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Abstract

Based on an order-theoretic approach, we derive sufficient conditions for the
existence, characterization, and computation of Markovian equilibrium decision
processes and stationary Markov equilibrium on minimal state spaces for a large
class of stochastic overlapping generations models. In contrast to all previous
work, we consider reduced-form stochastic production technologies that allow
for a broad set of equilibrium distortions such as public policy distortions, so-
cial security, monetary equilibrium, and production nonconvexities. Our order-
based methods are constructive, and we provide monotone iterative algorithms for
computing extremal stationary Markov equilibrium decision processes and equi-
librium invariant distributions, while avoiding many of the problems associated
with the existence of indeterminacies that have been well-documented in previ-
ous work. We provide important results for existence of Markov equilibria for
the case where capital income is not increasing in the aggregate stock. Finally,
we conclude with examples common in macroeconomics such as models with
fiat money and social security. We also show how some of our results extend to
settings with unbounded state spaces.
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1 Introduction

Building on the seminal work of Samuelson [38] and Diamond [21], the over-
lapping generations (OLG) model has become a workhorse in applied dynamic
general equilibrium theory. Numerous versions of this model have been used to
study a wide array of issues including policy topics in intergenerational risk shar-
ing and social security, human capital formation and public education, economic
growth and infrastructure or environmental degradation, macroeconomic fluctu-
ations, public finance, and monetary economics. In most of these applications
researchers have focused on Markovian equilibrium. Unfortunately, because of
the complicated structure of Markovian equilibrium for OLG models, a majority
of this applied work has appealed to numerical methods to characterized both
the quantitative and qualitative predictions of the models.

To apply such a methodology rigorously requires researchers to have access
to theoretical results that provide a sharp characterization of the Markovian
equilibrium sought to be constructed numerically; existing theoretical work on
these matters has, however, focused on purely topological methods that are
difficult to relate to the actual numerical methods used. In addition, such
topological approaches are generally not very useful to answer theoretical issues
such as monotone comparison results for the set of Markovian equilibrium with
respect to the space of economies, or the characterization of many important
properties of equilibrium decision processes and equilibrium price systems. This
precarious state of understanding is even apparent when looking at the literature
on Markovian equilibrium in the very simplest class of OLG models, i.e., the
two-period model with a large number of a identical agents born each period,
one perishable consumption good each period, and with production using capital
and labor.

This paper takes a novel approach to address some of these issues in the
benchline two-period OLG model with stochastic production (either classical or
nonclassical). In particular, we provide constructive methods for characterizing
a class of Markovian equilibrium decision processes (MEDP) and their induced
stationary Markovian equilibrium (SME). In contrast to many existing topolog-
ical methods, our approach avoids the important problems of multiplicities and
indeterminacies noted in Wang [44][45]. In that respect, a critical component
to our approach is the way we handle the parameter space for the construction
of MEDP: We use the “little k, big K” formulation standard in recursive com-
petitive equilibrium theory, which we combine with an order-based fixed point
theorem to identify classes of MEDP and SME that are tractable. In that sense,
one can view our approach as a monotone method for constructing particular
MEDP and SME within a much larger class of equilibrium, this larger class
including many complicated and potentially unstable Markovian equilibrium.

There are a number of important results on the existence and characteri-
zation of Markovian equilibrium in OLG models with production. Galor and
Ryder[25] obtained some of the first results concerning the existence, uniqueness,
and stability of steady state for a deterministic setup with classical production.
The work of Galor and Ryder [25] has been extended to a class of OLG mod-



els with stochastic “classical” production (essentially, a production setting that
is identical to that used in the work of Brock and Mirman [9]) in an impor-
tant series of papers by Wang [44] [45] and Hauenschild [27]. For economies
with identical and independently distributed (iid) production shocks and clas-
sical production , Wang[44] obtains sufficient conditions for the existence of a
globally unique and stable non-trivial stationary Markovian equilibrium using a
topological approach. As Wang [45] noted though, for economies without cap-
ital income monotonicity problems arise when constructing the SME because
of multiple equilibria and equilibrium indeterminacies. Many of the results
in Wang [44] for stochastic production with iid shocks have been recently ex-
tended by Hauenschild [27] to economies with pay-as-you-go financed social
security. Finally in Wang [45], the author provides some existence results along
the lines of Duffie et. al. [23] for economies with stochastic classical production
with Markov shocks. A key implication of Wang’s work (along with the sto-
ryline in the paper of Kubler and Polemarchis [30]) is that when sunspots and
multiplicities are considered, the state space that is used to construct SME can
potentially get very large.!

In this paper we provide two sets of powerful new results on Markov equi-
librium for the simple stochastic OLG model with classical or non-classical
production and iid shocks: (i) under capital income monotonicity, an assump-
tion often used in the existing literature, our fixed point arguments are directly
tied to computations. We prove that the unique MEDP can be constructed as
the limit of a globally stable isotone successive approximation technique, and
we also show how to construct extremal SME for a large collection of produc-
tion technologies (e.g., classical and nonclassical production); (ii) when capital
monotonicity is not satisfied, we provide the first results on the existence of
semi-continuous monotone Markovian equilibrium. We show that there is a
complete lattice of upper-semi continuous and lower-semi continuous isotone
MEDP, and we also provide a catalog of successive approximation schemes con-
verging (in both order and topology) to extremal SME for any MEDP that is
only assumed to be measurable. Our method differs from the “correspondence”
approach advocated in Wang [44] and Duffie & al. [23] and focuses on invari-
ant distributions as in Stokey et. al. [40] and Hopenhayn and Prescott [28],
as opposed to ergodic distributions in Wang [44]. More importantly, it is a
constructive approach to computing extremal SME, and therefore permits some

IThere are numerous pioneering papers in OLGs models which we have not mentioned
directly in our remarks. Aside from the paper by Diamond, see Balasko and Shell [3][4], Okuno
and Zilcha [35], Zilcha [46], Dechert and Yamamoto [20], Demange and Laroque [17][18], and
Chattopadhyay and Gottardi [10], and Barbie, Hagedorn, and Kaul [5]). Many of these papers
discuss the important question of how to define dynamic efficiency in an OLG environment,
and often these papers have a much more complicated structure (e.g., many assets each period
and incomplete markets, many good each period, etc.)

We note that although some of these papers study economies with or without stochastic
production, none of this related work addresses the questions addressed in this paper (i.e.,
the construction and usefulness of monotone methods in the study of MEDPs and SME in
OLG models production subjected to iid shocks from both a theoretical and numerical point
of view).



comparative statics results with respect to the set of economies.

It is important to realize that all of the results concerning MEDP and SME
in the existing literature for models with stochastic production have been ob-
tained in settings where: (i) the economy is endowed with a very simple form
of behavioral heterogeneity (namely each generation lives for two-periods and
there is a large number of a single type of agent born each generation), (ii) there
is a simple set of goods and assets available each period (usually a single aggre-
gate perishable consumption good), and (ii) there is a single asset that agents
can access to save (namely capital). There are, however, some recent results on
OLG models with very general commodity spaces, many types of agents in each
generation, and many assets are related to this paper, for instance in Kubler and
Polemarchis [30]. Kubler and Polemarchis [30] provide some very interesting
negative results concerning the existence of Markovian equilibrium on minimal
state spaces for economies with multiple types of agents born each period, mul-
tiple commodities, and many assets. Minimal state spaces are state spaces
consisting only of current period state variables, and the existence of Marko-
vian equilibrium on such state spaces in stochastic OLG models is a difficult
question.

The economies considered in the work of Kubler and Polemarchis are much
more complicated than the environments considered in this paper (and in all
the existing work on stochastic OLG models with production). In this sense,
we are trying to develop techniques and basic results for simple OLG models
with stochastic production that we feel have a chance to be generalized to some
more general settings. Given the recent positive results on existence of MEDP
using Abreau, Pierce, and Stachetti (APS) approach in Miao and Santos [31], we
believe our methods have the potential to be integrated with this APS approach
to address more complicated versions of our model.?

Finally, we should mention that the present paper is related to an emerging
literature on monotone and mixed-monotone recursive methods starting with
the pioneering work of Coleman [11][12], and continuing with the papers by
Greenwood and Huffman [26], Datta, Mirman, and Reffett [13], Morand and
Reffett [33], and Datta et. al [15]. Resulting from these papers are two cru-
cial methodological points. First, the way the parameter/state space is han-
dled matters greatly to the construction of particular MEDP (and their implied
SME). Second, relating numerical solutions to theoretical fixed point arguments
is done by developing collections of monotone iterative procedures converging to
actual fixed points for the economies under consideration. It should be noted
that none of the techniques and results developed in these papers directly apply
to OLG models because both the space of candidate MEDP and the nonlinear
fixed point operator studied need to be tailored to the particular economies
considered.

2Using the ASP approach, Mia and Santos prove existence of MEDP in the space of all
measurable mappings. Such general result comes at the expense of losing important charac-
terization of MEDP that prove useful in constructing associated SME, and these theoretical
results remain to be tied to numerical implementations. See Reffett [36] for a discussion of
how Miao and Santo’s APS method relate to the methods developed in this paper.



The paper is organized as follows. In section two, we detail the class of
economies under consideration and provide some preliminary results. In sec-
tion three, we study the set of Markovian equilibrium investment decisions and
present algorithms to construct extremal Markovian equilibrium investment de-
cisions. In section four we address the existence and construction of extremal
stationary Markov equilibrium. In section five we discuss applications of our
approach and results to models studied in the literature.

2 Setup and preliminary results

We consider a generalization of the simple two-period stochastic OLG model de-
scribed in Wang [44] by allowing for nonconvexities in production and for various
forms of public policy distortions (e.g., nonclassical production). Agents are
assumed to have preferences represented by a lifetime utility function w(cq, c2)
where we take ¢ = (c1,¢2) to be in the commodity space X x X C R2.3 The
production of the unique consumption/capital good is assumed to be constant
returns to scale in the private inputs capital and labor and to also depend on
the realization of a random variable. Although we allow for nonconvexities in
the aggregate production set, firms operate at zero profit. This setting is typi-
cal of the literature on infinite horizon nonoptimal economies (see for instance,
Coleman [11]), and may be taken as the reduced form for a number of economies
with frictions, as discussed for example in Greenwood and Huffman [26].

2.1 Assumptions on the economic primitives

We now discuss some basic assumptions on preferences, technologies, and in-
formation that will be maintained throughout the paper. Given the symmetric
(stationary) structure of household preferences over time, we will not distinguish
between households born in periods ¢t = {0, 1,2, ...}.

