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Fourier Series, Examples and the Fourier Integral

C. W. David
Department of Chemistry
University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: October 24, 2006)

I. SYNOPSIS

The Fourier Integral is introduced by converting a
Fourier series, in complex form, into the integral. Some
examples are then given.

II. INTRODUCTION

We chose to introduce Fourier Series using the Par-
ticle in a Box solution from standard elementary quan-
tum mechanics, but, of course, the Fourier Series ante-
dates Quantum Mechanics by quite a few years (Joseph
Fourier, 1768-1830, France).

Normal discussion of Fourier Series starts with a do-
main for the independent variable (here x) from −π ≤
x ≤ π and considers replicating functions (such as sine
and cosine) which map partly on this domain, and yet re-
ally extend over the domain −∞ ≤ x ≤ +∞, replicating
themselves every 2π.

So, assume we have a function f(x) in the domain −π ≤
x ≤ π which may be replicating itself as noted above.
The Fourier Series for f(x) is then given by

f(x) =
A0

2
+

n=∞∑
n=1

(An sinnx + Bn cos nx) (2.1)

To repeat the derivation of the minimum error (above)
here would require us to come to grips with the idea that
sinx and cos x are orthogonal to each other. These in-
tegrals are trivial, over the domain in question, whether
using ‘x’ or ‘nx’. All one really needs is DeMoivre’s The-
orem and some familiarity in using it.

The coefficients are determinable (using this orthogo-
nality) via

An =

∫ π

−π
f(x) sinnxdx∫ π

−π
sin2 nxdx

(2.2)

Bn =

∫ π

−π
f(x) cos nxdx∫ π

−π
cos2 nxdx

(2.3)

and

A0 =

∫ π

−π
f(x)dx∫ π

−π
dx

(2.4)

(where the last term is often thought of as the “direct
current” equivalent value, when translating the original
f(x) into a language of voltage (f) versus time (x)).

Anyway, assuming that we accept the 2π domain
Fourier Series, can we go on to any “even” domain Fourier

Series? Yes. Consider the domain −L/2 ≤ τ ≤ +L/2,
and write

f(x) =
a0

2
+

n=∞∑
n=1

{
an sin

(
2nπx

L

)
+ bn cos

(
2nπx

L

)}
(2.5)

where we use lower case letters for the constants in this
case. The same argument that got us the coefficients
before, works here, and we find

an =
2
L

∫ L/2

−L/2

f(x) sin
(

2nπx

L

)
dx (2.6)

bn =
2
L

∫ L/2

−L/2

f(x) cos
(

2nπx

L

)
dx (2.7)

with

a0 =
2
L

∫ L/2

−L/2

f(x) sin
(

0πx

L

)
dx =

1
L

∫ L/2

−L/2

f(x)dx

(2.8)

Converting to Complex Form

We now use DeMoivre’s Theorem, to re-write these equa-
tions in a form more suited to the purposes at hand, i.e.,
passing to the Fourier Integral.

an =
1

2L

∫ L/2

−L/2

f(x)
eı2nπx/L − e−ı2nπx/L

ı
dx (2.9)

bn =
1
L

∫ L/2

−L/2

f(x)
eı2nπx/L + e−ı2nπx/L

2
dx (2.10)

with

a0 =
1
L

∫ L/2

−L/2

f(x)dx (2.11)

Adding, we have

cn = bn + ıan =
1

2L

∫ L/2

−L/2

f(x)eı2nπx/Ldx (2.12)

and, subtracting, we have

c∗n = bn − ıan =
1

2L

∫ L/2

−L/2

f(x)e−ı2nπx/Ldx (2.13)

so that our Fourier Series can be rewritten as
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f(x) =
a0

2
+

n=∞∑
n=1

(
an sin

2nπx

L
+ bn cos

2nπx

L

)
=

n=∞∑
n=−∞

(
cneı2nπx/L

)
(2.14)

where we have changed the summation from running
−∞ → −1 and then a0/2 and then 1 → −∞ to
−∞→ +∞. Remember,

cn =
1

2L

∫ L/2

−L/2

f(x)e−ı2πnx/Ldx (2.15)

but this is deceptive (for future work) because of the pres-
ence of ‘x’ in the integral. One needs to remember that
‘x’ in this integral has disappeared once the integration

is done! That means that ‘x’ is a “dummy” variable.
Which in turn means that we can re-write this equation
as

cn =
1

2L

∫ L/2

−L/2

f(τ)e−ı2πnτ/Ldτ

Combining the last two equation into a single one we
have

f(x) =
n=∞∑

n=−∞

((
1

2L

∫ L/2

−L/2

f(τ)eı2πnτ/Ldτ

)
e−ı2nπx/L

)
(2.16)

=
n=∞∑

n=−∞

((
1

2L

∫ L/2

−L/2

f(τ)eı2πnτ/Ldτ

)
e−ı2nπx/L

)
(n + 1− n) =

n=∞∑
n=−∞

((
1

2L

∫ L/2

−L/2

f(τ)eı2πnτ/Ldτ

)
e−ı2nπx/L

)
∆n (2.17)

which is, passing through the standard calculus procedure

f(x) =
∫ n=∞

n=−∞

((
1

2L

∫ L/2

−L/2

f(τ)eı2πnτ/Ldτ

)
e−ı2nπx/L

)
dn (2.18)

f(x) =
1

2L

∫ n=∞

n=−∞

(∫ L/2

−L/2

f(τ)eı2πnτ/L−ı2nπx/L

)
dτdn (2.19)

