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Real-time Damage Detection for Civil Structures using Big Data 

Chenhao Jin, PhD 

University of Connecticut, 2017 

 

The overall goal of the research in this dissertation is to develop efficient and accurate algorithms to detect 

damages in real time for civil structures using large scale of monitoring data. First, big data analysis is 

performed using one-year monitoring weigh-in-motion data collected from an in-service highway bridge 

located in Meriden, Connecticut. In order to quickly evaluate the structural condition from large scale of 

weight-in-motion data, two structural reliability-based methods were developed based on yield strength 

limit state and fatigue limit state. Then, in order to estimate structural parameter from structural dynamic 

response data, extended Kalman filter is used to estimate stiffness for a three-story building with MR 

damper. All the above methodology will be further developed for real-time damage detection for building 

structure as well as bridge structures. 

For building structures, a novel real-time structural damage detection method is developed for building 

structures that can be represented using structural dynamic models by integrating extended Kalman filter 

and dynamic statistical process control. The numerical validation is performed on a three-story linear 

building structure and a two-story nonlinear hysteric building structure, considering different damage 

scenarios during earthquake excitation. The simulation results demonstrate high detection accuracy rate and 

light computational costs of this method. 

The EKF-based method is further developed for full-scale implementation on bridge structures. An 

extended Kalman filter-trained artificial neural network (EKFNN) method is developed to eliminate the 

temperature effects and detect damage for a long-term monitored highway bridge. Numerical testing results 

show that the temperature-induced changes in natural frequencies have been considered prior to the 

establishment of the bridge damage warning thresholds, and the simulated damages have been successfully 

captured in real time. 

 



 

Chenhao Jin – University of Connecticut, 2017 

The research work in this thesis can provide engineers and scientists a thorough understanding of how 

to process and analyze big data collected from structural health monitoring systems for real-time structural 

damage detection purpose. This study will also have practical importance for infrastructure owners (e.g., 

Department of Transportation, building owners, etc.) and first responders (e.g., policemen, fire fighters, 

rescuers, etc.) to make rapid decisions after structural damage events. 
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CHAPTER 1 INTRODUCTION 

 

Civil structures such as bridges and buildings are essential for the economic development and public safety, 

and must be under good maintenance. However, the current condition and performance of the infrastructure 

systems in United States is in urgent need to be improved. According to ASCE 2013 report card, one in 

nine of the nation’s bridges are rated as structurally deficient, while the average age of the nation’s 607,380 

bridges is currently 42 years (ASCE Report Card, 2013). There are nearly 204 million daily crossings on 

58,495 U.S. structurally deficient bridges in need of repair (Federal Highway Administration, 2016). 

Statistical study showed that 1,062 failed bridges in U.S. were reported during recent two decades from 

1980 to 2012 (Lee et al., 2013). Thus, it is of great importance to find damage or defects on civil structures 

beforehand to prevent structural failures. 

 

 

Figure 1.1 Map of all bridges and bridges in need of repair in US (Meko, 2016) 
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Figure 1.2 Map of 2016 structural deficient bridges in US by state (American Road & Transportation 

Builders Association, 2016) 

Maintaining civil engineering structures in good condition through structural health monitoring (SHM) 

has become an increasingly viable option in the past two decades. Many structural health monitoring 

systems have been developed and implemented to obtain reliable information regarding the condition and 

the integrity of the structures. Through analyzing and extracting key information using data collected from 

various sensors installed on a structure, structural conditions can be assessed in an automatic, objective and 

remote way. With the rapid progress of smart sensor technology and decreasing cost of online monitoring, 

large volume of raw data can be collected from the data acquisition system. More and more SHM systems 

are targeted to monitor the whole structure instead of some specific hot-spot areas. This current trend 

brought new challenges for the capacity of traditional data process and analysis approaches. For example, 

SHM project for Vincent Thomas Bridge in San Pedro, California collected 3 TB data per year 

(Kallinikidou et al., 2013); 300 GB acoustic data were collected during 6 months for wind turbine 

monitoring (Anastasopoulos et al., 2012); 7 GB data were obtained per day for Confederation Bridge in 

Canada (Desjardins et al., 2006); over 20 GB were received for automated railway inspection in Brockton, 

Massachusetts (Zhang et al., 2014); In the bridge weight-in-motion highway bridge monitoring project in 
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Meriden Connecticut, more than 4 GB data are collected daily (Christenson et al., 2016). All the above 

SHM applications call for the use of big data techniques into structural health monitoring. Some good 

literature about big data analytics for structural health monitoring can be found in Cai and Mahadevan 

(2016) and Liang et al. (2016). 

 

 

Figure 1.3 Workflow of structural health monitoring 

 

Table 1.1 Example of recent SHM projects 

SHM Projects Data Size Year 

Confederation Bridge, Canada 7 GB/ Day 2006 

Wind Turbine, Greece 300 GB/ 6 Months 2012 

Vincent Thomas Bridge, San Pedro, CA 3 TB/ Year 2013 

Railway Inspection, Brockton, MA 20 GB 2014 

I-91 Highway Bridge, Meriden, CT 16 GB/ Day 2016 

 

The big data problem associated with SHM mainly affects two areas: data acquisition and data 

analytics. In data acquisition, critical problems include data transmission, data synchronization and wireless 

sensor network, etc. This research focus on data analytics issues in SHM, in the presence of big data. 
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1.1 Motivation 

1.1.1 Efficient structural condition assessment using big data 

The heavy traffic and operation of bridge structures also influence the quality and accuracy of 

structural health monitoring. Bridge weight-in-motion systems have been developed to estimate the weight 

of vehicles travelling through bridges. Most damage detection methods are based on acceleration data. It 

will be helpful to assess the condition of structures based on strain data. 

1.1.2 Structural parameter estimation for structures equipped with control devices 

Structural health monitoring can be used to identify the existence, location and severity of structural 

damage, and help to estimate the remaining service life based on fatigue theory. Structural control devices 

have the ability to protect the structure and reduce the damage from earthquake, wind and waves by using 

structural control devices. In an ideal system, civil structures have both structural health monitoring system 

and structural control systems. In structural health monitoring, many damage detection methods are based 

on structural dynamic models. However, the installation of structure control system will change the 

structural dynamic model itself, make it unrepresentative of the current condition of the structure, and add 

difficulty for damage detection. With structural control devices more and more widely used in civil 

structures, it is important to develop achieve real time parameter estimation for structures equipped with 

control devices. 