Assumption 1. The utility function u: ¢ — R is:

I. twice continuously differentiable,

IT. strictly increasing and strictly concave,

ITI. such that lim. o ui(c,.) = lime_q us(.,c) = 400,

IV. such that w9 > 0.

Assumption 1 is standard, with Inada conditions imply interiority of con-
sumption solutions. We allow for non-time separability in lifetime consump-
tion, although a special case of constant discounting occurs when u(cy,c2) =
U(c1) + BU(c2) where § €]0,1[.  Assumption 1.IV requires that the consump-
tion goods in the first and second period of an agent’s life be weak complements.

Turning to the description of production, we first discuss the uncertainty
associated with production returns. As in Wang [44] and Hauenschild [27], we

3We will maintain the following notations for subsets of the real line and /or their Cartesian
product that contain positive (or nonegative) numbers: Ry = {z € R, z > 0}, R} = {z € R,
z > 0} and Ri =Ry x R4 (cartesian product).



assume that production shocks come in the form of a collection of iid random
variables defined on a compact support.

Assumptlon 2. The random variable 2z follows an iid process char-
acterized by the probability measure denoted G, whose support is the compact
set Z = [Zmin, Zmax) € R with 2max > Zmin > 0.

The non-classical production function is denoted by F(k, n,K,N, z) where
the variables K and N represent social inputs in the form of aggregate per
capita capital stock and labor supply. We assume constant returns to scale in
private capital and labor inputs, respectively denoted k and n, but this formu-
lation allows for nonconvex aggregate production set and for private and social
returns to differ. It is important to note that, following standard arguments
in Greenwood and Huffman [26], Datta et al [13], Morand and Reffett [33], this
specification of the production function can be considered the “reduced form”
production of a broad set of economies with (i) production nonconvexities in so-
cial returns but constant returns to scale in private returns (as in, for instance,
Romer [37]), (ii) public policy such as state contingent income tax (e.g., capital
and/or wage income taxes) and social security, (iii) valued fiat currency, and
(iv) monopolistic competition.

Anticipating n = 1 = N in equilibrium (since households do not value
leisure), we state some of our assumptions in terms of this restriction on equi-
librium labor supply.*

Assumption 3. The production function F(k,n, K, N, z) : R x[0,1]x
Ry x[0,1] x Z — Ry is:

I. twice continuously differentiable in its first two arguments, and continuous
in all arguments;

II. increasing in all arguments, strictly increasing and strictly concave in its
first two arguments;

ITa. such that r(k,z) = Fi(k,1,k,1,2) is decreasing and continuous in k,
and that limy_,r(k, z) = +00;

IIIb. such that w(k, z) = Fy(k,1,k, 1, 2) is increasing and continuous in k
and limg_,g w(k, z) = 0;

IV. such that there exists a maximal sustainable capital stock kpax (i-e.,
Vk > kmax and Vz € Z F(k,1,k,1,2) < kmax, and Vk < Epax, 32 € Z,
F(k,1,k,1,2) > kmax)-

Assumption 3 is standard in the literature on nonoptimal stochastic growth
(e.g., see Coleman [11] and Greenwood and Huffman [26]). In particular, IV
implies that the set of feasible capital stock can be restricted to be in the compact
interval X = [0, kmax| (as long as we place the initial date zero capital stocks
ko = Ko in X), and also places restrictions on the amount of nonconvexity we
can allow (as well as an upper bound on the capital stock, of course). In the
rest of this paper B(X) will denote the Borel subsets of X.

Finally, we will make a simplifying assumptions that will lead to additional
properties of the MEDP. This assumption is not critical in any of our most

4Stachurski [39] studies the interesting case of threshold externalities in an OLG model.
We do not consider this case in this paper.



important results, and,7when needed, we will discuss the ways to relaxing it.
ASSllHlpthIl 3. Both r(k, z) and w(k, z) are continuous in z for all k.

2.2 Some results from lattice theory

This paper uses many tools and concepts of lattice theory, a brief overview of
which can be found in Appendix A. There are two complete lattices of interest
for this paper. The first is the interval order H = [0,w] in the set of isotone
bounded functions (and some subsets of H of semicontinuous functions) endowed
with the pointwise order, in which we will look for MEDP in Section 3 of the
paper. The second is the set of probability measures defined on a compact
interval of R, endowed the stochastic order, in which we study SME in Section
4.

To construct the first complete lattice, we endow the set S = X x Z with
the pointwise partial order < (and the usual topology), and for an isotone and
continuous function w : S — Ry, we consider the following sets:

(a). H={h:S —R", Vse S0<h(s) <m(s), hisotone}

(b). E¥ = {h € H, h upper semicontinuous in x for each z € Z} and
E! = {h € H, h lower semicontinuous in x for each z € Z}

(¢). E* = {h € H, h upper semicontinuous in z for each x € X} and
E! = {h € H, h lower semicontinuous in z for each z € X}.

Recalling that in a complete lattice, the greatest (least) element is the unique
maximal (resp. minimal) element, we have the following important result.

Proposition 1 The sets H, E*, E*, E., E' endowed with the pointwise order
< are complete lattices with maximal element w and minimal element 0.

Proof. For any D C H, the lower and upper envelopes of D are increasing
elements, hence:

VD C Hand Vs € S, Ag D(s) = }}gg{h(s)} and Vg D(s) = sup{h(s)}.
heD

The lower envelope of a family of upper semicontinuous (usc) functions is usc
(see, for instance Aliprantis and Border, 1999), thus:

VD C By and Vs € S, Ags D(s) = ;ig,fg{h(s)}’

and (EY, <) has a (unique) maximal element w. By Theorem 29 in Appendix
A, (EY¥, <) is a complete lattice, and so is (EY, <) by a similar argument. Notice
also that:

VD C E} and Vs € S, Vgu D(s) = inf{sup{h(t)}}.
E s<t heD

(EL,<) and (E!, <) are complete lattices by a similar argument. Also:

VD C E. and Vs € S, Vg D(s) = sup{h(s)},
‘ heD



and,

VD C E. and Vs € S, Ag D(s) = sup{ inf {h(t)}}.
i t<s heD

Finally, it should be noted that if D is an increasing (resp. decreasing) sequence
{hn}nen, then:

sup {hn(s)} = lim hy(s) (resp. inf {h,(s)} = lim h,(s)).
hn€D n—00 hneD n—oo
B
The second lattice of interest is the set A(X, B(X)) of probability measures

defined on the measurable space (X, B(X)) endowed with the stochastic order
> defined as follows:

et /X F(kyu(dr) > /X FUk) (dR),

for every increasing, and bounded function f : X — R, , in which case we say
that p stochastically dominates p'.

Proposition 2 (A(X,B(X)),>s) is a complete lattice with minimal and maz-
imal elements 6¢ and 0y,

max *

Proof. It is easy to show that the set D(X) of functions F : X — [0, 1], that
are increasing, upper semicontinuous, and satisfy F(b) = 1, is a complete lat-
tice when endowed with the pointwise order. ID(X) has maximal and minimal
elements (respectively, the function F'(k) = 1 for all k € X, and the function
G(k) = 1 if k = b otherwise G(k) = 0), and is in fact the set of probability
distributions over the compact set K. It is well-known that to any probability
measure 1 € A(X, B(X)) corresponds a unique distribution function F,, € D(X)
and vice versa, and p >, ' is equivalent to F,, < F,/ (see, for instance, Stokey,
et. al. [40]).> (A(X,B(X)),>s) is thus isomorphic to (D(X), <), and is there-
fore a complete lattice with minimal element the singular probability measure
00, and maximal element the singular probability measure 6y, .H

The space A(X, B(X)) is also endowed with the weak topology under which
a sequence of probability measures {i, tnen in A(X, B(X)) is said to weakly
converges to p € A(X, B(X)) if for all continuous functions f: X — R:

i [ F(k) (dh) = / F () (dk), (V)
X X

n—oo

in which case we write p,, =>4 p, and call p the weak limit of the sequence
{tt, }nen. Finally, an interesting property of monotone sequences {pu,, }nen in

5This is not true if X C R! with I > 2, and this is one fundamental reason why the
argument in this paper cannot be trivially generalized to economies with Markov shocks. See
more on this at the end of Section 4 of the paper.



(A(X,B(X)),>s) which follows from the isomorphism between (A(X, B(X)), >
) and (ID(X), >) should be noted: If py <5 pt; <g ... <s 1, <s ... then:

P, = 1t = V{fty nen-

Similarly, if g > 11 >4 ... 26 fy, =5 1 =5 - then:
Mo = o= /\{Mn}neN

2.3 An order-theoretic fixed point theorem

The proofs of existence of MEDP and of SME in this paper are based on an
extension of Tarski’s fixed point theorem. This important theorem combines
the isotonicity of a map F' : P — P with the completeness of the underlying
lattice (P,>) to prove the existence of a complete lattice of fixed point of F.°
Although Tarski’s fixed point theorem is not constructive, we show below (in a
result related to Theorem 4.2 in Dugundji and Granas [22]), that the additional
property of order continuity of F' leads to algorithms to compute the extremal
fixed points of F'. We first define order continuity as follows:

Definition 3 Let (P,>) be a poset. A function F : (P,>) — (P,>) is order
continuous if for any countable chain C' C P such that VC and NC' both exist,

V{F(C)} = F(VC) and A {F(C)} = F(AC).

It is important to note that order continuity implies isotonicity since u < v
implies V{F(u), F(v)} = F(V{u,v}) = F(v), and thus F(u) < F(v). The
important property of order continuity implies that successive iterations on F
starting from extremal elements will converge to actual (extremal) fixed points
when indexed on the natural numbers.

Theorem 4 Let (P,>) be a complete lattice with maximal element pmax and
minimal element Pmin -

(a). If F:(P,>)— (P,>) is isotone, then the set of fixed points of F is a
non-empty complete lattice with maximal and minimal elements.

(b). If F:(P,>)— (P,>) is order continuous and there exists a € P such
that F(a) > a, then V{F"™(a)}nen is the minimal fized point of F' in the order
interval [a, Pmax)-

(¢c). If F: (P,>) — (P,>) is order continuous and there exists b such
that b > F(b), then A{F"(b)}nen is the mazimal fized point in order interval

[ rnirnb]'

Proof. (a). This is essentially Tarski’s fixed point theorem (see Tarski
[42]). Consider the set @ = {x € P, x < F(x)}. Since pmin € @, it is
nonempty.  Consider a chain C in @, and v = VC. Then ¢ < u for all
¢ € C, so that by isotonicity of F, ¢ < F(c¢) < F(u) for all ¢ € C, which

Sp € Pis a fized point of the mapping F': P — P if F(p) =



implies that F(u) > w. Thus u € C, and every chain in @ has an upper
bound. By Zorn Lemma, ) has a maximal element, which we denote ¢q. Since
q < F(q), F(q) < F?(q) so F(q) € @, which implies that F(q) = ¢, and ¢
is clearly the maximal fixed point in P since any fixed point must belong to
Q. Considering Q = {z € P, F(x) < z} and following a symmetric argument
proves the existence of a minimal fixed point.

