→ 0 and b→ 1? When b→ 0, the coefficient of logm gets smaller, and in fact

A0,δ = 1. However, the constant term Bb,δ grows, and in fact it will get arbitrarily

large since terms in Db,δ and D′b,δ have poles at b = 0 that are not canceled out. If

instead we let b→ 1, then the coefficient of logm tends to 4/3 ≈ 1.333 and there are

no poles in the terms making up Bb,0 at b = 0, but terms in Bb,1 have poles at b = 1

that don’t get canceled out.

Since (1+b)2/(1+2b) is increasing from 1 at b = 0 to 4/3 at b = 1, for ε ∈ (0, 1/3)

we may choose small b ∈ (0, 1) satisfying

(1 + b)2

1 + 2b
< 1 + ε.

Writing this as a quadratic inequality in the positive number b, it is equivalent to

0 < b < ε +
√
ε(1 + ε). (For example, b = 2ε fits this inequality.) For such b, we

have the bound x < ((1 + ε) logm + Cε)
2 for a constant Cε depending on ε. In this

way we can get an arbitrarily small coefficient of logm at the cost of a constant term

getting larger. In effect, this will get us a very efficient primality test for sufficiently

large N (depending on ε), but it may not be a good bound for smaller N . In general,

a smaller coefficient of logN and a larger constant term means we will have tighter

bounds on large N but worse bounds on small N .
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Appendix A

Further calculations

A.1 Bounding x for odd characters

For odd primitive χ mod m, if χ(n) = 1 for 1 ≤ n ≤ x then (5.1.19) at b = 1/2 is

4

9
x ≤

∑
ρ

1

|ρ+ 1
2
|2

+
∑
ρχ

1

|ρχ + 1
2
|2

√x+

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣ (A.1.1)

+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4,

= Aχ
√
x+Bχ, (A.1.2)

where Aχ and Bχ are the following positive numbers:

Aχ =
∑
ρ

1∣∣ρ+ 1
2

∣∣2 +
∑
ρχ

1∣∣ρχ + 1
2

∣∣2 ,
Bχ =

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4.
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This is the same inequality as for even χ, but when χ is odd our estimates on terms

involving χ will be a bit different than in the even case due to the different functional

equation for L(s, χ) when χ is odd.

The following two lemmas give explicit bounds on Aχ and Bχ.

Lemma A.1.1. For odd primitive χ mod m, Aχ < (1/2) log(m) + 0.8652795743.

Proof. We use Theorem 5.2.2 at b = 1/2 to estimate the sums in Aχ:

∑
ρ

1∣∣ρ+ 1
2

∣∣2 =
1

2
log(π)− 1

2

Γ′

Γ

(
−1

4

)
− ζ ′

ζ

(
−1

2

)
+ 2 +

2

3

and

∑
ρχ

1∣∣ρχ + 1
2

∣∣2 =
1

2
log(π)− 1

2
log(m)− 1

2

Γ′

Γ

(
1

4

)
− Re

(
L′

L

(
−1

2
, χ

))
.

Adding these two together,

Aχ = log(π)+
8

3
−1

2
log(m)−1

2

Γ′

Γ

(
−1

4

)
−1

2

Γ′

Γ

(
1

4

)
− ζ

′

ζ

(
−1

2

)
−Re

(
L′

L

(
−1

2
, χ

))
.

Using the formulas for (Γ′/Γ)(−1/4), (Γ′/Γ)(1/4), and (ζ ′/ζ)(−1/2) in Theorem 5.2.1,

we get

− 1

2

Γ′

Γ

(
−1

4

)
− 1

2

Γ′

Γ

(
1

4

)
− ζ ′

ζ

(
−1

2

)
=
π

2
− log(π) +

ζ ′

ζ

(
3

2

)
. (A.1.3)

The number 3/2 is in the half-plane of absolute convergence for the Dirichlet series

for (ζ ′/ζ)(s), so we can estimate its value there computationally.

This leaves us with bounding the real part of the logarithmic derivative of the
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L-function. Using the identity in (5.2.1), we can pull the real parts out as follows:

−Re

(
L′

L

(
−1

2
, χ

))
= −Re

(
− log(m) + log(2π)− Γ′

Γ

(
3

2

)
− π

2
− L′

L

(
3

2
, χ

))
= log(m)− log(2π) +

Γ′

Γ

(
3

2

)
− π

2
+ Re

(
L′

L

(
3

2
, χ

))
.