1.1.4 Real time damage detection for building structures 

After disasters such as earthquake, tsunami, surface subsidence, fire or blasts, post-disaster evaluations 

are of great importance to assess structural conditions for damaged buildings. Decision about whether the 

building is structural deficient is valuable for building owners or authority to decide whether the building 

should be evacuated, repaired, demolished or still being in use.  

1.1.4 Real time damage detection for bridges 
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The modal parameters of bridge structures are affected by many operational and environmental factors. 

Among these factors, temperature is the dominant factor affecting the modal parameters of the bridge under 

normal condition. One important goal of structural health monitoring is to detect the damage when it occurs. 

A challenge for vibration based damage detection method is that the changes of modal property due to 

temperature effect might be larger than due to structural damage. If the temperature effect is not considered 

and accounted in the damage detection rules, false alarm problems may arise and limit the effectiveness of 

structural health monitoring for in-service structures. It is critical to develop effective structural damage 

detection method and consider temperature effect in damage detection rule for in-service bridge structures. 

 

1.2 Research objectives 

The objective of this dissertation is to develop efficient and accurate algorithms to analyze big data 

collected from structural health monitoring systems for real time structural damage detection purpose. The 

objectives of the research are listed as follows: 

 (1) On the basis of statistical analysis of bridge weight-in-motion data, propose an efficient method 

to evaluate the condition of the whole bridge structure in fast speed.  

(2) Develop a structural stiffness estimation method for civil structures equipped with structural 

control devices. MR damper will be used in this research due to its promising advantages. 

(3) Extend the method developed in objective 2 to develop a real time damage detection method for 

building structures. This research should consider how to deal with the uncertain effects in the dynamic 

system in order to decrease false alarm rate.  

(4) Develop a real time damage detection method for bridge structures from historical data. One-year 

monitoring data from a highway bridge in Meriden CT will be used as testbed. This real time damage 

detection method should consider both severe temperature effects and real bridge damage scenarios. 
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1.3 Organization of Dissertation 

The following paragraphs outline the contents of the research presented in this dissertation. Chapter 2 

will provide background literature review on structural health monitoring, structural control, structural 

parameter estimation and neural network method. Chapter 3 will implement a pilot study through analyzing 

bridge monitoring data from Meriden Bridge to implement a quick assessment of structural reliability. 

Chapter 4 will explore structural parameter estimation using extended Kalman filter method for a special 

structure equipped with control devices. Chapter 5 will extend the previous EKF method to achieve the 

goal of real-time structural damage detection for building structures. In Chapter 6, the above methods will 

be further developed to a machine learning algorithm for real-time damage detection for a highway bridge 

based on one-year monitoring data. In the end, conclusion and recommendations for future work will be 

highlighted. 

 

Figure 1.4 Flowchart for organization of research 
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CHAPTER 2 LITERATURE REVIEW 

 

In this chapter, a summary of literature review of the proposed work has been provided. First, the bridge 

reliability assessment methods using weight-in-motion data are reviewed. Secondly, dynamic models for 

MR damper are surveyed in order to understand the behavior of structure control device equipped structures. 

Thirdly, in order to achieve real time damage detection, extend Kalman filter-based methods are studied. 

Fourthly, temperature effects on natural frequency of bridge structures are studied. In the end, in order to 

eliminate the temperature effects on structural properties, neural network-based methods used in bridge 

monitoring projects will be surveyed. 

2.1 Bridge weight-in-motion based reliability assessment 

In the field of structural health monitoring, strain gauges are widely used in monitoring systems. They 

are inexpensive, easy to install, and sensitive enough to detect the potential danger of a structure. Based on 

the strain data history, a lot of investigations and applications have been done on fatigue damage evaluation 

and life prediction of bridge structures. Two traditional approaches are commonly used: (1) S-N curve 

method, which focus on the relationship between the constant-amplitude stress range and the number of 

cyclic loadings; (2) fracture mechanics, which is dedicated to explore the characteristics of crack 

initialization and growth. 

Over the past several decades, the concepts and methods of structural reliability have developed 

rapidly and widely accepted. Most of the research work on reliability-based fatigue analysis has focused on 

steel bridges. The general approach is to formulate a mathematical model, usually the lognormal and 

Weibull distribution are used for load distribution. The fatigue reliability assessment of steel bridges can 

be performed by using the probability density function of the equivalent stress range (Kim, et al. 2001) and 

a continuous probabilistic formulation of Miner’s rule (Kwon and Frangopol, 2010). 

Professor Dan M. Frangopol has extensive research work in the field of Bridge reliability assessment. 

He proposed an efficient approach to use monitoring data to evaluate structural reliability (Frangopol et al. 
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2008). Ming Liu and Dan M. Frangopol also presented a system reliability-based approach using SHM data 

(Liu et al. 2009). The two papers provide a solid basis for integrating monitoring data into bridge reliability 

assessment, which will be adopted in this research. 

2.2 Dynamic models for MR damper 

MR damper’s dynamic behavior show highly nonlinear properties, which makes it difficult to find a 

universal model to represent and control effectively. Many mathematical models have been proposed and 

verified to determine the values of MR damper force as a function of current, displacement and velocity of 

the damper: Bouc-Wen model (Rodriguez, et al. 2008), hyperbolic tangent model (Bass and Christenson, 

2007), viscous plus Dahl model (Aguirre et al. 2012), Bingham model and LuGre model (Shirazi, et al. 

2012), etc. The hyperbolic tangent model was proposed by Bass and Christenson in 2007. In the hyperbolic 

tangent model, MR damper can be described by two sets of spring-dashpot elements connected by an 

inertial mass element. All parameters in MR damper can be represented as pre-identified functions of 

current. The dynamics of the system and force output can be described in state space form, which can be 

combined with structural dynamic model in a new state space model. 