(b). Suppose F : (P,>) — (P,>) is order continuous. Since F(a) > a and
F isotone, Vn € N, F""(a) > F"(a), and {F"(a)},en is a countable chain.
P is a complete lattice so V{F"™(a)}nen exists, and if F' is order continuous,
F(V{F™(a)}nen) = V{F(a)} = V{F"™(a)}nen so that V{F"(a)},en is a fixed
point of F. Consider any d € P such that F'(d) = d. Since d > a and F is
isotone, it is easy to see that Vn € N, d > F"(a) which implies that d is an
upper bound of {F"(a)}pen. Thus d > V{F"(a)}nen and V{F"(a)}nen is thus
the least fixed point of F' in [a, pmax], and thus the unique minimal fixed point.

(¢). Follows a similar argument to that in (b).H

The reader will notice that the hypothesis of order continuity in (b) and (c)
can be weaken to that of order continuity along monotone recursive F-sequences,
that is, sequences of the form {z, F(x),..., F"(x), ...} where either x < F(x) or
x > F(x) and as long as F is isotone. We state this important property in the
a corollary.

Corollary 5 Results (b) and (c) of the preceding theorem hold with F : (P, >
) — (P, >) order continuous along monotone F-sequences and isotone.

It is important to note that order continuity along monotone recursive A—sequences
is distinct from the traditional notion of order continuity. One key difference
is that order continuity along monotone recursive A-sequences does not imply
that the operator is isotone. Consider for instance A : [0,1] — [0,1] such that
A(x) =1 —2. The only monotone recursive A-sequence is {1/2, 1/2, 1/2,...}
and A is obviously continuous along (the only) monotone recursive A-sequence,
but not isotone.

3 Existence and construction of MEDP

In this section we develop a new Euler-equation method for OLG models with
non-classical stochastic production. Although related to the method used to
study infinitely-lived agent models in the literature (a nonlinear operator is de-
fined implicitly from the Euler equation, and its fixed points are the MEDP),
our approach is clearly distinct from it”. The nonlinear operator is isotone and
maps a complete lattice of candidate equilibrium policies into itself; existence of
a fixed point then follows from a direct application of Tarski’s fixed point theo-
rem, and the construction of extremal fixed points relies on the order continuity
property of the operator.

"The reader can verify that the nonlinear operator developed for instance in instance in
the infinite horizon models of Greenwood and Huffman[26], Datta & al [13], or Morand and
Reffett [33] is different than the one in this paper.
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We show that when capital income along equilibrium paths is increasing in
capital stock, optimal consumption and optimal investment in equilibrium are
both increasing in the aggregate capital stock, which implies that the unique
MEDP must be continuous. When capital income is not assumed to be increas-
ing along equilibrium paths, our nonlinear operator delivers complete lattices of
semi-continuous isotone MEDP, and we do not have uniqueness.

3.1 Existence of MEDP

Consider the maximization problem of a typical young agent in period ¢ who
earns the competitive wage w; and must decide what amount to consume im-
mediately and what amount to save for future consumption. Returns on labor
and capital are obtained from the firms’ optimization problem in each period,
that is w(k,z) = Fy(k,1,k,1,2) and r(k,z) = Fi(k,1,k,1,2). To make his
decisions, the agent postulates a law of motion k' = h(k, z) for physical stock
which he uses to compute the competitive expected return on his capital invest-
ment. Thus, for a given (k,2) € X* x Z and k' = h(k, z), the agent seeks to
solve:

max U’LU]{Z,Z _ 77"]€/,Z/ Gdz’
yG[O,w(k,z)]/Z (w(k, z) =y, 7( )y)G(dz")

A MEDP is a function A that coincides pointwise with the optimal investment
policy y* solving the maximization problem above, that is V(k,z) € X x Z,
h(k, z) = y*(k, z), but we exclude the trivial law of motion h = 0. Recall that
the Euler equation associated with the agent’s maximization problem is:

/Z wr (w(k, 2) — g, r(h(k, 2), 2 )y)G(d2)

[ walwlh ) — yor (b, 2), 20 (b, 2), )62,
z
so we define a MEDP as follows:

Definition 6 A MEDP is a function h € H such that, for all (k,z) € X* x Z,
0 < h(k,z) and:

/Zul(w(k, 2) — h(k,2),r(h(k, 2), 2" )h(k, 2))G(d2)
- (&)
/ZUQ(w(k, 2) — hk,2),r(h(k, 2), 2" )h(k, 2))r(h(k, 2), 2" )G(d2").

and h(0,z) =0 for all z € Z.

We use the Euler equation to defined the nonlinear operator A as follows:

11



Definition 7 Define the operator A as follows:

(i) For any (k,z) € X x Z such that h(k,z) =0, Ah(k,z) = 0.

(i1) For any (k,z) € X* x Z such that h(k, z) > 0, Ah(k, z) is defined as the
unique solution y to:

/Z[U1(w(k= z2) —y,r(h(k, 2), 2" )y) — ua(w(k, z) — y,r(h(k, 2), 2" )y)r(y, 2')|G(dz").
(E7)

The next proposition establishes some important properties of A.

Proposition 8 Under Assumptions 1, 2, 3 A is an isotone self map on (H, <)
(resp. (E*, <) and (E.,<), ). Under Assumptions 1, 2, 3, 3’ A is an isotone

T —

self map on (E¥, <) (reps. (EL,<)).

Proof. Tt is easy to see that for all h € H, Ah is increasing in (k, z) and
Ah € [0,w] so that A maps H into itself, and that A is isotone in h. Next,
for h € EY¥ we prove that Ah is right continuous at every k € [0, kmax[, which

implies that Ah is usc in k since it is increasing. Suppose that there exists k
in [0, kmax| where AR is not right continuous, i.e., that there exists A > 0 such
that:

lim Ah(kn,z) = Ah(k, 2) + A,

kn—kt

where k,, — kt denote convergence of the sequence {kn}nen from the right® (
i.e., from above). By definition of Ah, Vk,, n € N,Vz € K :

/Zu1(w(kzn, 2) — Ah(ky, 2),7(h(kn, 2), 2" ) Ah(k,, 2))G(d2")

/ZUQ(w(k:n, 2) — Ah(ky, 2),7(h(kn, 2), 2" ) Ah(ky, 2))r(AR(ky, 2), 2 )G(d2")

By hypothesis, h is increasing and usc and therefore continuous to the right at
k, so

lim h(kn,z) = h(k, 2).

kp—kt

By continuity of uq, us,and 7, letting k,, converge to k from the right, we have:

/Z uy(w(k, z) — Ah(k, 2) — A, r(h(k, 2), 2 )(Ah(k, z) + A))G(d2)

/Z uz(w(k, z) — Ah(k, 2) — A, r(h(k, 2), 2 )(Ah(k, 2) + A))r(Ah(k, 2) + A, 2')G(dZ)

8Since {kn}nen is a decreasing sequence and the function Ah is increasing in k,
{Ah(kn,2)}nen is a decreasing (and bounded) sequence, and therefore convergent, so the
expression lim, . Ah(kn, 2) is legitimate.

n
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But A % 0 contradicts the uniqueness of the solution to (E’) given (k,z). It
must therefore be that A = 0, which proves that Ah is right continuous at any
k € [0, kmax[, and thus upper semicontinuous. The operator A thus maps EY
into itself. _ _

Next, for h € EL substitute k, — k= (for any k €]0, kmax]) and A < 0 in
the previous proof to prove that Ah € EL (since an increasing function that is
continuous from the left is Isc), so A maps E. into itself. Consequently, if h is
continuous in k for each z, Ah is continuous in % for each z.

Suppose now that Assumption 3’ holds. By a similar argument, if h is usc
(resp. lsc) in z, similar arguments prove that Ah is usc (resp. lsc) in z, so that
A maps E! (resp. EY) into itself. Consequently, if h is continuous in z for each
k, then Ah is continuous in z for each k as well.lL.

We are now prepared to state and prove our first major proposition concern-
ing the existence of fixed points of A in H, as well as to characterize the lattice
structure of this fixed point set. The proposition is a direct application of our
fixed point theorem (Theorem 4) in section 2.

Proposition 9 The set of fized points of A in (H,<) (resp. (E¥, <), (EY,<),
(EY. <), (F',<)) is a non-empty complete lattice with minimal and mazximal
elements.

3.2 Construction of the extremal MEDP by successive ap-
proximations

Equation (E) defining MEDP is a functional equation, and the investigation of
numerical solutions through successive approximations for these types of equa-
tion is generally a complex task (see the pioneering work of Kantorovich (][29])
on that subject). In the case of (E), the isotonicity and order continuity along
monotone recursive A—sequences of the operator A are sufficient to produce
algorithms approximating the extremal MEDP via successive iterations.

An additional complication arises from our decision to exclude 0 from the set
of MEDP, but we provide below a set of sufficient conditions for the existence of
a strictly positive minimal fixed point of A, which is by definition the minimal
MEDP (in H). Then, through the application of Theorem 4 of Section 2,
we construct the minimal MEDP in H as the pointwise limit of a particular
increasing sequence of functions. The maximal MEDP in H is obtained as the
pointwise limit of a decreasing sequence of functions in a symmetric fashion.
Also, since increasing functions on a compact domain are almost everywhere
continuous, we show that it is a matter of simply altering extremal MEDP at
most at a countable number of points to construct the extremal semicontinuous
MEDP.

3.2.1 Order continuity of A

Critical to our construction by successive approximation is the property of order
continuity along monotone recursive A-sequences of the operator A, although

13



we actually prove a stronger result which we state in the proposition below.

Proposition 10 Under Assumptions 1,2 and 8 A : (H,>) — (H,>) is order
continuous along any monotone sequences.

Proof. Recall that:

VD C HandVse S, AgD(s)= hlnjf:){h(s)} and Vg D(s) = sup{h(s)},
€ heD

so we need to prove that for an increasing sequence { g, }nen in (H, <),

sup({Agn (k, 2) }nen) = A(sup{gn(k, 2) }nen),

and the corresponding property for a decreasing sequence.

