2009

Frobenius Solution for Legendre's Equation, Rodrigue's Formula and Normalization

Carl W. David
University of Connecticut, Carl.David@uconn.edu

Follow this and additional works at: http://digitalcommons.uconn.edu/chem_educ

Part of the Physical Chemistry Commons

Recommended Citation
http://digitalcommons.uconn.edu/chem_educ/68
Frobenius Method for Legendre Polynomials, Rodrigue’s formula and Normalization

C. W. David
Department of Chemistry
University of Connecticut
Storrs, Connecticut 06269-3060
(Dated: February 18, 2009)

I. SYNOPSIS

The Frobenius Solution is illustrated by application to the Legendre Differential Equation. Rodrigue’s formula is obtained as well as an explicit formula of the normalization constants.

II. FROBENIUS SOLUTION TO LEGENDRE’S EQUATION

We start a Frobenius solution without worrying about the technical details of the indicial equation, and just assert that the proposed solution Ansatz will be

$$S_{\ell,0}(\mu) = y(\mu) = \sum_{n=0}^{\infty} c_n \mu^n = c_0 + c_1 \mu + c_2 \mu^2 + \cdots \quad (1)$$

(starting the $n = 0$, interested readers can see the indicial equation argument in virtually every formal locale)

which we substitute into Legendre’s differential equation, viz,

$$\frac{\partial}{\partial \mu} \left((1 - \mu^2) \frac{\partial y(\mu)}{\partial \mu} \right) = -\ell(\ell + 1)y(\mu) \quad (2)$$

we obtain

$$\frac{\partial}{\partial \mu} \left(\frac{\partial y(\mu)}{\partial \mu} \right) - \frac{\partial}{\partial \mu} \left(\mu^2 \frac{\partial y(\mu)}{\partial \mu} \right) + \ell(\ell + 1)y(\mu) = 0 \quad (3)$$

$$\frac{\partial^2 y(\mu)}{\partial \mu^2} - \mu^2 \frac{\partial^2 y(\mu)}{\partial \mu^2} - 2\mu \frac{\partial y(\mu)}{\partial \mu} + \ell(\ell + 1)y(\mu) = 0 \quad (4)$$

so that when we feed the Ansatz into this differential equation (Equation 1) we obtain

$$\frac{\partial^2 y(\mu)}{\partial \mu^2} \to (2)(1)c_2 + (3)(2)c_3 \mu + (4)(3)c_4 \mu^2 + (5)(4)c_5 \mu^3 + \cdots$$

$$-\mu^2 \frac{\partial^2 y(\mu)}{\partial \mu^2} \to -\mu^2 \left((2)(1)c_2 + (3)(2)c_3 \mu + (4)(3)c_4 \mu^2 + (5)(4)c_5 \mu^3 + \cdots \right)$$

$$-2\mu \frac{\partial y(\mu)}{\partial \mu} \to -2\mu \left(c_1 + (2)c_2 \mu + (3)c_3 \mu^2 + (4)c_4 \mu^3 + \cdots \right)$$

$$+ \ell(\ell + 1)y(\mu) \to + \ell(\ell + 1) \left(c_0 + c_1 \mu + c_2 \mu^2 + c_3 \mu^3 + \cdots \right) = 0 \quad (5)$$

which, in standard Frobenius form, we separately equate to zero (power by power)

$$+ (2)(1)c_2 + (3)(2)c_3 \mu + (4)(3)c_4 \mu^2 + (5)(4)c_5 \mu^3 + \cdots$$

$$- (2)(1)c_2 \mu^2 - (3)(2)c_3 \mu^3 - (4)(3)c_4 \mu^4 - (5)(4)c_5 \mu^5 - \cdots$$

$$- 2c_1 \mu - 2(2)c_2 \mu^2 - 2(3)c_3 \mu^3 - 2(4)c_4 \mu^4 - \cdots$$

$$+ \ell(\ell + 1)c_0 + \ell(\ell + 1)c_1 \mu + \ell(\ell + 1)c_2 \mu^2 + \ell(\ell + 1)c_3 \mu^3 + \cdots = 0 \quad (6)$$