2.3 Extended Kalman filter based real-time damage detection 

Many structural parameter identification methods have been developed in order to estimate system 

parameters based on the measurements of structural response data directly, including extended Kalman 

filter (EKF), unscented Kalman filter (UKF) and Particle filter. These methods can estimate structural 

parameters straightly, so that they can provide more detailed information and understanding about the 

existence, location, and severity of the structural damage. Recently EKF is widely used in state estimation 

and structural parameter estimation for civil engineering problems (Yang et al. 2006, 2007; Soyoz and Feng, 

2008; Lei et al. 2012; Liu et al. 2009; Yin et al. 2013) due to its high updating frequency, fast convergence 

speed, and low computational costs. 
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Statistical process control (SPC) has been widely used to monitor and control processes due to its 

advantages of early detection and prevention capability. The SPC attempts to differentiate additional 

sources of variation from natural sources in a process by using control limits. When the process data deviate 

from their normal range and trigger the control limits, the excessive variation of data indicates the presence 

of faults or damage in the system. SPC has been applied to many solve damage detection problems in the 

field of SHM, especially in long-term bridge monitoring research projects (Sohn et al. 2000; Fugate et al. 

2001; Kullaa 2003; Deraemaeker et al. 2008; Zapico-Valle, et al. 2011; Magalhaes, et al. 2012). 

2.4 Temperature effects on bridge natural frequency 

The temperature effects on modal properties of bridge structures have been intensively investigated. 

For example, the natural frequencies of Alamos Canyon Bridge (Cornwell, et. al. 1999) were discovered to 

vary 5% during a 24-hour period, and the natural frequencies of Z-24 Bridge (Peeters, et al. 2001) were 

found to fluctuate 14%-18% in one-year period. The freezing effect is also found on the relationship 

between natural frequencies and temperature when the temperature is below the freezing point (0ºC or 32ºF) 

(Gonzales, et al. 2013; Li, 2014).  

Different methods have been developed for structural damage detection for in-service bridges 

considering temperature effects, including statistical regression models and artificial neural networks. 

Linear regression model assumes a linear function to describe relationships between modal parameter and 

affecting factors. The coefficients of the function are estimated based on historical data, and the adequacy 

of the model is then verified by analyzing model residuals. Peeters presented a dynamic linear regression 

analysis method based on an Autoregressive and Exogenous model to filter out temperature effects on 

natural frequencies for the Z-24 Bridge (Peeters, et al. 2001). Ding and Li presented a polynomial regression 

model to fit frequency-temperature relations for Runyang Suspension Bridge (Ding and Li, 2011). However, 

the disadvantage of regression analysis is that many real-world phenomena are not simply represented as a 

single equation with sure estimators, especially when the regression functions do not contain all potential 

independent variables. 
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2.5 Neural network-based structural damage detection 

Artificial neural networks (NNs) have been widely used in structural damage detection because of 

their strong capability to approximate the nonlinear functions between inputs and outputs through learning 

from historical data. Sohn et al. developed an auto-associative neural network (AANN)-based method 

considering environmental and operational conditions for structural damage detection, which selected linear 

regression model parameters as input and output (Sohn, et al. 2002). Zhou et al. developed a back 

propagation neural network (BPNN)-based approach which picked normalized modal frequency as input, 

and generated novelty index as output to detect damage (Zhou, et al. 2010, 2011). Xu et al. used BPNN-

based approach to predict damage magnitude based on modal energy-based damage index for Crowchild 

Bridge (Xu and Humar, 2006). Mata developed a neural network model that uses environmental factors as 

input and displacement as output to analyze behavior for a concrete dam (Mata, 2011). These papers focused 

on the estimation of the relationship between environmental factors and modal properties, and shared 

insights on input parameters selection for neural network models. However, based on the authors’ best 

knowledge, none of them used the historical data to predict the natural frequency. Moreover, using AANN 

or BPNN might suffer from slow convergence in view of the nature of first order learning algorithm. In 

addition, the confidence intervals of the predictions were not given, which means the quality of damage 

detection was hard to evaluate. 

2.6 Challenges 

In this section, the challenges and difficulties of each topic are discussed and explained. First, the 

challenges of using neural network methods in structural damage detection will be discussed. Secondly, the 

difficulties of bridge weight-in-motion will be discussed. The third part focus on structural dynamic model 

based damage detection. The fourth part covers damage detection for structure with MR dampers.  

2.6.1 Bridge weight-in-motion based structural health monitoring 
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In early stage of structural health monitoring, only short period (several hours) of data can be 

monitored using limited number of sensors. The latest development in sensor technology and computer 

hardware make equipment much cheaper and smaller than before, and make long-term structural health 

monitoring possible. Nowadays, a typical structural health monitoring system contains multiple types of 

sensors and up to hundreds of sensors. And data acquisition systems usually operate 24 hours a day, 7 days 

a week continuously. Such structural health monitoring system collects several GB of data every day, which 

makes data analytics work more challenge than before. Moreover, considering the tendency that SHM 

systems will be installed on more and more bridge structures in the infrastructure networks, how to use 

techniques in big data analytics to solve structural damage detection problem from bridge monitoring data 

will become an urgent problem for structural engineers and infrastructure authorities (e.g., National 

Highway Authority, State Department of Transportation). 

With the development of sensing technology, civil engineers will have more choices for structural 

health monitoring. On the other hand, more advanced technology means bigger data collected and superior 

algorithm needed for structural damage detection. The next generation of structural health monitoring 

system will be smarter to be able to process all data on site. With more and more big data available for 

various types of bridges, selecting proper big damage processing methods will be a challenge to help us 

recognize the pattern of bridge monitoring data and detect damage before bridge failure happens. Another 

challenge of big data analytics for bridge weight-in-motion monitoring will be sensor fusion. Multiple 

sensor displacement has already become common for bridge monitoring. Some large scale bridges even 

have hundreds of sensors. Developing methods of information fusion using diverse set of devices to 

improve accuracy and robustness for bridge monitoring will also be a challenge. 

2.6.2 SHM for structures equipped with MR damper 

Structural damage detection for MR damper equipped structure is difficult in view of the complex 

nonlinear model MR damper model and interaction between two subsystems in structure and damper. Many 

MR damper models have complex nonlinear terms, which make it difficult to incorporate with structural 
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dynamic model. Moreover, all the structural parameters and MR damper parameters need to be estimated 

at the same time in each time step. The estimation of these parameters is difficulty because any error in any 

parameter will cause error in the whole system. Thus, the two problems must be appropriately addressed in 

the structural damage detection problems. 