Substituting this formula and (A.1.3) into the last term of the expression for Aχ, we

get

Aχ =
1

2
log(m) +

8

3
− log(2π) +

Γ′

Γ

(
3

2

)
+
ζ ′

ζ

(
3

2

)
+ Re

(
L′

L

(
3

2
, χ

))
.

Since Re(z) ≤ |Re(z)| ≤ |z| for complex z, we can bound the sum above by replacing

the final term by |(L′/L)(3/2, χ)|. Since 3/2 > 1, comparing the Dirichlet series for

(L′/L)(s) and (ζ ′/ζ)(s) at s = 3/2 shows |(L′/L)(3/2, χ)| ≤ |(ζ ′/ζ)(3/2)|. Therefore

Aχ ≤
1

2
log(m) +

8

3
− log(2π) +

Γ′

Γ

(
3

2

)
+
ζ ′

ζ

(
3

2

)
+

∣∣∣∣ζ ′ζ
(

3

2

)∣∣∣∣ .
Since (ζ ′/ζ)(s) < 0 for s > 1, by its Dirichlet series, the last two terms above

cancel Using the estimate (Γ′/Γ)(3/2) ≈ 0.036489973978, we get 8/3 − log(2π) +

(Γ′/Γ)(3/2) ≈ 0.8652795742, so

Aχ <
1

2
log(m) + 0.8652795743.

Lemma A.1.2. For odd primitive χ mod m, Bχ < (2/e) log(m) + 16.86575368.

Proof. Let’s recall the definition of Bχ:

Bχ =

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣+

∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
+

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣+

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
+ 4.
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From Theorem 5.2.1, we have formulas for the first two terms. To estimate the

L-function terms, we use identities for logarithmic derivatives of L-functions in (5.2.1)

and (5.2.2) for odd primitive χ to get

L′

L

(
−1

2
, χ

)
= log(2π)− log(m)− Γ′

Γ

(
3

2

)
+
π

2
− L′

L

(
3

2
, χ

)

(
L′

L

)′(
−1

2
, χ

)
=

(
Γ′

Γ

)′(
3

2

)
− π2

2
+

(
L′

L

)′(
3

2
, χ

)
= −4 +

(
L′

L

)′(
3

2
, χ

)

since (Γ′/Γ)′(3/2) − π2/2 = −4 by Theorem 5.2.1. We also previously computed

(Γ′/Γ)(3/2) ≈ 0.036489973978. Using this and then the triangle inequality,

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ ≤ log(m) +

∣∣∣∣log(2π)− Γ′

Γ

(
3

2

)
+
π

2

∣∣∣∣+

∣∣∣∣L′L
(

3

2
, χ

)∣∣∣∣
The number inside the absolute values on the right is around 3.372183419, so

∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ < log(m) + 3.37218342 +

∣∣∣∣L′L
(

3

2
, χ

)∣∣∣∣ .
Also by the triangle inequality,

∣∣∣∣(L′L
)′(
−1

2
, χ

)∣∣∣∣ ≤ 4 +

∣∣∣∣(L′L
)′(

3

2
, χ

)∣∣∣∣ .
Using Dirichlet series at 3/2,

∣∣∣∣L′L
(

3

2
, χ

)∣∣∣∣ ≤ ∣∣∣∣ζ ′ζ
(

3

2

)∣∣∣∣ , ∣∣∣∣(L′L
)′(

3

2
, χ

)∣∣∣∣ ≤ ∣∣∣∣(ζ ′ζ
)′(

3

2

)∣∣∣∣ .
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Using the estimates |(ζ ′/ζ)(3/2)| ≈ 1.5052353557 and (ζ ′/ζ)′(3/2) ≈ 3.8549629156,

we can bound the individual parts of Bχ:

∣∣∣∣(ζ ′ζ
)′(
−1

2

)∣∣∣∣ =

∣∣∣∣(ζ ′ζ
)′(

3

2

)
− 4

∣∣∣∣ < 0.1450370844,∣∣∣∣ζ ′ζ
(
−1

2

)∣∣∣∣ 2

e
=

∣∣∣∣log(π) + 2− π − Γ′

Γ

(
5

4

)
− ζ ′

ζ

(
3

2

)∣∣∣∣ 2

e
< 1.27714949,∣∣∣∣(L′L

)′(
−1

2
, χ

)∣∣∣∣ ≤ 4 +

∣∣∣∣(ζ ′ζ
)′(

3

2

)∣∣∣∣ < 7.8549629157,∣∣∣∣L′L
(
−1

2
, χ

)∣∣∣∣ 2

e
<

[
log(m) + 3.37218342 +

∣∣∣∣ζ ′ζ
(

3

2

)∣∣∣∣] 2

e

<
2

e
log(m) + 3.5886041872.