Consider then the increasing sequence gop < ¢1 < ... < ¢g; < ... in H.
For all (k,z) € X % Z, the sequence of real numbers {g,(k, z) }nen is increas-
ing and bounded above (by w(k,z)), which implies that lim, . g,(k,z) =
sup{gn (k, 2) }nen. For the same reason lim,, o, Agn(k, z) = sup{Ag,(k, 2) }nen.
By definition, for all n € N, and all (k,z) € K* x Z:

/Zu1 (w(k, z) — Agn(k, 2),7(gn(k, 2), 2" ) Agn(k, 2))G(dZ")

/Zug(w(k, 2) — Agn(k, 2),7(gn(k, 2), 2" ) Agn(k, 2))r(Agn(k, 2), 2" )G(dZ")

The functions u; are us continuous (Assumption 1), r is continuous in its first
argument (Assumption 3), hence taking limits when n goes to infinity, we have:

/Z ur(w(k, z) — sup{Agn(k, 2) fnen, r(sup{gn(k, 2) }nen, Z/) sup{Agn (k, Z)}nGN)G(dZ/)

\/Z u2(w(k’ Z) - sup{Agn(k, Z)}nENa T(Sup{gn(k’ Z)}’VLEN7 Zl)
sup{Agn(k, 2) }nen)r(sup{ Agn (k, 2) }nen, ZI)G(dZ/),

which implies that A(sup{g.(k,2)}nen) = sup{Agn(k, 2) }nen. A symmetric
argument can easily be made for a decreasing sequence {g, }nen noting that in
this case, the sequences of real numbers {g, (k, z) },.cn is decreasing and bounded
below by 0, therefore lim,, oo gn(k, 2) = inf{g,(k, 2) }nen.1

With order continuity along monotone sequences of the operator A now
established, we turn next to the computation of extremal MEDP. Because
of additional difficulties associated with avoiding 0 as MEDP, we consider the
question of computing minimal and maximal MEDP separately.

14



3.2.2 Minimal MEDP

Our definition requires a MEDP to be a strictly positive function, that is a
function hg : X x Z — K such that:

V(k,2) € X* x Z, ho(k,2) > 0.

Since 0 is the minimal fixed point of A, we present now sufficient conditions
for the existence of a strictly positive minimal fixed point of A in (H, <) in the
form of Assumption 4 below.

Assumption 4. limy, g+ 7(k, Zmax)k = 0 and Ve > 0, lim,., o u2(c1, c2)
00.

Proposition 11 Under assumption 4, there exists hy € H such that (a) for
all (k,z) € X* x Z, Aho(k,z) > ho(k,z) > 0, and (b) for all (k,z) € X* x Z,
0 < x < ho(k,z) implies Ax > x. (¢) In addition, hy can be chosen to be
lower semicontinuous in k for all z and constant in z for all k (and therefore
continuous and increasing in z for all k).

Proof. See Appendix B.H

It is a direct consequence of the previous proposition that A must have a
fixed point greater than kg (since the isotone operator A then maps the complete
lattice [ho, w] into itself), but also that there cannot be any other strictly positive
fixed point in H smaller than hg. By Theorem 4 in Section 2, the minimal
MEDP in H must therefore be Vig{A™"ho}nen. We formalize this result in the
following proposition.

Proposition 12 Under Assumption 1, 2, 8, 8’, 4 we have the following results:

(a). Yn €N, A"hg is lsc in k for all z and continuous in z for all k.

(b). hmin = Va{A"ho}nen is the minimal MEDP in (H, <), and is B(S)-
measurable.

(¢). hmin = VE{A"ho}nen is the minimal MEDP in (E', <) and in (E., <).

Proof. (a) Since hg is Isc in k for each z and continuous in z for each k,
Vn € N the functions A™hg have these same properties, and they are therefore
all B(S)-measurable functions (as Caratheodory functions, continuous in z and
measurable -since increasing- in k). (b). It follows from the fixed point theorem
of Section 2 that Vg{A™hg}nen is the minimal fixed point in the order interval
[ho,w] C H. Note that:

hmin(k; Z) = \/H{AnhO}nEN(ka Z) = lim AnhO(ka Z) = Sup{Anho(k, Z)}”EN

n—00

Next, consider ¢ € H with Ag = g and suppose that there exists (k,z) €
X*x Z with 0 < g(k,2) < V,{A"ho}nen(k,2). By Part(b) of the previous
proposition, Ag(k,z) > g(k, z) which contradicts the hypothesis that g is a
fixed point. Vg{A"ho}nen is thus the minimal strictly positive fixed point of
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Ain H. As the pointwise limit of a sequence of B(.S)-measurable functions, it is
B(S)-measurable as well. (c) Vig{A"ho}nen is the upper envelope of a family
of functions Isc in k£ and continuous in z, and is thus Isc in k and Isc in z. It is
thus the minimal fixed point of A in E! and in E..H

Remark: The main role of Assumption 3’ in the previous proposition is
to guarantee that hpy,, is B(S)-measurable. Indeed, Assumption 3’ is sufficient
for the preservation of the continuity in z for all £ of hgy under the operator
A, so that all functions A™hg are continuous in z for all k. Given that all
these functions are increasing in k, they are then also B(.S)-measurable, which
implies that Ay, is also B(S)-measurable. There are, however, other ways to
prove the B(S)-measurability of huyi, without relying on Assumption 3’. One
way is to start the iterations on A with a function that is continuous in k& and
increasing in z, smaller than Ay in proposition 7?7 but strictly greater than 0
on X* x Z. Since hg is Isc in k, increasing in z, and strictly greater than 0,
it is always possible (albeit tedious) to construct such function. Then all the
successive A-iterates of the initial function are continuous in k and increasing
in z and therefore B(S)-measurable. The B(S)-measurability of the minimal
MEDP in (EL, <) then follows.

An important corollary to this theorem that we will use in the sequel is as
follows (by the previous remark, Assumption 3’ is not necessary for the Corollary
to hold):

Corollary 13 Under Assumption 1, 2, 3, 4 the function g : X x Z — K such
that for all (k,z) € X x Z,

— 3 5 n ! — n !
g(k,z) = lglr;fk{sup{A ho(k', 2) bnen} = kl/r;fk{\/H{A ho}nen(E', 2)}
is the minimal MEDP in (E¥, <), and is B(S)-measurable.

Proof. By construction g € EY, g and Vg{A"hg},en differ at most at
the discontinuity points of Vg {A"ho}nen (g is therefore B(S)-measurable), and
g is the smallest usc (in k) function greater than Vy{A"ho}nen. In addition,
since Vi {A™hg }nen is increasing and lower semicontinuous in k, for any (k, z) €
X xZ, gk, z) =limp o+ Va{A"ho}nen(F', z). For any (k,z) € [0,, kmax[X Z,
and for all &' > k, by definition of ¢ = Vg {A"ho}nen:

/Zul(w(kg 2) — i, 2),r(q(K, 2), 2 )g(K, 2))G(d2)

/z“z(w(kﬂ 2) = q(K',2),r(q(K', 2), 2')q (K, 2))r(q(K', 2), 2') G (d2").

Both functions w1 and us are continuous and r is continuous in its first argument
(Assumption 3) so taking limits when & — k% on both sides of the previous
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equality implies that:

/Zul(w(laz) —g(k,2),r(9(k, 2), 2" )g(k, 2))G(dz")

/Zw(w(ka) — g(k, 2),7(g(k, 2), 2")g(k, 2))r(g(k, 2), 2') G(d2"),

which proves that, Ag(k, z) = g(k, z).l

A symmetric argument to that of the above proof, but exploiting the conti-
nuity of r with respect to its second argument (Assumption 3’) easily leads to
the following additional important corollary:

Corollary 14 Under Assumption 1, 2, 8, 8, 4 the function g : X X Z — K
such that for all (k,z) € X x Z:

g(k,z) = Zi/r;fz{sup{A"ho(k7 2)nen} = Zi&fz{\/H{AnhO}neN(ka 2"}
is the minimal MEDP in (EY, <), and is B(S)-measurable.

3.2.3 Maximal MEDP

The computation of maximal MEDP is similar to that of the minimal MEDP,
with the additional feature that iterations on A begin with the maximal element
w of H which is assumed to be continuous in &k and z (Assumption 3 and 3’),
so that continuity is preserved at each iteration.

Proposition 15 Under Assumption 1, 2, 3, 3’ we have the following results:
(a). Yn €N, A"w is a continuous function on X x Z.
(b). hmax = Ag{A"w}pen is the mazimal MEDP in (H, <), and is B(S)-
measurable.
(¢). hmax is the mazimal MEDP in (EY, <) and (EY, <).

Proof. (a) Since w is continuous in k and in z, for all n € N, all functions
A™w have the same property (since the image by A of a continuous function is
a continuous function). Thus, the functions A™w are B(S)-measurable. (b).
Follows directly from Theorem 4 in Section 2. Note that, for any (k, z) € X % Z,
the sequence of real numbers { A"w(k, z) }nen is decreasing and bounded below,
hence convergent, so that:

hmax(k, 2) = Ag{A"w}nen(k, 2) = lim A"w(k, z) = inf{A"w(k, z) } nen.

Since Ag{A"w},en is the pointwise limit of a sequence of B(S)-measurable
functions, it is B(S)-measurable. (c¢) By (a) above Ag{A"w},en is the lower
envelope of a family of continuous functions, and is at least usc in k£ and in z.
Consequently, Ag{A"w},cy is the maximal fixed point of A in E* and EZ.H
Remark: The reader will note that, absent the hypothesis of continuity
of w in z, A™w is still continuous in k& but not necessarily in z. It is however
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increasing in z, and therefore B(S)-measurable. As a result (b) still holds, and
himax is the maximal MEDP in (EY, <).

As in the case of the minimal MEDP, we now have the following corollary
concerning the maximal measurable MEDP (by the previous remark, Assump-
tion 3’ is not necessary for the corollary to hold):

Corollary 16 Under Assumption 1, 2, 3 the function g : X x Z — X such that
for all (k,z) € X* x Z,:

g(k,z) = :u%{/\H{A"ho}neN(k'7z)} and g(0,z) =0
<

is the mazimal MEDP in (E., <) and is B(S)-measurable.

Proof. By construction g € EL, g and Ag{A"hg},en differ at most at
the discontinuity points of Ag{A"ho}nen (and thus g is B(S)-measurable as
well), and ¢ is the greater Isc (in k) function smaller than Ag{A"ho}pen. In
addition, since Ag{A™ho}nen is increasing and lower semicontinuous in k, for
any (k,z) € X x Z, g(k,z) = limp_ .- Ag{A"ho}nen(K', z). For any (k,z) €
X* x Z, and for all ¥ < k, by definition of p = Ag{A™ho }nen,

/Z w(w(k, 2) — p(k', 2), r(p(K', 2), 2 )p(K', 2))G(d2)

/Zug(w(k:', 2)—p(K',2),r(p(K', 2), 2" )p(K', 2))r(p(K, 2), 2" )G(dZ").