We achieve the appropriate recursion relationships. Note that there is an even and an odd set, based on starting with either c_0 or c_1, which correspond to the two arbitrary constants associated with a second order differential equation. We obtain the separately equal to zero equations:

$$+ (2)(1)c_2 + \ell(\ell + 1)c_0 = 0$$

$$+ (3)(2)c_3 \mu - 2c_1 \mu + \ell(\ell + 1)c_1 \mu = 0$$

$$+ (4)(3)c_4 \mu^2 - (2)(1)c_2 \mu^2 - 2(2)c_2 \mu^2 + \ell(\ell + 1)c_2 \mu^2 = 0$$

$$+ (5)(4)c_5 \mu^3 - (3)(2)c_3 \mu^3 - 2(3)c_3 \mu^3 + \ell(\ell + 1)c_3 \mu^3 = 0$$

Typeset by REVTeX
which we re-write as
\[
(2)(1)c_2 + \ell(\ell + 1)c_0 = 0 \\
+(3)(2)c_3 - 2c_1 + \ell(\ell + 1)c_1 = 0 \\
+(4)(3)c_4 = (2)(1)c_2 - 2(2)c_2 + \ell(\ell + 1)c_2 = 0 \\
(5)(4)c_5((3)(2) + 2(3) - \ell(\ell + 1))c_3 = 0 \\
-(4)(3)c_4\mu^4 - 2(4)c_4\mu^5 etc + \cdots = 0
\]
and, upon cleaning up the equations, obtain
\[
(2)(1)c_2 = -\ell(\ell + 1)c_0 \\
+(3)(2)c_3 = (2 - \ell(\ell + 1))c_1 \\
+(4)(3)c_4 = ((2)(1) + 2(2) - \ell(\ell + 1))c_2 \\
(5)(4)c_5((3)(2) + 2(3) - \ell(\ell + 1))c_3 \\
-(4)(3)c_4\mu^4 - 2(4)c_4\mu^5 etc + \cdots = 0
\]
Solving the equations using “earlier” results, from top to bottom, we have
\[
c_2 = -\frac{\ell(\ell + 1)}{2!}c_0 \\
c_3 = -\frac{(2 + \ell(\ell + 1))}{(3)(2)}c_1 \\
c_4 = -\frac{((2)(1) - 2(2) + \ell(\ell + 1))}{(4)(3)}c_2 \\
c_5 = -\frac{((3)(2) - 2(3) + \ell(\ell + 1))}{(5)(4)}c_3
\]
which cleans up to
\[
c_2 = -\frac{\ell(\ell + 1)}{2!}c_0 \\
c_3 = -\frac{2 + \ell(\ell + 1)}{(3)(2)}c_1 \\
c_4 = -\frac{((2)(1) - 2(2) + \ell(\ell + 1))}{(4)(3)}\left(\frac{\ell(\ell + 1)}{2!}\right)c_0 \\
c_5 = -\frac{((3)(2) - 2(3) + \ell(\ell + 1))}{(5)(4)}\left(\frac{2 + \ell(\ell + 1)}{3(2)}\right)c_1
\]
so \(s_{\ell,0}(\mu) = f_1c_0 + f_2c_1\) where \(f_1\) and \(f_2\) are power series based on the above set of coefficients. For an even series, declare \(c_1 = 0\) and choose an \(\ell\) value which truncates the power series into a polynomial. Do the opposite for an odd solution.

These polynomials are the Legendre polynomials, about which much is written in a wide variety of locations (including this compendium of educational papers).