Defining ω = 2πn/2L we have

dω = π/Ldn (2.20)

so, solving, we have

dn =
1

π/L
dω (2.21)

so

f(x) =
(

1
2L

)(
1

π/L

)∫ ω=∞

ω=−∞

(∫ τ=L

τ=−L

f(τ)eıω(τ−x)

)
dτdω

(2.22)

which, in the limit, L→∞ becomes

f(x) =
1
4π

∫ ω=∞

ω=−∞

(∫ τ=∞

τ=−∞
f(τ)eıω(τ−x)

)
dτdω (2.23)

We can split this into symmetric “pairs”:

f(τ) =
1√
2π

∫ ω=∞

ω=−∞
(g(ω)eıωτ ) dω (2.24)

g(ω) =
1√
2π

∫ λ=∞

λ=−∞

(
f(τ)e−ıωτ

)
dτ (2.25)
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III. AN EXAMPLE

Consider the Fourier Transform of the function
A cos ω0τ in a range −a ≤ τ ≤ a and zero elsewhere.
This is a truncated cosine! We have

g(ω) =
∫ a

−a

1√
2π

A cos ω0τe−ıωτdτ

where the limits are recognizing that f(τ) (the cosine) is
zero outside the domain |τ | ≥ a, which is easily evaluated
using DeMoivre’s Theorem (smile):

cos ω0τ =
eıω0τ + e−ıω0τ

2

so we have

g(ω) =
1√
2π

A

∫ a

−a

(
eıω0τ + e−ıω0τ

2

)
e−ıωτdτ

which becomes, upon integration

g(ω) =
A

2
√

2π

∫ a

−a

(
eı(ω0−ω)τ + e−ı(ω0+ω)τ

2

)
dτ

which becomes, upon integration

g(ω) =
A

2
√

2π

(
eı(ω0−ω)τ

ı(ω0 − ω)

∣∣∣∣a
−a

+
e−ı(ω0+ω)τ

−ı(ω0 + ω)

∣∣∣∣a
−a

)

g(ω) =
A

2
√

2π

{
eı(ω0−ω)a

ı(ω0 − ω)
− e−ı(ω0−ω)a

ı(ω0 − ω)
+

e−ı(ω0+ω)a

−ı(ω0 + ω)
− e+ı(ω0+ω)a

−ı(ω0 + ω)

}

g(ω) =
A√
2π

{
sin (ω0 − ω)a

(ω0 − ω)
− sin (ω0 + ω)a

(ω0 + ω)

}

IV. THE CLASSIC EXAMPLE

The classic Fourier Transform illustration is the Gaus-
sian, since the transform of a Gaussian turns out to be
a Gaussian itself. Then as one narrows one Gaussian,
the other widens, illustrating the Heisenberg uncertainty
principle relating ’x’ to ’p’ expectation values. We have

g(ω) = Ae−Bω2

defining a function g which is Gaussian in its dependence.
We then have

f(τ) =
1√
2π

∫ ω=∞

ω=−∞
(g(ω)eıωτ ) dω

which would read, substituting g(ω),

f(τ) =
1√
2π

∫ ω=∞

ω=−∞

(
Ae−Bω2

eıωτ
)

dω

How do we do this integral? Recalling from high school
the “completing the square” idea, we write

B
(
ω2 − ı

ωτ

B

)
= B (ω + α)2 = B

(
ω2 + 2ωα + α2

)
so,

ı
ωτ

B
= 2ωα

must be true, identifying α in terms of problem variables.

α =
ıτ

2B

and, of course

α2 =
( ıτ

2B

)2

This means that the integrand in question can be written
as

e
−B
(
(ω+ ıτ

2B )2− τ2

4B2

)
Substituting, we have

f(τ) =
1√
2π

∫ ω=∞

ω=−∞

(
Ae
−B
(
(ω+ ıτ

2B )2− τ2

4B2

))
dω

which allows us to move the constant factor out of the
integrand, obtaining

f(τ) = e−B τ2

4B2
1√
2π

∫ ω=∞

ω=−∞

(
AeB((ω+ ıτ

2B )2)
)

dω

i.e.,

γ = (ω + ıτ/(2B))

and

dγ = dω
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So

f(τ) = Ae−B τ2

4B2
1√
2π

∫ ω=∞

ω=−∞
e−Bγ2

dγ

Now, it is known that the Gauss integral:∫ ∞

−∞
e−ax2

dx =
√

π

a

where here x=γ and a=B, so

f(τ) =
A

ı
e−B τ2

4B2
1√
2π

√
π

B

or, cleaning up,

f(τ) =
A

ı
√

2B
e−

τ2
4B


	University of Connecticut
	DigitalCommons@UConn
	10-24-2006

	Fourier Series, Examples and the Fourier Integral
	Carl W. David
	Recommended Citation


	tmp.1161702029.pdf.8FC5N