Both u; and wus are continuous and 7 is continuous in its first argument (As-
sumption 3) so taking limits when &’ — &~ on both sides of the previous equality
implies that:

/Zm(w(k,Z) —g(k, 2),7(g(k, 2),2")g(k, 2))G(dz")

/Zuz(W(k,Z) —g(k,2),r(g(k, 2), 2" )g(k, 2))r(g(k, 2), 2" )G (dz),

which proves that, Ag(k, z) = g(k, z).l

Again, the following result can easily be established through a slight mod-
ification of the above proof (and relying on the continuity of r in its second
argument postulated in Assumption 3’).

Corollary 17 Under Assumption 1, 2, 8, 8 the function g : X x Z — X such
that for all (k,z) € X X Z\ {#Zmin}:

g(k, 2) = sup{Au{A"ho}nen(k, 2')}

2/ <z

is the maximal MEDP in E., and is B(S)-measurable.

18



3.2.4 Comparative statics results

One critical advantage of using a monotone approach to the construction of
MEDP is the possibility to consider comparative statics questions on the space
of economies. The comparative statics results we obtain are closely related to
the “strong set order” comparative statics obtained in Veinott ( [41], Chapter
10, Theorem 1) and Topkis ([43], Theorem 2.5.2). Our result rely on the key
isotonicity property of A when parameterized as a function of the primitive
data of production, and we focus in our discussion on ordered perturbations of
production that imply ordered changes in the wage process. Denoting A,, be
the operator for a given wage w in the definition of the A, we first show that
pointwise ordered changes in the wage rate imply pointwise changes in A,,h for
any h :

Proposition 18 The operator A is increasing in w in the following sense:
For all w' > w, Vh € H, Ay h > Ayh,
where all inequalities are in the pointwise order.

Proof. For w’' > w, and for all (k,z) € X* x Z and h € H:

/Zu1(w'(k, 2) — Aph(k, 2),r(h(k, 2), 2" ) Auh(k, 2))G(d2")

<

/Zul(w(k, z) — Aph(k, 2),r(h(k, 2), 2" ) Awh(k, 2))G(d2")

[ watwlhz) = Auh =)ok, 2),2) Auh(,2)r(Auh (R, 2), )G (d)
<

/ZuQ(w'(k, 2) — Awh(k, 2),r(g(k, 2), 2 Y Auh(k, 2))r(Auh(k, 2), 2" )G(dZ").

Summarizing:

/Zu1(w’(k, 2) — Awh(k, 2),r(h(k, 2), 2" ) Awh(k, 2))G(d2")

<

/Zug(w'(k, z) — Awh(k, 2),r(g(k, 2), 2" ) Auh(k, 2))r(Auh(k, 2), 2" )G(dZ"),

which implies that A, h(k,z) > Ayh(k, z).1

From this monotonicity property of A, we can now obtain the following
important equilibrium comparative static implication for the set of MEDP in
H:

Proposition 19 The mazimal and minimal MEDP in (H, <) (resp. (E¥,<),
(E*, <), (EL,<) ( EL, <)) are increasing in w.
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Proof. For any w’, A, w’ < w’, and since A, is increasing in w’, we have:

w’ > w implies that A,w < Ayw’ < w'.
Suppose that there exists n > 1 such that:
Alw < Al ' (R1)
Then:
AP = A, (AT w) < Ay (Aw) < Ay (A% 0') = A’ < Ay,

where the first inequality results from A,, being increasing in w, the second and
the third from A, being isotone. Thus recursively, (R1) is true for all n > 1,
and, consequently,

/\H{AZ’U}}WEN < /\H{AZ’wl}nEN-

which proves that the maximal MEDP in (H, <) is increasing in w. It is then
easy to prove that this same result holds in (EY, <), (E* <), (EL,<) and (
EL <).

Next, for a given w, construct the function hg as in Appendix B. For w’ > w:

Awho > Awho (> ho),
which recursively implies that, for all n :
A% ho > Al ho,
and thus that:

Va{Ayhotneny < Va{AL ho}nen.

It is easy to see that Vg {A} ho}nen is the minimal MEDP (since A, ho > ho
and for all 0 < e < ho(k, z), Awe > Aye > e), which proves that the minimal
MEDP in (H, <) is increasing in w, and the result also holds in (EY, <), (EY, <),
(EL,<)and ( E,,<).1

This analysis is not restricted to comparative statics questions on the space
of production functions: Indeed, one can see that for particular parametrization
of the household utility functions (say u), monotonicity of the operator A, could
be obtained, which will then lead to strong set order perturbations of the set of
MEDP. We finally remark that by a standard argument, ordered perturbations
in the set of MEDP in the strong set order will generate ordered perturbations
in the set of SME constructed in the next section of this paper (where the partial
order on the space of limiting distributions is first order stochastic dominance).’

9See Hopenhayn and Prescott [28] and Mirman, Morand, and Reffett [32] for discussion of
such comparative statics statements on the set of SME.
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3.3 Uniqueness of MEDP under capital income mono-
tonicity

Under capital income monotonicity (and Assumption 4), we prove that there

exists a unique MEDP A*. h* is thus both minimal and maximal MEDP, and

by the previous results above, it is therefore both upper semicontinuous and

lower semicontinuous in (k, z), and therefore continuous in (k,z). In addition,

we prove that the corresponding Markovian equilibrium consumption decision
policy is also continuous in (k, 2).!°

Proposition 20 Under Assumption 4, if for all z € Z, r(y,z)y is increasing
in y (an hypothesis we call “capital income monotonicity”) then there exists a
unique MEDP h* in H. The corresponding Markovian equilibrium consumption
policy, w— h* is also increasing in (k,z), which implies that both h* and w — h*
are continuous.

Proof: Under capital income monotonicity, for all (k,z) € X* x Z, it is
easy to see that the following equation in y:

/Z wr(w(k,2) — y,r(y, 2 )y)G(d2')

[ walwlk.2) ~ v (. )6,
Z
has a unique solution. Note that the function hA* is therefore the maximal and
minimal MEDP, and thus usc and Isc in k, i.e., continuous in k. By definition,
for all (k,z) € K* x Z:
/ uy (w(k, z) — h*(k, 2),r(h*(k, ), 2 )h*(k, 2))G(d2)
z
- ()
/ ug(w(k, z) — W (k, 2),r(h*(k, z), 2 )h*(k, 2))r(h*(k, 2), 2" )G(dZ").
z

Suppose there exists (k, z) € K* x Z such that w(k, z) — h*(k, z) decreases with
an increase in k. Then, for all 2’ € Z, the expression:

uy (w(k, z) — h*(k, 2),r(h*(k, 2), 2 )h*(k, 2))

increases with k under the assumption of capital income monotonicity, and given
that h*(k, z) is increasing in k, u1o > 0 and uy; < 0. However, for all 2/ € Z,
the expression:

uz(w(k, z) — h*(k, 2), 7(h*(k, 2), ') (k, 2))r (B* (k, 2), 2')

10 A careful reading of our argument in the paper shows that under capital income isotonicity
consumption and investment are in fact locally Lipschitz continuous (since elements of an
equicontinuous space of functions whose gradient fields are all bounded by the variation in
the wage rate in equilibrium). It is important to note this when considering numerical
implementations of our methods since Lipschitz continuous functions can be approximated
with greater accuracy and convergence rates than merely continuous functions.
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necessarily decreases with an increase in k. Thus LHS and RHS in equation
(E”) above move in opposite direction when k increases, which is impossible.
As a result, w(k, z) — h*(k, z) must be increasing in k. The same argument
works to show that w(k, z) — h*(k, z) must be increasing in z. Finally, under
the assumption that w(k, z) is continuous in (k, z), if both the equilibrium in-
vestment and the equilibrium consumption policies are increasing in (k, z), they
both necessarily must be continuous in (k, z).H

It is important to note that the condition r(k, z)k increasing in & is not nec-
essary for uniqueness of MEDP. Consider, for instance, preferences represented
by:

In(ct) + In(cpyq).

The maximization problem of an agent is:

max {ln(w(k, z) —y) —I—/

y€[0,w(k,2)] z

I (k.2 )G |
and the corresponding first order condition is:

(w(k,z) —y) = y.

Thus, irrespective of the production function, there exists a unique Markovian
equilibrium decision policy (the function h = .5w).l

4 Existence and construction of stationary Markov
equilibria

In this paper we define a stationary Markov equilibrium as an invariant distri-
bution, in line with the work of Hopenhayn and Prescott [28] and Futia[24]),
and in contrast to Wang[44][45] who follows the path of Duffie & al.[23]. Our
approach exploits the constructive fixed point theorem of Section 2 (Theorem
4):  For any MEDP, we propose algorithms converging to extremal invariant
distributions corresponding to this particular MEDP. Also, we require the SME
to be a probability distribution that is "non-trivial” in the sense that we require
the limiting distribution to be distinct from the ”zero” distribution. In that
sense, our work is consistent with the notion of SME used in for example Brock
and Mirman [9].

The assumption of iid shocks implies that an economy in any period ¢ is
fully characterized by a probability measure p, € A(X, B(X)) defined over the
endogenous state space X. In contrast, when exogenous shocks are persistent,
for instance when shocks follow a first order Markov process, the measure i,
characterizing an economy in period t belongs to A(S,B(S)) as it is defined
over the whole state space S = X x Z. This means that proofs of existence,
characterization, and construction of extremal SME are significantly more com-
plicated, in part because A(X x Z, B(X x Z)) endowed with the stochastic order
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is no longer a complete lattice, although it is a countable chain complete lattice.
For this reason, we thoroughly address the case of persistent Markov shocks in
a separate paper,'! although we state and sketch the proof an important result
at the end of this section.

In this section, we first define a SME as an invariant probability measure
in A(X,B(X)) of an operator associated with a B(S)-measurable MEDP, but
we exclude the trivial singular measure é; (all mass at & = 0) from the set of
SME. Next, we use our fixed point theorem of Section 2 (Theorem 4) to show
existence of SME and to construct algorithms converging to extremal SME
through successive monotone iterations.

4.1 Definition of stationary Markov equilibrium

Recall that any B(S)-measurable MEDP h € H induces a Markov process for
the capital stock represented by the transition function Pj defined as follows:

VA € B(K), Py(k, A) = Pr{h(k,2) € A} = \({z € Z, h(k,z) € A}).

That is, Py (k,A) is the probability that the capital stock is in the set A one
period after being equal to k.'?> If we denote by g, the probability measure
associated with the random variable k;, then j, , is defined by applying the
operator T} : (A(X,B(X)), >,) — (A(X,B(X)),>s) to i, in the following man-

VB € B(K), ia(B) = Timen (B) = [ Pulk By(ar). (M)

Thus, T} p1;,1(B) is the probability that the next period capital stock & lies in
the set B if the current period capital stock is drawn according to the probability
measure fi;.