Adding these all together (with the additional 4 from the beginning), we have a

final bound:

Bχ <
2

e
log(m) + 16.86575368. .

Using the upper bounds on Aχ and Bχ for odd primitive χ mod m, we get an

upper bound on x:

x <
√
x

(
9

8
log(m) + 1.94687904218

)
+

(
9

2e
log(m) + 37.94794579

)
. (A.1.4)

Let y =
√
x. Then we may form a quadratic inequality

y2 −
(

9

8
log(m) + 1.94687904218

)
y −

(
9

2e
log(m) + 37.94794579

)
< 0.

As in the case of even characters, view this inequality as a special case of

y2 − (C log(m) +D)y − (C ′ log(m) +D′) < 0,
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where C = 9/8, D = 1.94687904218, C ′ = 9/(2e), and D′ = 37.94794579. The

argument leading to (5.4.16) remains valid here, so

y < C log(m) +

(
D +

C ′

C
+

√
D′ −DC

′

C
− C ′2

C2

)
<

9

8
log(m) + 9.15579293.

Since y =
√
x, we get the bound

x < (1.125 log(m) + 9.15579293)2 < (1.125 log(m) + 9.1558)2.

A.2 General b Calculations

We want to calculate the maximum value of x satisfying

1

2πi

∫ c+i∞

c−i∞
−ζ
′

ζ
(s)

xs

(s+ b)2
ds =

1

2πi

∫ c+i∞

c−i∞
−L

′

L
(s, χ)

xs

(s+ b)2
ds,

keeping b general in the interval (0, 1) throughout our calculations. We will consider

ζ(s) and ζ ′(s) to be calculable in the region Re(s) > 1 and Γ(s) and Γ′(s) to be

calculable in the region Re(s) > 0, as each is defined in their respective regions by an

absolutely convergent formula (series or integral). We will bound the L-function by

the zeta function when possible, but we will keep δ ∈ {0, 1} general.

Assume the Generalized Riemann Hypothesis, so |xρ| = |xρχ| =
√
x for all non-

trivial zeros ρ of the zeta function and all nontrivial zeros ρχ of the L-function of

the primitive character χ. By Theorem 5.1.7, we can express the above integrals as

the sums of their residues. Specifically, our calculations from Section 5.1 are entirely
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general up to (5.1.18), which we start with here:

x

(1 + b)2
≤

∑
ρ

1

|ρ+ b|2
+
∑
ρχ

1

|ρχ + b|2

√x+

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣

+

∣∣∣∣ζ ′ζ (−b)
∣∣∣∣ 1

be
+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣+

∣∣∣∣L′L (−b, χ)

∣∣∣∣ 1

be
+

1

(b− δ)2

= Ab,χ
√
x+Bb,χ,

where

Ab,χ =
∑
ρ

1

|ρ+ b|2
+
∑
ρχ

1

|ρχ + b|2
(A.2.1)

and

Bb,χ =

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣+∣∣∣∣ζ ′ζ (−b)

∣∣∣∣ 1

be
+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣+∣∣∣∣L′L (−b, χ)

∣∣∣∣ 1

be
+

1

(b− δ)2
. (A.2.2)

All terms in Bb,χ are positive, and the second term, which is independent of χ, tends

to ∞ as b→ 0+ since (ζ ′/ζ)(0) ∈ C×, so Bb,χ →∞ as b→ 0+.

Lemma A.2.1. For 0 < b < 1 and a nontrivial primitive character χ mod m,

Ab,χ <
1

1 + 2b
logm+

1

1 + 2b

[
Γ′

Γ

(
1 + b

2

)
+ 2

Γ′

Γ
(1 + b)− Γ′

Γ

(
1 +
−b+ δ

2

)
−π tan

(π
2

(1 + b− δ)
)
− 2 log(2π)− 2

b− δ
+

2

b
+

2

b+ 1

]
.