2.6.3 State-space model based structural parameter estimation 

In many structural parameter identification studies, the structural parameters are all assumed constant 

values throughout time. That is, if the identified values of structural parameters deviate from their constant 

values, then the structural damage is identified. However, this assumption does not consider the influence 

of varying environmental and operational conditions, which may trigger false alarms when data points are 

falling outside static control limits but the structure has not been damaged, which decrease the usefulness 

and effectiveness of structural health monitoring systems. Developing high-confidence level real-time 

damage detection methods considering environmental and operational effects for in-service civil structures 

is another challenge needs to be solved. 

2.6.4 Structural damage detection using neural network 

Most current neural network models about bridge monitoring focused on the estimation of the 

relationship between environmental factors and modal properties, which is using one environmental factor 

as input and one modal parameter as output in the neural network model. These research shared insights on 

input parameters selection for neural network models, however, the real model for structural modal property 

is not single-input-single-output model. The model with only one input factor is not accurate enough to 

represent the features of the changes of structural property. How to select proper input factor is a challenge 

work needs investigation. 

Using traditional AANN or BPNN algorithm to train the weights of neural network model might suffer 

from slow convergence in view of the nature of first order learning algorithm. Considering the demands of 

real-time structural damage detection, faster weight training algorithm is preferred for neural network-based 
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methods. Developing better algorithms for online structural damage detection with less storage demand and 

more computationally efficiency is of great importance for SHM. 

Traditionally structural damage detection is implemented by civil engineers after all data are collected 

using sensors during field tests, but this post-processing approach causes significant time delay and 

expensive labor cost. An ideal smart structural health monitoring system is desirable to collect data, analyze 

and detect damage online on board. As to the damage detection criteria to detect the occurrence of damage, 

it is usually performed by engineer’s object experience to set some fixed limits or thresholds.  
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CHAPTER 3 BIG DATA ANALYSIS FOR BRIDGE MONITORING SYSTEMS 

 

3.1 Introduction 

The aim for author to write this paper is to study the latest development of bridge reliability assessment 

based on monitoring, and use these methods to analyze the monitoring data on Meriden Bridge, Connecticut. 

The expectation of this paper contains three goals: (1) analyze the monitoring data and evaluate the loading 

conditions of the traffic to see if any distribution pattern could be found for live loadings; (2) assess the 

structural component reliability based on monitoring data from one sensor; (3) evaluate the performance 

for the whole system of bridge structure based on component reliability. 

In the field of structural health monitoring, strain gauges are widely used in monitoring systems. They 

are inexpensive, easy to install, and sensitive enough to detect the potential danger of a structure. Based on 

the strain data history, a lot of investigations and applications have been done on fatigue damage evaluation 

and life prediction of bridge structures. Two traditional approaches are commonly used: (1) S-N curve 

method, which focus on the relationship between the constant-amplitude stress range and the number of 

cyclic loadings; (2) fracture mechanics, which is dedicated to explore the characteristics of crack 

initialization and growth. 

Over the past several decades, the concepts and methods of structural reliability have developed 

rapidly and widely accepted. Most of the research work on reliability-based fatigue analysis has focused on 

steel bridges. The general approach is to formulate a mathematical model, usually the lognormal and 

Weibull distribution are used for load distribution. The fatigue reliability assessment of steel bridges can 

be performed by using the probability density function of the equivalent stress range (Kim et al., 2001) and 

a continuous probabilistic formulation of Miner’s rule (Kwon et al., 2010). 

Professor Dan M. Frangopol has extensive research work in the field of Bridge reliability assessment. 

He proposed an efficient approach to use monitoring data to evaluate structural reliability (Frangopol et al., 

2008). Ming Liu and Dan M. Frangopol also presented a system reliability-based approach using SHM data 
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(Liu et al, 2009). The above two papers provide a solid basis for integrating monitoring data into bridge 

reliability assessment, which is also adapted in this chapter. 

3.2 Bridge monitoring system 

The I-91 Northbound Bridge across Baldwin Avenue was built in 1964 in Meriden, Connecticut, 

United States. A photo of the bridge is shown in Figure 5.1. The studied bridge is a single-span eight-girder 

composite bridge. It has a span length of 85 feet, a width of 55 feet, a horizontal skew of 12% and a 

longitudinal slope of 3%. The bridge has a fixed bearing at the south abutments, and expansion bearing at 

the north abutments. The expansion bearing allows horizontal expansion of bridge under environmental 

and operational effects. According to the Connecticut Department of Transportation, the bridge carries three 

lanes with an annual average daily traffic of 57,000 vehicles, with 9% trucks (Christenson et al., 2011). 

 

Figure 3.1 Side view of Meriden Bridge 

A bridge monitoring system had been installed in 2011 on the Meriden Bridge are for bridge health 

monitoring (BHM) and bridge weight in motion (BWIM) purposes. The long-term BHM includes 38 

sensors consisting of 18 foil strain gages, 4 piezoelectric strain sensors, 8 piezoelectric accelerometers, 4 

capacitance accelerometers, and 4 resistance temperature detectors (RTDs). As seen in the sensor layout 
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graph in Figure 2, the strain sensors are installed on the bearings at the bridge abutments and at the mid-

span of each of the eight girders. The accelerometers are installed at quarter-span and mid-span of the bridge, 

and the RTDs are mounted underneath the bridge to monitor the temperature variability. The data 

acquisition hardware is a National Instruments (NI) cDAQ-9178 CompactDAQ chassis, which provides 

signal conditioning and high sampling rates 2048 Hz for the different types of sensors. A desktop located 

at the bridge site operates the data collection and implementation automatically, and be remotely accessed 

through a cellular modem. The acceleration and temperature data are collected during the last five minutes 

of each hour, so that each sensor acquires 24 sets of 5-minute data files every day continuously. More 

details about the Meriden Bridge and the structural health monitoring system have been reported by 

(Christenson et al., 2011; Li, 2014).  