Definition 21 Given a B(S)-measurable MEDP h, a stationary Markov equi-
librium (SME) is a probability measure p € A(X, B(X)) distinct from 6y such
that:

VB € B(K). p(B) = Tin(B) = [ Pu(k. Bju(a).

That is, if the current period capital is distributed according to the proba-
bility measure pu, then next period capital is also distributed according to the
probability measure p while all agents follow the MEDP h, and the probability
measure 4 is not the trivial singular measure dg.

1T Another issue in OLG models with Markov shocks is the additional restrictions needed to
prove existence of isotone MEDP.

12The B(S)-measurability of h implies that P, is indeed a transition function since for each
k € X, Py(k.,) is a probability measure, and for each A, Py (., A) is a measurable function.
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4.2 Properties of the operator 7}

A SME as defined immediately above is simply a non-trivial fixed point of T}
We show next that the operator 7} and its domain have just the right properties
required to apply our fixed point theorem of Section 2. In the rest of this section
we will consider a B(S)-measurable MEDP h in H (so that h is increasing).

Proposition 22 The transition function P, is increasing. Consequently, T}
is isotone on (A(X,B(X)),>5).

Proof. P}, is said to be increasing if for all functions f : X — R, bounded,
measurable and increasing, the function T} f defined as:

Tf () = [ F0)Pulk,ab),
X
is increasing. Recall that A is the probability measure over the over the exoge-

nous shocks and that h(k, z) is increasing in k. Thus, for any k; > ko and any
function f: X — R4, bounded and increasing (and thus measurable):

/ FO) Palo, i) = / F(h(ky, 2)A(dz)
X A

%

/ F(hk 2)Mdz) = / SO Py, di),
Z X

which proves that the function 7}, f defined as:
Tf (k) = [ F0)Pulk, b)),
X

is increasing, i.e., that P}, is increasing. Next, consider any p/ >, p and any
f: X — R,, bounded, measurable and increasing:'?

<f7 T;:/U’/> = <Thf’ /U’/> > <Thfa /U’> = <f, T‘;:N’>
which proves that 77 p/ >4 Ty p, i.e., that T} is isotone.ll

Recall that to obtain extremal invariant distributions via successive approx-
imation, a sufficient condition is the order continuity along recursive monotone
Tr-sequences of the operator 7. We prove next that if i is continuous, then
Py, has the Feller property and 7} is weakly continuous and therefore order
continuity along every monotone sequence.

Proposition 23 Ifh: X x Z — X is continuous, then T} is order continuous
along monotone sequences.

13We use here the standard notation:

o= [ suan)
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Proof. Recall that 7} is order continuous along monotone sequences if for
any sequence of probability measures {,, }nen in A(X, B(X)) satisfying p; <
M1 (Tesp. fi; > fuiyy):

Ty (Vi tnen) = VATy (1) Inen (vesp. Ty (M Inen) = MTy (1) bnen)-

Consider any f : X — R bounded and continuous. For any k € X, and any
sequence {ky, }nen in X converging to k ::

fim T (k) = lim [ Flln, )N = [ (b)) = Tuf ()
A Z

n—oo n—oo

by uniform continuity of foh on the compact domain X x Z, which proves that
T, [ is a continuous function (it is also clearly bounded since both f and h are
bounded). Consider an increasing sequence {i,, tnen, and u = V{u, tnen its
weak limit.'* Since T}, f : X — R is bounded and continuous:

n—0oo

that is, Tj(w,,) = T (1), which implies that T} is order continuous along mono-
tone sequences since {T}(i,,) }nen is an increasing sequence so that T} (u,,) =
VAT () tnen and by uniqueness of the weak limit, V{T} (1,,) tnen = Tj (V{14 fnen).
A symmetric argument holds for decreasing sequences.

Finally, we also prove another property of the adjoint operator 7} which is
critical for establishing comparative statics results.

Proposition 24 The operator Ty is isotone in h. That is:
h' > h implies that YV € AN(X, B(X)), Trip >s Tjip.

Proof. Consider f : X — R nonnegative, increasing and bounded. Because
f is increasing,

h' > h implies that V(k, z) € X x Z, f(h'(k,z)) > f(h(k, 2),

and therefore:

Ty f(k) = /Z F(H (k, 2))\(dz) > /Z F(h(k, 2))A(dz) = Tpf(k) for all k € X

Consequently:

<f7 T}T’/’L>

(T o) = /X Ty £ (k)u(dk)

v

/ Ty, £ () (k)
X
| |

14 As noted immediately after Proposition 2 in Section 2 above, all monotone sequences
weakly converge.
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4.3 Existence of SME under capital income monotonicity

Under capital income monotonicity, the unique MEDP A* is isotone and contin-
uous in (k, z). The isotonicity and order continuity along monotone sequences
demonstrated in Propositions 23 and 24 above imply the following important
result concerning the set of fixed points of the operator 77..

Proposition 25 Under capital income monotonicity, denoting h* the unique
MEDP, the set of fized points of T}. is a non-empty complete lattice with maz-
imal and minimal elements, respectively N{ Ty 0g,... tnen and V{T;.00}nen-

Proof. (A(X,B(X)),>,) is a complete lattice and T}, is isotone so the set
of fixed points is a nonempty complete lattice. Under capital income mono-
tonicity, the unique MEDP & is continuous and 7} is order continuous. A
direct application of Theorem 4 of Section 2 shows then that the maximal and
minimal fixed point are, respectively A{T}" 0, tnen and V{T} 60 }nen = 60.1

Since our definition of SME excludes g, the previous result does not auto-
matically imply that there exists a SME for the Markov process induced by h*.
Indeed, suppose for instance that:

V(k,z) e X* x Z, 0 < h*(k,z) < k.

It is then easy to see that given any initial distribution of capital stock, in the
long run the capital stock will be 0. That is, the only fixed point of T}. is o,
and the set of SME is therefore empty. An obvious case when this happens is
when:

V(k,2) € X* x Z, w(k,z) <k.

One can think of various sufficient conditions under which the set of SME is
non-empty but it would be most useful to express any such set of conditions in
terms of restrictions on the primitives of the problem, and this is what we do
next.

Specifically, Assumption 5 below states sufficient conditions under which
there exists an increasing function hg € H such that (a) Vk € [0, ko] C X and
Vz € Z, ho(k,z) > k, and (b) A maps hg strictly up (i.e., for all (k, z) € X* x Z,
Ahg(k, z) > ho(k,z)). The existence of hy implies that the isotone operator A
maps the interval [ho, w] (a complete lattice when endowed with the pointwise
order) into itself, so that A must have a fixed point in this interval. Since under
the assumption of capital income monotonicity, the fixed point h* of A in H is
unique it must be that:

VEk € [0, ko] and Vz € Z, h*(k,z) > ho(k, z) > k.

Given this property of h*, we show that there exist a fixed point of 7). that
is distinct from 6p. The argument is the following: Consider any measure p,
with support in [0, ko] and distinct from &g (we write py > 6p).. Since h*
maps up strictly every point in [0, ko], 14, is mapped up strictly by the operator
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Ty.. By isotonicity of T}, the sequence {7} 1y }nen is increasing, and by order
continuity along monotone sequences of T}, it weakly converges to a fixed point
of Ty'.. Clearly by construction this fixed point is strictly greater than 6. The
rest of this section formalizes this argument.

Assumption 5: Assume that:

I. There exists a right neighborhood A of 0 such that for all £ € A and all
ze Z,w(k,z) > k.

II. The following inequality holds:

li k min _kv ka max k
i s ((k, Zin) — K. 0,z )
<
lim ws(w(k, 2min) — k, 7(k, Zmax ) k)7 (k, Zmin)-

k—0t

Note that for log separable utility, 5.1 is equivalent to:

klirrol+(w(k, Zmin) [/ k) > 2,
and with the traditional Cobb-Douglass production function with multiplicative
shocks, it is trivially satisfied and so is 5.1. For a polynomial utility of the form
u(ey, ea) = (e1)M (eg)" the condition is equivalent to:

. ’]717"(I€, Zmax)
1 min L T
kir&(w(k,z )/k) > 1+ N2 (K, Zmin)

also trivially satisfied with Cobb-Douglass production and multiplicative shocks.

We can now state a key proposition that extends the uniqueness result
in Coleman [12] and Morand and Reffett [33] obtained for infinite horizon
economies to the present class of OLG models under assumption 5.

Proposition 26 Under Assumption 5, the set of SME corresponding to the
unique MEDP h* is a mnon-empty complete lattice.  The maximal SME is
Mo, bnen, and there exists ko € X such that the minimal SME is V{T} 61 } nen
for any 0 < k' < kg.

Proof: The proof is in two parts. Part 1 establishes the existence of hg
that is mapped up strictly by the operator A, and Part 2 shows the existence of
a probability measure 1, that is mapped up 77}., where ~* is the unique MEDP.

Part 1. By continuity of all functions in k, the inequality in Assumption
5 must be satisfied in a right neighborhood of 0. That is, there exists of
© =]0, ko] C A such that, Vk € © :

ur(w(k, Zmin) — k, 7(k, Zmax)K)

U2 (w(kv Zmin) - ka T(k, Zmax)k)r(ka Zmin)-
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Consequently, Vk € © =]0, kol:

/Z wr(wk, 2) — k, r(k, 2 )B)G(d)

<

U1 (U)(k?, Zmin) - ka r<k7 Zmax)k:)
<

UQ(’UJ(]C, anin) -k, T(ka Zmax)k)T(ka Zmin)
<

/ZuQ(w(k, 2) = k,r(k,2)k)r(k, 2 )G(dZ).

Next, consider the function hg : X x Z — X defined as:

0ifk=0,2€2
ho(k,z): kif0<k§k0,zeZ.
k‘oifk‘Zko,ZEZ

We prove now that Ahg > hg. First, consider 0 < k& < kg, z € Z, and suppose
that Ahg(k, z) < ho(k,z) = k. Then:

/Zul(w(k,z) —k,r(k,2)k)G(d2)
<

/Z ws(w(k, 2) — k, r(k, 26y (k, 2 )G(d2)
<

/Zug(w(k,z) — Aho(k, 2),r(k,2")Aho(k, 2))r(Aho(k, 2), 2/ )G(dZ"),

where the first inequality stems from the result just above, and the second from
w99 < 0, u12 > 0 and r decreasing in its first argument. By definition of Ahy,
this last expression is equal to:

/ ur(w(k, z) — Ahg(k, 2),r(k, 2")Aho(k, 2))G(d2").
z
Thus, we have Ahg(k, z) < k and:

/Zul(w(k, 2) = k,r(k, 2" )k)G(d2")
<
/Z wr(w(k, 2) — Aho(k, 2), 1k, ') Aho(k, 2))G(d2").

which contradicts the hypothesis that w17, < 0 and w2 > 0. It must therefore
be that for all k €]0, ko] and all z € Z, Aho(k,z) > ho(k, z) = k, that is A maps
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hg strictly up at least in the interval |0, ko). Finally, for k > kg, since Ahg is
increasing in its first argument:

Aho(k,z) > Aho(k(),z) > ho(k(),z) = ]ﬂo = ho(k,z)

We have therefore proven that A maps hg up (strictly). The order interval
[ho,w] C H is a complete lattice when endowed with the pointwise order, and
by isotonicity of A, there must exists a fixed point of A in that interval. Under
capital income isotonicity, h* € [hg, w].