III. RODRIGUE’S FORMULA

Rodrique’s formula is
\[
S_{\ell,0} \rightarrow P_\ell(\mu) = \frac{1}{2\ell!} \frac{d^{\ell}(\mu^2 - 1)^\ell}{d\mu^\ell}
\]
where Legendre’s Equation is
\[
(1 - \mu^2) \frac{d^2 P_\ell(\mu)}{d\mu^2} - 2\mu \frac{dP_\ell}{d\mu} + \ell(\ell + 1)P_\ell(\mu) = 0
\]
To show this, we start by defining
\[
g_\ell \equiv (\mu^2 - 1)^\ell
\]
and find that
\[
\frac{dg_\ell}{d\mu} = 2\mu(\mu^2 - 1)^{\ell - 1}
\]
and
\[
\frac{d^2 g_\ell}{d\mu^2} = 2\ell(\mu^2 - 1)^{\ell - 1} + 4\mu^2(\ell - 1)(\mu^2 - 1)^{\ell - 2}
\]
We now form (construct)
\[
(1 - \mu^2) \frac{d^2 g_\ell}{d\mu^2} = -2\ell(\mu^2 - 1)^{\ell - 1} - 4\mu^2(\ell - 1)(\mu^2 - 1)^{\ell - 1}
\]
\[
2(\ell - 1)(\mu^2 - 1)^{\ell - 1}
\]
\[
+2\ell g_\ell = 2(\mu^2 - 1)^{\ell - 1}
\]
The r.h.s. of this equation set adds up to zero, and one obtains on the left:
\[
A(\mu) = (1 - \mu^2) \frac{d^2 g_\ell}{d\mu^2} + 2(\ell - 1)\mu \frac{dg_\ell}{d\mu} + 2\ell g_\ell = 0
\]
Defining the l.h.s of this equation as \(A(\mu)\), we form
\[
\frac{dA(\mu)}{d\mu} = \left[(1 - \mu^2) \frac{d^3 A(\mu)}{d\mu^3} - 2\mu \frac{d^2 A(\mu)}{d\mu^2} + 2(\ell - 1) \mu \frac{d^2 A(\mu)}{d\mu^2} + 2(\ell - 1) \frac{dA(\mu)}{d\mu} \right]
\]
and, doing it again
\[
\frac{d^2 A(\mu)}{d\mu^2} = \left[(1 - \mu^2) \frac{d^3 A(\mu)}{d\mu^3} - (2\ell - 4) \mu \frac{dA(\mu)}{d\mu} + (4\ell - 2) \mu \right] \frac{dA(\mu)}{d\mu}
\]
and once more for the radio audience:
\[
\frac{d^3 A(\mu)}{d\mu^3} = \left[(1 - \mu^2) \frac{d^2 A(\mu)}{d\mu^2} - (2\ell - 8) \mu \frac{dA(\mu)}{d\mu} + (8\ell - 12) \mu \right] \frac{d^2 A(\mu)}{d\mu^2}
\]
Continuing, one notices that the changing coefficients are regular in their appearance, so that the following table, which summarizes the pattern of coefficients,
The table below shows the values of \(\kappa \) and \(\ell \) for different \(\kappa \) values, along with the corresponding equations and solutions.

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(2\ell - 4 = 2\ell - 2* (\kappa + 1))</th>
<th>(4\ell - 2 = (3 + \kappa)\ell - 2* \kappa)</th>
<th>= 6 if (\ell = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2\ell - 6 = 2\ell - 2* (\kappa + 1))</td>
<td>(6\ell - 6 = (3 + \kappa)\ell - 2* \kappa)</td>
<td>= 6 if (\ell = 2)</td>
</tr>
<tr>
<td>3</td>
<td>(2\ell - 8 = 2\ell - 2* (\kappa + 1))</td>
<td>(8\ell - 12 = (3 + \kappa)\ell - 2* \kappa)</td>
<td>= 12 if (\ell = 3)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(2\ell - 2* (\ell + 1) = 2)</td>
<td>(8\ell - 12 = (3 + \ell)\ell - 2* \ell)</td>
<td>= (\ell(\ell + 1))</td>
</tr>
</tbody>
</table>

leads to generalization by which one finally obtains

\[
\frac{\partial^{\ell}A(x)}{\partial \mu^{\ell}} = \left[(1 - \mu^2) \frac{\partial^2}{\partial \mu^2} - 2\mu \frac{\partial}{\partial \mu} + \ell(\ell + 1) \right] \frac{g_\ell(\mu)}{d\mu^\ell}
\]

so, defining a normalization constant (and the Legendre polynomial of order \(\ell \))

\[
\frac{d^\ell g_\ell}{d\mu^\ell} \equiv N_\ell P_\ell(\mu)
\]

with \(N_\ell \) constant, then

\[
P_\ell(\mu) = \frac{1}{N_\ell} \frac{d^\ell g_\ell}{d\mu^\ell} = \frac{1}{N_\ell} \frac{d^\ell (\mu^2 - 1)^\ell}{d\mu^\ell}
\]

is chosen for \(N_\ell \)'s value to make the normalization automatic.

Here,

\[
2^\ell \ell!
\]