 

Figure 3.2 Sensor layout on Meriden Bridge 

3.3 Statistical analysis for strain sensor readings 

This project focuses on the monitored data from sensors on Girder 4 and Girder 6, which are located 

on the right lane and middle lane respectively. Sensor 1 is located on the right lane, and sensor 2 is located 

on the middle lane. As a first step, 24-hour continuous monitoring data was chosen on January 1, 2014. The 
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corresponding sensors are installed on the top flange of the bridge. In order to minimize the volume of 

monitoring data, only maximum live load induced by traffic are extracted and analyzed. Totally 67869 peak 

loadings were captured by sensor 1, and 67823 by sensor 2. For sensor 1, the mean of maximum live loading 

is 11.1291, and the standard deviation is 3.4248. For sensor 2, the mean value is 9.2670, and the standard 

deviation is 3.6387. These descriptors are listed in Table 1 below. The reason for right lane has larger strain 

loading than middle lane can be verified by the common sense that heavy trucks prefer right lanes for safety. 

And this result is supported by live loading result that about 70% heavy vehicles traffic occurred on the 

right lane in a two-lane bridge (Liu et al., 2009) 

Table 3.1 Statistical descriptors for monitoring data 

 Number of Peaks Mean Standard Deviation 

Sensor1 (Right Lane) 67869 11.1291 (μm/m) 3.4248 (μm/m) 

Sensor2 (Middle Lane) 67823 9.267 (μm/m) 3.6387 (μm/m) 

 

 

 

 

Figure 3.3 Histograms of peak live load from monitoring data on middle lane 
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Figure 3.4 Histograms of peak live load from monitoring data on right lane 

The histogram graphs of the monitoring data are shown in Figure 3.3 and 3.4. The probability 

distribution of monitoring data will be assessed to see if they fit a particular distribution. The probability 

plots of six distributions will be used for the data assessment. Its idea is to scale the x-axis of a CDF so that 

the result would be a straight line if the data conforms to the assumed distribution. As shown in Figure 3.5 

and 3.6, probability plots of monitoring data with normal, lognormal, Weibull, Exponential, extreme value 

and Rayleigh distribution are compared. The result shows that normal and Weibull distribution has the best 

fitting for peak live loadings from monitoring data. This result could be verified through more tests on long-

term monitoring data. 
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Figure 3.5 Distribution fitting test for monitoring data from right lane 
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Figure 3.6 Distribution fitting test for monitoring data from middle lane 

3.4 Reliability based model 

3.4.1 Yield strength limit state 

The First Order Reliability Method (FORM) is used to estimate the structural reliability. It has been 

verified that FORM method has a good approximation linear and sometimes nonlinear conditions. The 

design of any structure requires that its resistance R is greater than the monitored load M. This can be 

expressed by using the limit state function 

0)(  MRXg ,                                                            (3.1) 

The reliability index is defined as  
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where 
R and 

M are the mean value for resistance and monitored load effect, and 
R and

M are standard 

deviation for them respectively. In this project, the monitored load M only contains the amplitude of peak 

values of all loadings, which is different from previous researches that consider all time history of loading. 

This method was implemented by using command ‘findpeaks’ in Matlab. 

In addition to the uncertainties in the material and loading, the uncertainty in the sensors (%)se  can 

be added in the reliability index 

)(

)1(

22

MR

sMR e









 ,                                                            (3.3) 

The resistance R and the load effect M are assumed normally distributed, thus the probability of failure 

can be determined as  

)( fP ,                                                            (3.4) 

3.4.2 Reliability model for whole bridge strain monitoring system 

The bridge system reliability can be assessed by the Parallel-Series combined system model, where all 

sensors on one structural component are represented by a parallel system model, and all structural 

components are represented by a series system model. In this way, the probability of failure of the whole 

bridge can be calculated based on probability of failure for each sensor. The equation to calculate the 

probability of failure for a parallel system is 
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And the equation for the probability of failure of a series system is 
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where Pfi represents the probability of failure for structural component at ith sensor location. 
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It is possible to focus on the probabilistic assessment on the steel yielding based on sensor data and 

design data of Meriden Bridge. The steel used in the top flange is M270 Grade 50 W. The nominal yield 

strength of this steel is 345 MPa (50 ksi). The probabilistic analysis of this kind of steel has been studied 

by Strauss et al. 2006, which yields at a mean value of 380 MPa (55.11 ksi) and a standard deviation of 28 

MPa. The modulus of elasticity of 200,000 MPa (29,000 ksi) is used to transform the strain data to stress. 

Then the computation for reliability index β for each sensor can be completed. The reliability index for 

sensor 1 and sensor 2 are 13.49 and 13.50, which means they are not reliability critical components. 

The reliability model for Meriden Bridge is established based on the above theory in Section 3.2. The 

eight girders of the bridge are within a series system, and three sensors located on Girder 2, 4, 6 and 8 are 

in a sub-parallel system. The plot of the system model is shown in Figure 3.7. 

 

Figure 3.7 System model of the Meriden Bridge 

)1)(1)(1)(1)(1(1)( 987654321 fffffffffdgeMeridenBrif PPPPPPPPPP   

)1)(1)(1)(1( 161514131211109 ffffffff PPPPPPPP  ,                    (3.7) 

 

Table 3.2 Reliability index and probability of failure. 

 

Microstrain(μm/m) Stress(Mpa) Microstrain(μm/m) Stress(Mpa)

Sensor1 (Right Lane) 11.1291 2.22582 3.4248 0.68496 13.48789981 9.21376E-42

Sensor2 (Middle Lane) 9.267 1.8534 3.6387 0.72774 13.50067651 7.74734E-42

Mean Standard Deviation
Reliability Index, β Pf
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In this project, we assume sensor 1 can represent all the other sensors, thus the probability of failure 

of sensor 1 is used in the system model. The result for system probability failure we got is zero, which 

means the bridge is in good condition. The system model has the potential to be used when data from other 

sensors are used to reflect the overview of condition for the whole bridge. It also can be used in on-line 

monitoring, which means it can assess the reliability of bridge in real time. 

3.5 Fatigue reliability assessment 

This brief document presents a general procedure to predict the fatigue reliability of an in-service 

short-span bridge, based on in-field measurement data. Due to time constraint, the bridge deterioration 

effects, including crack and corrosion are not considered. In addition, the calculation process is based on 

only one day SHM data for only one sensor, which may overestimate or underestimate the actual bridge (or 

structural component) fatigue reliability. For future analysis, these two effects along with other important 

factors should be considered for more reliable fatigue reliability assessment.  