Proof. By Theorem 5.2.2, Ab,χ equals

1

1 + 2b

[
2 log π−logm−Γ′

Γ

(
− b

2

)
−Γ′

Γ

(
−b+ δ

2

)
−2

ζ ′

ζ
(−b)−2 Re

(
L′

L
(−b, χ)

)
+

2

b
+

2

b+ 1

]
.
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Substitute into this the formula

ζ ′

ζ
(−b) = log π − 1

2

Γ′

Γ

(
1 + b

2

)
− 1

2

Γ′

Γ

(
− b

2

)
− ζ ′

ζ
(1 + b)

from (2.4.3) when s = −b: Ab,χ equals

1

1 + 2b

[
− logm−Γ′

Γ

(
−b+ δ

2

)
+

Γ′

Γ

(
1 + b

2

)
+2

ζ ′

ζ
(1 + b)−2 Re

(
L′

L
(−b, χ)

)
+

2

b
+

2

b+ 1

]
.

Substitute into the last term the formula

−L
′

L
(−b, χ) = logm− log(2π) +

Γ′

Γ
(1 + b)− π

2
tan
(π

2
(1 + b− δ)

)
+
L′

L
(1 + b, χ)

from (5.2.6) when s = 1 + b: all terms in this equation are real-valued except the

L-function expressions on the left and right, so

Ab,χ =
1

1 + 2b

[
logm− 2 log(2π)−Γ′

Γ

(
−b+ δ

2

)
+

Γ′

Γ

(
1 + b

2

)
+2

Γ′

Γ
(1 + b)

−π tan
(π

2
(1 + b− δ)

)
+2

ζ ′

ζ
(1 + b)−2 Re

(
L′

L
(1 + b, χ)

)
+

2

b
+

2

b+ 1

]
.

In this formula, the sum of the zeta and L-function terms at 1 + b is negative: for

real s > 1,

ζ ′

ζ
(s)− Re

(
L′

L
(s, χ)

)
=
∑
n≥1

−1 + Re(χ(n))

ns
< 0

since Re(χ(n)) ≤ 1 with equality if and only if χ(n) = 1 and χ(n) 6= 1 for some n
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since χ is nontrivial. Thus

Ab,χ <
1

1 + 2b

[
logm− 2 log(2π)− Γ′

Γ

(
−b+ δ

2

)
+

Γ′

Γ

(
1 + b

2

)
+2

Γ′

Γ
(1 + b)

−π tan
(π

2
(1 + b− δ)

)
+

2

b
+

2

b+ 1

]
,

The Γ-term at (−b + δ)/2 can be rewritten using Γ-function values at a positive

number whether δ is 0 or 1 by the formula (Γ′/Γ)(s) = (Γ′/Γ)(s + 1) − 1/s from

(2.4.1) at s = (−b+ δ)/2:

Ab,χ <
1

1 + 2b

[
logm− 2 log(2π)− Γ′

Γ

(
1 +
−b+ δ

2

)
+

Γ′

Γ

(
1 + b

2

)
+2

Γ′

Γ
(1 + b)− π tan

(π
2

(1 + b− δ)
)
− 2

b− δ
+

2

b
+

2

b+ 1

]
.

Lemma A.2.2. For 0 < b < 1,

Bb,χ ≤
1

be
logm+

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣+∣∣∣∣ζ ′ζ (−b)

∣∣∣∣ 1

be
+

∣∣∣∣(Γ′

Γ

)′
(1+b)−π

2

4
sec2

(π
2

(1+b−δ)
)∣∣∣∣

+

∣∣∣∣(ζ ′ζ
)′

(1 + b)

∣∣∣∣+

∣∣∣∣ζ ′ζ (1 + b)

∣∣∣∣ 1

be

+

∣∣∣∣Γ′Γ (1 + b)− π

2
tan
(π

2
(1 + b− δ)

)
− log(2π)

∣∣∣∣ 1

be
+

1

(b− δ)2
,

where

(
ζ ′

ζ

)′
(−b) =

1

4

(
Γ′

Γ

)′(
1 + b

2

)
− 1

4

(
Γ′

Γ

)′(
1− b

2

)
− 1

b2
+

(
ζ ′

ζ

)′
(1 + b)
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and

ζ ′

ζ
(−b) = log π − 1

2

Γ′

Γ

(
1 + b

2

)
− 1

2

Γ′

Γ

(
1− b

2

)
− 1

b
− ζ ′

ζ
(1 + b) .

Proof. Let’s recall the definition (A.2.2) of Bb,χ:

Bb,χ =

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣+∣∣∣∣ζ ′ζ (−b)

∣∣∣∣ 1

be
+

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣+∣∣∣∣L′L (−b, χ)

∣∣∣∣ 1

be
+

1

(b− δ)2
.

The first, second, and fifth terms here are in the inequality in the lemma. We will

check the formulas in the lemma for the first two terms and then get upper bounds

on the third and fourth terms involving L-function values.