Part 2. Consider any probability measure in (A(X, B(X)),>,) but with
support in the compact interval [0, ko] and distinct from §y. We show next that
Tty >s fg- Consider any f : X — R4 measurable, increasing and bounded,
we have:

/ [ / FOK) P (kR (k) = / [ / F(h (R, 2)Md=) o (k)

[ U, + [ 0@

vV

/ F ) (dk)
[0,ko]

since h*(k,z) > k on [0,ko]. Note that if f is strictly positive on [0, ko] then
the last inequality is strict.

We have just demonstrated that T, 1y > o and that T}, jig is distinct from
Lo, SO we write Ty pig >s fig (>s 60). By order continuity along any mono-
tone sequence of T}, necessarily the increasing sequence {737 11} nen converges
weakly to a fixed point of T}, strictly greater than §p. In addition, it is easy
to see that there cannot be any fixed point of T}, with support in [0, ko] other
than 6y so that the minimal non-trivial (i.e., distinct from 8¢) fixed point of T},
which is by definition the minimal SME, can be constructed as the limit of the
sequence {7} 1o }nen, where piy = 65 for any 0 < k' < k. This completes the
proof that the set of SME is the non-empty complete lattice of fixed points of
Ty, minus 6p, and that the maximal SME and minimal SME can be obtained
as claimed.Hl

4.4 SME without capital income monotonicity

Recall that in the most general case (i.e., without the assumption of capital
monotonicity) there exists a nonempty complete lattice of MEDP in H, as well
as nonempty complete lattices of semicontinuous functions in H (Proposition
9) and that the minimal and maximal MEDP are B(S)-measurable but not
necessarily continuous (Propositions 12 and 15, and their corollaries). For any
continuous MEDP % in H, the isotone operator T} is order continuous along
monotone and a result similar to that of the previous subsection clearly applies:
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There exists a complete lattice of SME associated with h, and maximal and
minimal SME can be constructed.

Continuity of h, however, is not necessary for 7} to be order continuous
along recursive monotone 7 -sequences. In fact, we prove in a companion pa-
per addressing isotone recursive methods in OLG models with Markov shocks
that if the transition function @ characterizing the Markov shocks is increasing
and satisfies Doeblin’s condition (D), then the B(S)-measurability of the isotone
MEDP h is sufficient to establish that 7} is order continuous along recursive
monotone T} -sequences. While we refer the reader to our companion paper
(Morand and Reffett[34]) for a detailed proof, we give an overview of the argu-
ment before stating our result. It is important to note that Doeblin’s condition
imposes very minimal restrictions on iid shocks.

As discussed earlier in the paper, the assumption of Markov shocks implies
that we manipulate probability measures defined on the state space S = X x Z,
a significant difference from our analysis so far. Recall that a Markov transition
function @ satisfies Doeblin’s condition (D) is there exists v € A(Z, B(Z)) and
€ > 0 such that:

VB € B(Z), v(B) < ¢ implies that Vz € Z, Q(2,B) <1 —e¢.

In Morand and Reffett, we show that if @ satisfies Doeblin’s condition (D), then
the transition function Py, corresponding to any B(S)-measurable MEDP h and
defined by:

VA x B € B(S), Py(x, 2 A, B) = { Q<Z’fi££eﬁ$’£? €4

also satisfies Doeblin’s condition (D). Consequently, by Theorem 11.9 in Stokey
& al., the n-average of any recursive 7} -sequence converges in the total variation
norm, and therefore weakly converges, to a fixed point of the isotone 7}'. Next,
we show that the poset (A(S, B(S)), <s) is countable chain complete and that
any monotone recursive 7} -sequence weakly converges. By uniqueness of the
limit, the weak limit of such sequence is also the limit of the average n-sequence,
and is a fixed point of T;7. This precisely proves that 7} is order continuous
along recursive monotone 7T} -sequences, and an application of Theorem 4 gives
the following important result.

Proposition 27 Under Assumptions 1, 2, 3, 8, 4, 5 and if shocks satisfy
Doeblin’s condition (D), for any B(S)-measurable MEDP h in H, there ex-
1sts a non-empty set of SME with maximal and minimal elements respectively
given by meax(h) = /\{T}fné(klnax,zxnax)}nEN and ’Ymin(h) - V{T;nMO}WEN7 where
o = Ok 2y fOr any 0 < k' < ko, ko constructed from Assumption 5.

Finally, for economies satisfying Assumption 4, by Proposition 12 and 15

in the previous section of the paper, there exist minimal and maximal MEDP
hmin and hpax in H, and both are B(S)-measurable. Necessarily, any other
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MEDP h in H satisfies hpmin < h < hmax. By the comparative statics result of
Proposition 24 above,

Ty ntbo < T o,

and recursively,

Ymin (Pmin) = VA", o nen < VAT o fneN = Ymin(h)-

By a similar argument:

Ymax (Pmax) = MTEY 8 (ks zma) J1EN = AMTE O (hnae, zman) YnEN = Vimax (h),

max

and this proves that v, (Amax) and ¥,,;, (Amin) are the greatest and least SME,
respectively. We state this very general result in the last proposition of this

paper.

Proposition 28 Under Assumptions 4 and 5, and when shocks satisfy Doeblin’s
condition (D), the set of SME is nonempty and there exist a greatest and a least
SME, respectively Vyax(hmax) = MTET 8 (kmaszma) JneN @0d Yypin (Amin) =

VAT pgtnen where jig = 6(xr 2y for any 0 < k' < ko, ko constructed from
Assumption 5.

5 Applications

In the last section of the paper we present some applications of our results to
models that have been studied extensively in the literature. The first example
emphasizes how the results can be applied in settings where the reduced form
production function can represent an economy with an equilibrium distortion
generated by trading frictions such as valued fiat money. In the second ex-
ample we show how our results can be specialized to cover the cases of social
security that have been studied in the literature. Finally, we also show that
some of our results concerning the existence and construction of MEDP can be
extended to cases where the state space is not necessarily compact (i.e., the case
of endogenous growth).

5.1 Example 1. Fiat money (Stokey & al. 1989).

This first example is the overlapping generation model with fiat money of Stokey
& al.[40] (See Ch. 17) presented here to illustrate the construction of an isotone
operator whose fixed points precisely satisfy the first-order condition associ-
ated with the consumer’s maximization problem. Following Stockey & al., an
equilibrium is a function n : X — Ry satisfying the following condition:

n(z)H' (n(z)) = /x'n(aj')V’(n(m’))Q(w,dx').
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Denoting G(s) = sH'(s) and m(x) = zn(x), we rewrite this equation as:

x)/z) = /m W (m(x))Q(x, da'), (A1)

so that a Markovian equilibrium policy is a function m(x) satisfying (A1l). Con-
sider the complete lattice (F, <) of functions m : X = [a,b] — R, such that m
is increasing and 0 < m < bL.'> For each m € FE and = € X, consider then the
following equation in y:

Gly/z) = / m(@ )WV (m(2))Q(x, d'),

Under Assumption 17.1 the solution, which we denote y* = Am(x) is unique,
and this solution is increasing in & under the assumption that @ is a weakly con-
tinuous increasing transition function. Furthermore, the mapping A : £ — F
is increasing in m under the additional restriction on the preferences that
—yV'(y)/v'(y) < 1. TFor any increasing (decreasing) sequence of functions
{m, ()} nen converging pointwise to m(x), by the Monotone Convergence The-
orem:

lim [ my, (2")V' (m, (2")Q(x, d2’) = /m(z’)V’(m(x’))Q(z,daz'),

n—oo

which implies that for an increasing sequence:

sup [ 1, )V (@) Q. de') = [ m@ )V (e Qe d),

and for a decreasing sequence:

ggjfv/mn(x')vl(mn( "MQ(z,dx") /m W' (m(2")Q(z,dx'),
which establishes that A is order continuous.

As a consequence, there exists a complete lattice of functions satisfying
Am(x) = m(x) for all z € X, i.e., there exists a complete lattice of Markovian
equilibrium decision policy. Given that the top element of F is the (constant)
function bL, the function A™bL converges pointwise to the maximal Markovian
equilibrium policy in F which we denote my.. Since A0 = 0, we need to prove
that 0 is not the only one fixed point, which we do by showing the existence of
a strictly positive element my € E that is mapped up by the operator A. As a
result, mmax must necessarily be a strictly positive fixed point.

Under the assumption that lims 04 G(s) = lims_,04 G'(s) = 0, since V'(a) >
0, there exists ap < min(1, L) such that:

G(ap) < aplaV'(a)].

15Clearly (E, <) is a complete lattice with V and A being the pointwise sup and inf respec-
tively.
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Consider mo(z) = apx (recall that oy < L hence my < bL). For all z € [a, b,
we have:

G(mo(z)/z) = G(ag) < aplaV’(a)] < aplaV'(apa)] = /aOaV'(aoa)Q(m,dx').

where the last inequality above rests on the assumption of concavity of V. Since
x > a, mo(x) = apx > apa and:

[ vV (@)@, d) < [ mo(e)V o) Qe o),
and therefore
Glmol(z)/z) < / mo(2)V" (mo(x))Q(z, dz') for all z in [a, b,
which implies that Amg(z) > mo() for all z € [a, b].

5.2 Example 2. Social security (Hauenschild 2002).

Our second example shows that the results of Hauenschild [27] that incorporates
a social security system in the overlapping generation model of Wang [44] can
easily be derived from our setup. This example thus illustrates the power of
monotone methods to generate (weak) comparative statics results. Recall that
in Hauenschild [27], a Markovian equilibrium investment policy is a function h
satisfying the following condition:
/ ur (1 — 7wk, 2) — h(k, 2),r(h(k, 2), 2" ) h(k, 2) + Tw(h(k, 2), 2")))G(dz")
z
- (B1)
/ ua((1 — Tw(k, 2) — h(k, 2),r(h(k, 2), 2" h(k, 2) + Tw(h(k, 2), 2")))
z
r(h(k,z),2")G(dZ").