3.5.1 One day stress time history extraction 
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Figure 3.8 One-day stress time history (June 10th, 2015) 
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3.5.2 Obtain stress range and the equivalent stress 

The cycle counting method, such as the rain-flow cycle-counting method, is used to process irregular 

stress-histories and store the data. The total number of cycles, ntc, is obtained after a stress-range cut-off 

level is defined. Applicable cut-off levels for stress-ranges are suggested in a range from 3.45 MPa (0.5 ksi) 

to 33%, the constant amplitude fatigue limit (CAFL). In total, 732771 stress ranges are obtained based on 

one-day stress time history as shown in Figure 3.9, and 1742 effective stress ranges (i.e., Δσ>3.45 Mpa) are 

identified. The corresponding stress-range bin histogram is shown in Figure 3.9.  
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Figure 3.9 Stress-range bin histogram 

The equivalent stress-ranges are defined as the constant-amplitude stress-range that can yield the same 

fatigue life as the variable amplitude stress-range for a structural detail. According to Miner’s rule, the 

accumulated damage is, 
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N N
  ,                                                   (3.8) 
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where ni = number of observations in the predefined stress-range bin Sri; Ni = number of cycles to failure 

corresponding to the predefined stress-range bin; ntotal = total number of stress cycles of the stress range 

histogram; and N = number of cycles to failure under an equivalent constant amplitude loading. 

The equation for N is given by 

m

reN A S                                                                 (3.9) 

where material constant m represents the slope of the S-N curve; A is detail constant taken from Table 

6.6.1.2.5–1 in the AASHTO LRFD bridge design specifications (AASHTO 2010); Sre represents the 

equivalent stress range. 

Sre can be obtained through using the Miner’s rule, 
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Note that the Eq. (3.10) can be used to obtain the equivalent stress range based on the stress range bin 

histogram that is derived from Figure 3.9. The equivalent stress range is Sre is 5.43 Mpa in this case study. 

Then substitute Sre = 5.43 Mpa into (3.9), the N is obtained as 4.89×108. 

3.5.3 Limit state function (LSF) 

In this research, the one-day monitoring data obtained on June 10, 2015 are assumed to represent the 

whole year. In section 3.5.2, the number of daily average effective stress ranges is calculated as

1742avgN * . Therefore, the total number of stress cycles in one year Nyear can be expressed as, 

*365 avgyear NN  ,                        (3.11) 

The remaining life of the bridge is assumed y years, thus the accumulated number of stress cycles for 

the future years N(y), can be expressed as, 

yNyNyN avgyear  *365)(                                                             (3.12) 
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When the fatigue damage variable D increases to 1, a fatigue failure is expected. For fatigue reliability 

analysis, a limit state function (LSF) is often used and defined based on the S-N approach and Minder’s 

rule, 

   *( ) ( )X
m

f f reg D D D N y A S                                 (3.13) 

where Df = miner’s critical damage accumulation index in terms of resistance and is assumed to be 

deterministic for metallic materials; D = Miner’s damage accumulation index; the number of cycles, N(y), 

is a lognormal random variable with its mean value obtained from Eq. (3.13) and COV of 0.2; and the 

predicted effective stress range is also a lognormal random variable with its mean value obtained from Eq. 

(3.10), which is 5.43 Mpa in the present study, and COV of 0.2. The information for all the parameters in 

the LSF are provided in Table 3.3.  

Table 3.3 Summary of LSF Parameters 

Parameter Distribution Mean COV Description Source 

Df Deterministic 1 -- Critical damage accumulation index Wirsching (1984) 
aA Lognormal 7.83E+10 0.34 Fatigue detail coefficient AASHTO (2010) 
b𝑆𝑟𝑒 Lognormal 5.43 0.2 Predicted effective stress range Based on SHM data 
b𝑁𝑎𝑣𝑔

∗  Lognormal 1742 0.2 Predicted average daily number of cycles Based on SHM data 

 

Note: aThe value of A is assigned by the S–N category C (unit: MPa3). bThe predicted equivalent stress 

range, 𝑆𝑟𝑒, and the predicted average daily number of cycles, 𝑁𝑎𝑣𝑔
∗ , are obtained based on 1-day SHM data, 

and 𝑆𝑟𝑒  and 𝑁𝑎𝑣𝑔
∗  are assigned with values such that, 𝑆𝑟𝑒=5.43 (Mpa) and 𝑁𝑎𝑣𝑔

∗ =1742 (cycle/day). 

 

3.5.4 Annual fatigue reliability index 

The method used in this chapter was adapted from Zhang et al. (2012). Assuming that all the random 

variables (i.e., N(y), A,
reS ) are lognormal, the fatigue reliability index can then be estimated based on the 

LSF as follows, 
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where the parameters μ and σ denote the mean value and standard deviation of the corresponding lognormal 

random variables, respectively.  

Based on Eq. (3.14), the annual fatigue reliability index is obtained and plotted in Figure 3.10. Two 

cases can be studied to calculate remaining life for reference. In the case of target reliability index 

βtarget=1.65, which corresponds to a 5% failure probability or a 95% survival probability, the remaining life 

of the bridge is about 250 years. When βtarget equals to 3.5, which corresponds to 1/5000 probability of 

failure in AASHTO LRFD Design Code, the remaining life is calculated around 75 years, which is very 

close to the designing life of a bridge. 

 

Figure 3.10 Annual fatigue reliability index plot 

3.6 Summary 

This paper presented two practical approaches to assess the probability of failure of bridge using strain 

monitoring data. The following conclusions can be drawn from this study. 

(1) Two efficient approaches to assess the reliability for bridge structure using strain monitoring data. 

One is based on yield strength limit state, and the other is based on fatigue limit state. 
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(2) The yield strength based model considers the yield strength and only requires statistical parameters 

of yield strength and loading. The sensor error is also included in the reliability index equation. A parallel-

series combined system is presented in order to assess the bridge reliability based on multi-sensor 

monitoring systems.  