First term. Letting s = −b in (2.4.4), we have

(
ζ ′

ζ

)′
(−b) =

1

4

(
Γ′

Γ

)′(
1 + b

2

)
− 1

4

(
Γ′

Γ

)′(
− b

2

)
+

(
ζ ′

ζ

)′
(1 + b) .

By differentiating (2.4.1),

(
Γ′

Γ

)′
(s) =

(
Γ′

Γ

)′
(s+ 1) +

1

s2
.

Set s = −b/2 in this and substitute it into the formula for (ζ ′/ζ)′(−b) to get

(
ζ ′

ζ

)′
(−b) =

1

4

(
Γ′

Γ

)′(
1 + b

2

)
− 1

4

(
Γ′

Γ

)′(
1− b

2

)
− 1

b2
+

(
ζ ′

ζ

)′
(1 + b) . (A.2.3)

Second term. By letting s = −b in (2.4.3),

ζ ′

ζ
(−b) = log π − 1

2

Γ′

Γ

(
1 + b

2

)
− 1

2

Γ′

Γ

(
− b

2

)
− ζ ′

ζ
(1 + b) .
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Use the formula (Γ′/Γ)(s) = (Γ′/Γ)(s+ 1)− 1/s from (2.4.1) at s = −b/2 to get

ζ ′

ζ
(−b) = log π − 1

2

Γ′

Γ

(
1 + b

2

)
− 1

2

Γ′

Γ

(
1− b

2

)
− 1

b
− ζ ′

ζ
(1 + b) . (A.2.4)

Third term. From the derivative of (5.2.6), we have

(
L′

L

)′
(1− s, χ) =

(
Γ′

Γ

)′
(s)− π2

4
sec2

(
π(s− δ)

2

)
+

(
L′

L

)′
(s, χ) .

Letting s = 1 + b, we have by the triangle inequality

∣∣∣∣(L′L
)′

(−b, χ)

∣∣∣∣ ≤ ∣∣∣∣(Γ′

Γ

)′
(1 + b)− π2

4
sec2

(π
2

(1 + b− δ)
)∣∣∣∣+

∣∣∣∣(L′L
)′

(1 + b, χ)

∣∣∣∣
≤
∣∣∣∣(Γ′

Γ

)′
(1+b)−π

2

4
sec2

(π
2

(1+b−δ)
)∣∣∣∣+∣∣∣∣(ζ ′ζ

)′
(1+b)

∣∣∣∣ (A.2.5)

since |(L′/L)′(s, χ)| ≤ |(ζ ′/ζ)′(s)| for s > 1.

Fourth term. From (5.2.6) at s = 1 + b,

−L
′

L
(−b, χ) = logm− log(2π) +

Γ′

Γ
(1 + b)− π

2
tan
(π

2
(1 + b− δ)

)
+
L′

L
(1 + b, χ) .

Using the triangle inequality and the bound |(L′/L)(s, χ)| ≤ |(ζ ′/ζ)(s)| for real s > 1,

∣∣∣∣L′L (−b, χ)

∣∣∣∣ ≤ logm+

∣∣∣∣Γ′Γ (1 + b)− π

2
tan

(
π(1 + b− δ)

2

)
− log(2π)

∣∣∣∣
+

∣∣∣∣ζ ′ζ (1 + b)

∣∣∣∣ . (A.2.6)

Fifth term. The final term in Bb,χ, 1/(b− δ)2, is fine as is.

Applying (A.2.3), (A.2.4), (A.2.5), and (A.2.6) to the definition of Bb,χ gives us
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the upper bound on Bb,χ in the lemma.

To review, when χ mod m is a nontrivial primitive character with parity δ, χ(n) =

1 for 1 ≤ n ≤ x, and b is a parameter in (0, 1),

x

(1 + b)2
≤ Ab,χ

√
x+Bb,χ, (A.2.7)

where Ab,χ and Bb,χ are defined in (A.2.1) and (A.2.2) and are bounded above in

terms of b, δ, and logm in Lemmas A.2.1 and A.2.2, respectively. Multiply both sides

of (A.2.7) by (1 + b)2 and use the bounds on Ab,χ and Bb,χ from those lemmas to get

x < (Cb logm+Db,δ)
√
x+ C ′b logm+D′b,δ, (A.2.8)

where Cb = (1 + b)2/(1 + 2b), C ′b = (1 + b)2/(be), and Db,δ and D′b,δ are the very

complicated expressions from the bounds in Lemmas A.2.1 and A.2.2 that appear

after the logm term:

Db,δ =
(1 + b)2

1 + 2b

[
Γ′

Γ

(
1 + b

2

)
+ 2

Γ′

Γ
(1 + b)− Γ′

Γ

(
1 +
−b+ δ

2

)
−π tan

(π
2

(1 + b− δ)
)
− 2 log(2π)− 2

b− δ
+

2

b
+

2

b+ 1

]
, (A.2.9)

D′b,δ =

∣∣∣∣(ζ ′ζ
)′

(−b)
∣∣∣∣+∣∣∣∣ζ ′ζ (−b)

∣∣∣∣ 1

be
+

∣∣∣∣(Γ′

Γ

)′
(1+b)−π

2

4
sec2

(π
2

(1+b−δ)
)∣∣∣∣

+

∣∣∣∣(ζ ′ζ
)′

(1 + b)

∣∣∣∣+

∣∣∣∣ζ ′ζ (1 + b)

∣∣∣∣ 1

be

+

∣∣∣∣Γ′Γ (1 + b)− π

2
tan
(π

2
(1 + b− δ)

)
− log(2π)

∣∣∣∣ 1

be
+

1

(b− δ)2
, (A.2.10)

where formulas for (ζ ′/ζ)′(−b) and (ζ ′/ζ)(−b) in terms of zeta-function values at 1+b

are given in Lemma A.2.2.
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As we did for the calculations where b = 1/2, let y =
√
x to turn (A.2.8) into the

quadratic inequality

y2 − (Cb logm+Db,δ)y − (C ′b logm+D′b,δ) < 0.

To get an upper bound on y, and then on x = y2, carry out the same steps as in

the passage from the inequality (5.4.14) to the upper bound (5.4.16), getting

y < Cb logm+

Db,δ +
C ′b
Cb

+

√
D′b,δ −Db,δ

C ′b
Cb
− C ′b

2

Cb
2

 (A.2.11)

provided that

D′b,δ −Db,δ
C ′b
Cb
− C ′b

2

Cb
2 ≥ 0 (A.2.12)

for 0 < b < 1 and δ ∈ {0, 1}.

Remark A.2.3. At b = 1/2, the left side of (A.2.12) is positive (when δ = 0, the left

side is approximately 16.3587). Positivity can be checked at b = 1/4, 1/2, and 3/4

using zeta-values in the table below. Note that only D′b,δ has ζ-terms.

b s = b+ 1 (ζ ′/ζ)(s) (ζ ′/ζ)′(s)

1/4 5/4 −3.4666544812 15.835789189977

1/2 3/2 −1.5052353557 3.854962915676

3/4 7/4 −0.8727702750 1.6487381284572

We can check positivity of the left side (A.2.12) as b→ 0+ and as b→ 1−:

• Terms in Db,δ that blow up at b = 0 only have at most a simple pole there,

such as 2/b, while some terms in D′b,δ have a double pole at b = 0, such as

(ζ ′/ζ)′(1 + b) (and 1/(b − δ)2 when δ = 0) and the double-pole terms don’t
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cancel out. Therefore D′b,δ grows at a faster rate as b→ 0+ than Db,δ as b→ 0+,

which means the left side of (A.2.12) tends to ∞ as b→ 0+.

• When δ = 0, all terms in Db,δ and D′b,δ are continuous at b = 1. At b = 1,

we have D1,0 ≈ −0.591855 and D′1,0 ≈ 6.105455. Using these values (and

C ′1/C1 = 3/e), the left side of (A.2.12) is approximately 5.540631. Because this

is positive, by continuity the left side of (A.2.12) is positive for b near 1 when

δ = 0.

When δ = 1, Db,δ has some terms at b = 1 with at worst a simple pole (such as

2/(b− δ)), while D′b,δ has the single double-pole term 1/(b− δ)2, so the left side

of (A.2.12) tends to ∞ as b→ 1− if δ = 1.

Since C ′b/Cb = 1/(be) + 2/e = (2b + 1)/(be), substituting this into the bound

(A.2.11) and writing y =
√
x, we have a final bound on x:

x <

(
(1 + b)2

1 + 2b
logm+

(
Db,δ+

1

be
+

2

e
+

√
D′b,δ −

(2b+ 1)(Db,δbe+ 2b+ 1)

b2e2

))2

,

where Db,δ and D′b,δ are defined by (A.2.9) and (A.2.10).
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