Consider the following equation in y :

/Z wn (1= T)wk, 2) — . r(hk, 2), 'Yy + rwly, 2'))G(d2)

/ZUQ((l — 1wk, z) —y,r(h(k,2), 2"y + 1wy, 2))r(y, 2 )G(d2").

For any (k,z) € X x Z and h € E, denote y* = Ah(k, z) the unique solution to
this equation. It is easy to see that, in addition to being an order continuous
isotone operator mapping F into itself, A is also isotone in —7. Consequently,
an increase in 7 generates a decrease (in the pointwise order) of the extremal
Markovian equilibrium investment policies hr max and Ar min.
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Next, recall that any equilibrium investment policy h induces a Markov
process for the capital stock defined by the following transition function Pj:

For all A € B(X), Py(k,A) = Pr{h(k,z) € A} = \X{z € Z, h(k,z) € A}).

Consider two Markovian equilibrium policies A’ > h and their respective tran-
sition functions P, and P,. For any k € X and any function f : X — R
bounded, measurable and increasing;:

/ SR P (K, i) = / SO (K, 2)A(d2) > / F(hk, 2))A(d2) = / SR Pk, di).

Thus, for any p € A(X, B(X)) :
U] £ P it

/ FORVTE p(dk)

JUf sorpanntar) = [ 07w,
which establishes that 77 > Ty, Thus the natural ordering on the set
of taxes 7 induces an ordering by stochastic dominance of the corresponding
extremal stationary Markov equilibria in the following way:

AV

7' > 7 implies Ny max > Rr max implies lim 778k max > LIm 7776 max-
n—oo n—oo

5.3 Example 3. Endogenous growth (Romer 1996).

This example and the next show that our results apply to a large class of models
with unbounded growth and nonconvex technologies. Consider the production
technology f(k,K) = zk*K” with 0 < a < and 0 < a + 8 < 1. Notice
that kfy(k, K) is increasing in k, hence there is unique Markovian equilibrium
investment policy h satisfying the following condition (derived from the first
order condition in which the equilibrium restriction & = K has been imposed):

/ (1= a)2k®8 — h(k, 2), a2 RSBk, 2)h(k, 2))G(d2)
= ’ (C1)
/Z (1 — a)2k®B — h(k, 2), a2 S4Bk, 2k, 2))az’ ho= B (k, 2)G(d2).
If we consider the equation in  :

ur (1 — a)zk®P — gy a2’ h* 10 (k, 2)y)G(d2')

S

us (1 — ) zkP —y, a2’ k4P (k, 2)y) a2y PG (d2),

S
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and define the operator A as in the paper. Following our analysis, the unique
Markovian equilibrium investment policy can be obtained as the pointwise limit
of the sequence of functions {A"h}2 ; where h(k,z) = (1 — 7)zk**?. In the
case o + (8 = 1 the first order condition is:

/Zul((l —a)zk —y,az'y)G(d2)
- ()
/Zug((l —a)zk —y,az'y)aZ’ G(dZ'),

growth is unbounded (i.e., X = Ry ), and the unique Markovian equilibrium
investment policy is obtained directly from solving (C2).

6 Appendix A. Elements of Lattice theory

Recall that a partial order < on a set X is a reflexive, transitive, and antisym-
metric relation. An upper (resp. lower) bound of A C X is an element u (resp.
v) such that Vo € A, u > x (resp. v < x). A chain C is a subset of X that
can be linearly ordered, i.e. any two pairs of elements in the set p,p’ € P are
ordered. If there is a point 2" (respectively, x') such that x* is the least element
in the subset of upper bounds of B C X (respectively, the greatest element in
the subset of lower bounds of B C X), we say 2 (respectively, ) is the supre-
mum (respectively, infimum) of B. Clearly if they exist, both the supremum
(or, sup) and infimum (or, inf) of any subset must be unique. We say X is a
lattice if for any two elements x and 2’ in X, X is closed under the operation
of infimum in X , denoted x A 2/, and supremum in X, denoted z V 2’.The
former is referred to as “the meet”, while the latter is referred to as “the join”
of the two points, x,2’ € X. A subset B of X is a sublattice of X if it contains
the sup and the inf (with respect to X) of any pair of points in B. A lattice is
complete if any subset B of X has a least upper bound VB and a greatest lower
bound AB in B. If every chain C' C X is complete, then X is referred to as a
chain complete poset (or equivalent, a complete partially ordered set or CPO).
A set C'is countable if it is either finite or there is a bijection from the natural
numbers onto C. If every chain C' C X is countable and complete, then X is
referred to as a countable chain complete poset.

To show that a partially ordered set is a complete lattice sometimes requires
much less work that the definition of completeness would have us believe.

Theorem 29 (Davey and Priestley [16]). A non-empty poset (P, <) is a com-
plete lattice if and only if P has a top (resp. bottom) element and for any
P’ C P, ApP' (resp. VpP') exists (in P).
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7 Appendix B. Proof of existence of a strictly
positive MEDP

Lemma 30 Under Assumption 4, for all k € X*, there exists a right neighbor-
hood 2 =0, k] with 0 < k < w(k, zmin) and M > 0 such that, for all x € Q,

w2 (w(k, Zmin) — T, 7(Z, Zmax)x) > M.
Proof. If lim,_ o+ (2, Zmax)x = 0 then for all k € X*:
o zlé%,w(k:,zmm)[UQ(w(k’ Zmin) — T, 7(T, Zmax)T) = U2(w(k, Zmin), mlir& 7(2, 2max)T) = 00.
The expression us(w(k, Zmin) — &, 7(Z, Zmax)x) can therefore made arbitrarily

large in a right neighborhood of 0, and the existence of €2 thus follows.H

Lemma 31 For all k € X* and z € Z, there exists ho(k, z) €]0,w(k,z)[ such
that:

/Zul(w(k, 2) — ho(k, 2),r(ho(k, 2), 2" Yho(k, 2))G(d2") (E0)
<
/Z us (w(k, 2) — ho(k, 2), r(ho(k, 2), 2 Yho(k, 2))r(ho(k, 2), 2/ )G (d2').

In addition, hg can be chosen to be increasing in k for each z, constant in z
(and therefore continuous and increasing in z) for each k.

Proof. Fix ke X*. Forall z € Z:

lim [ wi(w(k,z) —z,r(x, 2 )z)G(d2)

z—0t )7

/ wn (w(k, 2),0)G(d2)

IA

uy (w(k, Zmin), 0).

Thus there exists a right neighborhood of 0, denoted ¥ =]0, 7], such that, for
all x € U:

/Zul(w(lc, z) —x,r(z, 2 )x)G(d)
<
Sug (w(k, Zmin), 0).
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Next, for x € Q :

/Zug(w(k:, 2) —x,r(z, 2" )x)r(x, 2 )G(dz2")

Y]

/ ug(w(k, 2min) — T, 7(T, Zmax)2)7 (2, 2 )G(d2")
z

Y

/ZMr(mz')G(dz'),

where the first inequality stems from w12 > 0 and us decreasing, and the second
from the Lemma above. This last expression can be made arbitrarily large,
independently of z, by choosing x in  sufficiently close to 0. That is, it is
always possible to choose z* sufficiently small in Q@ N ¥ so that:

/Z Mr(a*, 2V F(d') > 5ur (w(k, 2min), 0). (1)

Pick such an z* and set 6¢(k,z) = a* for all z € Z. By construction, any
x €]0,8¢(k, z)] satisfies:

/ uy (w(k, z) — x,r(x, 2" )x)G(d2)
z

<
Sug(w(k, Zmin), 0)
<
/ Mr(z, 2 )G(d2")
z
<

/Z ug(w(k, z) — x,r(x, 2" )x)r(z, 2/ )G(d2").

That is, by construction, we have, for all x €]0, 6o (k, 2)]:

/Zul(w(k, 2) —x,r(x,2")x)G(d2)
< (E2)
/ZuQ(w(k, 2) —x,r(x, 2")x)r(z, 2 )G(d2).

We repeat the same operation for each k£ in X*, thus constructing a function
6o+ X x Z — X, setting 6p(0,2z) = 0. By construction, for each k& € X,
bo(k, z) is constant in z, and therefore increasing in z. In addition, any function
smaller (pointwise) than 8y (k, z) also satisfies (E2). In particular, the function
po: X X Z — X defined as:

o /
po(k, z) = ,ggr;{éo(k ,2)}
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satisfies (E2), is increasing in k for all z, and constant in z for all k£ (and thus
continuous in z for all k). Finally, the function hqy defined as follows:

| supgopcrpo(K, 2) for (k,z) € X* x Z
ho(k,z)—{ Ofork=0,z€ 7

is smaller than pg (and therefore than 6y, hence it satisfies (E2)), increasing in
k for all z, constant in z for all k&, and lower semicontinuous in & for all .l

Proposition 32 V(k,z) € X* x Z, Aho(k, z) > ho(k,z) > 0.

Proof. hy(k,z) > 0 by construction. Suppose that there exists k € X*
and z € Z such that Ahg(k,z) < ho(k, z). Then:

[ wswlh2) = holk ), kol 2). 2ok, 2) Gz
<

/ZUQ(w(k, 2) — ho(k, 2),7(ho(k, 2), 2" Yho(k, 2))r(ho(k, 2), 2/ )G (d2)
<

/ZuQ(w(k:, z) — Aho(k, 2),r(ho(k, 2), 2 ) Aho(k, 2))r(Aho(k, 2), 2" )G(dZ'),

where the first inequality stems from (E2) and the second from uss < 0, u13 > 0
and r decreasing in its first argument. By definition of Ahyg, this last expression
is equal to:

/ uy(w(k, z) — Aho(k, 2),r(ho(k, 2), 2") Aho(k, 2))G(dZ").
z
Summarizing, we have:

/Zul(w(k, 2) — ho(k, 2),r(ho(k, 2), 2" Yho(k, 2))G(dZ")
<

/Zul(w(kj, z) — Aho(k, 2),r(ho(k, 2), 2" ) Aho(k, 2))G(dZ").

which is contradicted by the hypothesis that uy; < 0 and w2 > 0. Thus,
necessarily, Ahg(k,z) > ho(k,z) and A maps hg strictly up.l

Proposition 33 V(k,z) € X* x Z, ho(k,2) > x > 0 implies that Az > .
Proof. By (E2), for all 0 < z < 6p(k, 2) (< ho(k, 2)) :
/ uy (w(k, z) — x,r(x, 2")x)G(d2)
z

<
/ZuQ(w(kz, 2) —x,r(x, 2")x)r(z, 2 )G(d2),

and the same argument to that in the previous proposition applies directly, and
shows that Az > .1
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