(3) Fatigue reliability based method can calculate structural probability of failures in future years based 

on fatigue theory and Miner’s rule. The accumulated damage is obtained based on monitoring strain data 

to calculate the fatigue reliability index.  
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CHAPTER 4 STRUCTURAL PARAMETER IDENTIFICATION FOR MR DAMPER 

EQUIPPED STRUCTURES 

 

4.1 Introduction 

The Magneto-rheological (MR) dampers have been widely used in many civil engineering structures 

due to its advantages including mechanical simplicity, high dynamic range, low power requirements, large 

force capacity, and robustness. However, research about structural parameter identification methods for 

MR damper equipped structures is limited. This paper aims to develop a real-time structural damage 

detection method for MR damper controlled structures. A novel state-space model of MR damper controlled 

structure is first built by combining the structural dynamic equation of motion and MR damper’s hyperbolic 

tangent model. In this way, the state parameters of both the structure and MR damper are included in the 

extended state vector of the new state-space model. Extended Kalman filter is then used to provide 

predictions for state variables based on the measurement data. The two techniques are combined to identify 

parameters and track the changes of both structure and MR damper in real time. The proposed method is 

tested using simulation response data of a three-floor linear building structure equipped with one MR 

damper under earthquake excitation. The testing results show that the adaptive extended Kalman filter based 

approach is capable to estimate structural parameters, so that more insights and understanding of the 

structural damage can be obtained. The developed method also demonstrates high parameter identification 

accuracy and light computation, as well as the potential to implement in a structural health monitoring 

system. 

Applications of control devices used in civil engineering have received great interests in the past 

decades. Structural control devices can protect civil structures from natural or disaster loadings such as 

earthquake, waves and winds. Through this energy dissipating mechanism, the structural damage and 

failure can be effectively reduced and prevented. On the other hand, structural health monitoring is also 

important to determine the status of the structure and detect the damage when it occurs. Structural health 
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monitoring can be used to identify the existence, location and severity of structural damage, and help to 

estimate the remaining service life. Many model-based structural parameter identification methods require 

prior knowledge of the equations for structural dynamic model. However, for a typical structural control 

device equipped structure, the structure control device also changes the structural dynamic model, which 

makes it unrepresentative of the current condition of the structure and add difficulty for applying existing 

model-based methods. In the view that control devices are installed in more and more civil structures, 

current structural parameter identification methods need to be modified to adapt the control device-

equipped structures. In this paper, the authors aim to develop an efficient structural parameter identification 

method which can incorporate both health monitoring and control systems for civil engineering structures.  

Among many innovative structural control devices, the magneto-rheological (MR) fluid damper is a 

promising device in structural control. Changing the current inputs and settings of the damper can result in 

significant difference in the force response of the damper and structure. MR dampers exhibit highly 

nonlinear hysteretic dynamic behaviors due to magnetic and friction forces, which make them difficult to 

model and control. Various mathematical models have been developed to represent the highly nonlinear 

dynamic behavior of MR dampers, including hyperbolic tangent model (Gavin 2001; Gamota and Filisko, 

1991; Bass and Christenson, 2007), Bouc-Wen model (Bouc 1971; Wen 1976; Spencer et al. 1997), viscous 

plus Dahl model (Dahl 1968, 1976; Bouc 1971; Aguirre et al. 2012), Algebraic model (Choi et al. 2001, 

Song et al. 2005; Ruangrassamee et al. 2006), LuGre friction model (Jimenez and Alvarez-Icaze, 2005) 

and Bingham model (Stanway et al. 1985, 1987). In order to estimate corresponding values of the 

parameters in the above models, a considerable amount of approaches have been developed, including 

resursive least square (RLS) method (Jimenez and Alvarez-Icaze, 2005), artificial neural network (ANN) 

method (Chang and Roschke, 1998), neuro-fuzzy method (Atray and Roschke, 2004) and recurrent neural 

network (RNN) method (Wang and Liao, 2005). All the above literatures are helpful to understand dynamic 

models of MR damper and the integrating MR damper into structural dynamic model. 

Many structural parameter identification methods have been developed in order to estimate system 

parameters based on the measurements of structural response data directly, including extended Kalman 
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filter (EKF) (Hoshiya et al. 1984; Mariani and Corigliano, 2005), unscented Kalman filter (UKF) (Mariani 

and Ghisi, 2007; Wu and Smyth, 2007) and Particle filter (Charzi and Smyth, 2009; Eftekhar Azam et al. 

2012). In these Kalman filter-based methods, the dynamic structures are modeled in the state space 

formulation including state equations and measurement equations.  These methods are attractive in view of 

the recursive feature of Kalman filter such that they can estimate structural parameters straightly, and 

provide detailed information and understanding about the existence, location, and severity of the structural 

damage. In the EKF, the state distribution is approximately by a Gaussian random variable, which is then 

propagated through the first-order linearization of a nonlinear system. The unscented Kalman filter (UKF) 

differs from the EKF in the manner of representing Gaussian random variables. The UKF uses an unscented 

transform to generate a minimal set of carefully chosen sample points to present the state distribution. These 

sample points capture the means and covariance of the Gaussian random variables, and when propagated 

through the nonlinear system, captures the posterior mean and covariance accurately to the 2nd order for 

any nonlinearity. The particle filters can deal with nonlinear systems with non-Gaussian posterior 

distribution of the state. The concept of the method is that the approximation of the posterior distribution 

of the state is done through the generation of a large number of samples (weighted particles), using Monte 

Carlo Methods. The basic drawback is the fact that depending on the problem a large number of samples 

may be required thus making the particle filter analysis computationally expensive. The UKF and particle 

filter may estimate more accurately than the EKF for highly nonlinear systems, however, the EKF is widely 

used in state estimation and structural parameter estimation for civil engineering problems due to its 

straightforward implementation, high updating frequency, fast convergence speed, and low computational 

costs (Yang et al. 2006 2007; Zhou et al. 2008; Soyoz et al. 2008; Liu et al. 2009; Lei et al. 2012; Yin et 

al. 2013; Jin et al. 2016a), and EKF is also adopted in this paper. 

Recently, a novel MR damper parameter identification method using EKF has been developed by 

authors (Jin et al. 2015, 2016b). In this paper, the EKK based method is further improved with more 

rigorous derivations and discussion on testing results. This paper proposes a new method to combine 

hyperbolic tangent model and EFK to identify structural parameters in real time. In Section 2, the 
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methodology about hyperbolic tangent model for MR damper is reviewed. Section 3 described EFK-based 

method for structural parameter estimation. Section 4 summarized how EKF and hyperbolic tangent model 

are combined for real-time parameter identification in this paper. Subsequently in Section 5, application of 

the proposed EKF based method will be presented for a 3-degree-of-freedom (3DOF) linear structure 

equipped with a MR damper. Finally, testing results discussion and the benefits of developed damage 

detection method will be highlighted. 

