Document Type

Article

Disciplines

Plant Sciences

Abstract

Tissue N analysis a tool available for N management of turfgrass. However, peer-reviewed calibration studies to determine optimum tissue N values are lacking. A field experiment with a mixed cool-season species lawn and a greenhouse experiment with Kentucky bluegrass (Poa pratensis L.) were conducted across 2 yr, each with randomized complete block design. Treatments were N application rates between 0 and 587 kg N ha-1 yr-1. In the field experiment, clipping samples were taken monthly from May to September, dried, ground, and analyzed for total N. Clippings samples were collected one to two mowings after plots were fertilized. Linear plateau models comparing relative clipping yield, Commission Internationale de l' Eclairage hue, and CM1000 index to leaf N concentrations were developed. In the greenhouse experiment, clipping samples were taken every 2 wk from May to October and composited across sample dates for leaf N analysis. Color and clipping yields were related to leaf N concentrations using linear plateau models. These models indicated small marginal improvements in growth or color when leaf N exceeded 30 g kg-1, suggesting that a leaf N test can separate turf with optimum leaf N concentrations from turf with below optimum leaf N concentrations. Plateaus in leaf N concentrations with increasing N fertilizer rates suggest, however, that this test may be unable to identify sites with excess available soil N when turf has been mowed before tissue sampling.

Comments

Published in Crop Science, Vol. 47, pp.1217-1224 (May-June 2007). The original publication is available at http://crop.scijournals.org/cgi/content/abstract/47/3/1217

COinS