4.2 Hyperbolic tangent model for MR damper 

The hyperbolic tangent model was proposed by Gavin to provide damper force prediction for an 8 KN 

Electro-Rheological fluid damper (Gavin, 2001). Gavin’s model is a simplified version of a model proposed 

by (Gamota and Filisko, 1991). The hyperbolic tangent model used in this research is based on the model 

proposed by (Bass and Christenson, 2007). The schematic of this hyperbolic tangent model is shown in 

Figure 4.1. 

 

Figure 4.1 Schematic of the MR damper hyperbolic tangent model 

In the hyperbolic tangent model, MR damper can be represented by two sets of spring-dashpot 

elements connected by an inertial mass element. The inertial mass element resists motion by means of a 

Coulomb friction element. All parameters in MR damper can be represented as pre-identified functions of 

current. The dynamics of the system and force output can be described in state space form as, 
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where x0 and ẋ0 are the displacement and velocity of the inertial mass relative to a fixed end, x1 and ẋ1 are 

the displacement and velocity of the damper piston end relative to the inertial mass. The k1 and c1 model 

the pre-yield visco-elastic behavior, and k0 and c0 model the post-yield visco-elastic behavior. The m0 

represents the inertia of both fluid and the moving piston. In the Coulomb friction function term, f0 is the 

yield force and Vref is a reference velocity. 

The hyperbolic tangent model contains seven parameters (k0, k1, c0, c1, m0, f0, Vref), each of them can 

be expressed through a function of current. The functions of these parameters with current used in this study 

are shown in Table I. More details about how these parameters are determined can be found in (Bass and 

Christenson, 2007). 

 

Table 4.1 Parameters in the hyperbolic tangent model. 

Parameters as a function of damper current, i (A) Units 

k0 = (0.10i4 – 1.00i3 + 1.30i2 + 2.30i + 6.20) × 10-4 kN mm-1 

k1 = –2.43i4 + 23.76i3 – 80.70i2 + 110.62i + 55.08 kN mm-1 

c0 = (–0.98i4 + 9.33i3 – 29.96i2 + 35.80i + 12.64) × 10-2 kN s mm-1 

c1 = (–0.62i4 – 6.73i3 + 29.96i2 – 46.06i + 35.67) × 10-2 kN s mm-1 

m0 = (0.16i4 – 1.62i3 + 5.48i2 – 7.05i + 4.85) × 10-3 kg 

f0 = 1.52i4 – 10.27i3 + 2.79i2 + 94.56i + 6.19 kN 

Vref = –0.12i4 + 1.36i3 – 6.19i2 + 13.12i + 0.76 mm s-1 
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4.3 EKF-based structural parameter identification 

4.3.1 Kalman filter and extended Kalman filter 

The Kalman filter (KF) provides a recursive solution for linear dynamic systems that can be 

represented in state-space formulation. Each updated estimate of the state is computed from the previous 

estimate and new input data only, instead of all previous data points. Thus, the KF is less demanding in 

storage space and computationally more efficient. The state equation and measurement equation of KF are 

given by: 

kkkk wxFx 1 ,                                                                (4.3) 

kkkk vxHy  ,                                                                 (4.4) 

where xk is the state vector, and yk is the measurement vector. The process noise wk and observation noise 

vk are independent, zero-mean, Gaussian processes with covariance matrix Qk and Rk, respectively. The 

matrices F, H, Q and R are assumed known and possibly time-varying.  

The KF consists of two steps: time update and measurement update. In time update, the state and 

covariance propagations are implemented as follows:  

kkkkk xFx ˆˆ
1  ,                                                                         (4.5) 

kkkkkkk QFPFP  '1 ,                                                             (4.6) 

kkkkk xHy 11
ˆˆ

  ,                                                                     (4.7) 

where the prior state kkx̂ and state covariance matrix kkP  are propagated to kkx 1
ˆ
 and kkP 1 , respectively. 

The kkx 1
ˆ

 is then used to generate the estimated measurement kky 1
ˆ

 through Hk.  
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In the measurement-update step, the filter gain Wk, the posterior state 11
ˆ

 kkx , and the state covariance 

11  kkP are produced as follows:  

11111 '   kkkkkk RHPHS
,
                                                       (4.8) 

1
1111 '


  kkkkk SHPW
,
                                                             (4.9) 

)ˆ(ˆˆ
11111 kkkkkkkk yyWxx  

,
                                              (4.10)  

'111111   kkkkkkk WSWPP
,
                                                     (4.11) 

where Sk+1 is the innovation covariance matrix. Note that the roots of the diagonal elements of 11  kkP  are 

the standard deviation of each state variable in the state vector. 

The EKF approach applies the standard KF to nonlinear systems by continually updating a 

linearization around the previous state estimate through first-order Taylor series expansion. The linearized 

state matrix Fk is taken as the partial derivative of nonlinear function f(xk, uk, k) with respect to x at kkx̂ , 

i.e. a Jacobian matrix, while the linearized measurement matrix Hk is obtained as the partial derivative of 

nonlinear function h(xk, uk, k) with respect to x at kkx 1
ˆ

 , and are given by: 
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The recursions of time update and measurement update for EKF follow equations (4.5)-(4.11) used in 

the standard KF. 
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Given the initial values of state vector x0, the initial state covariance matrix P0, the process noise 

covariance matrix Q0, and the measurement noise covariance matrix R0, the EKF procedure can be 

recursively implemented to estimate the structural parameters based on the measurement data of the 

dynamic system. Due to the nature of the recursion method, these structural parameters can be updated at 

each time step, which makes real-time structural damage detection possible. More details on KF and EKF 

can be found in Welch and Bishop (2002). 

4.3.2 Extended Kalman filter for linear structures 

The equation of motion for an m-DOF linear structure can be represented as, 

)()()()( tutKqtqCtqM                                                               (4.14) 

where M, C and K represent (m × m) mass matrix, damping matrix and stiffness matrix, respectively; q(t) 

is the (m × 1) displacement vector; )(tq  is the velocity vector; )(tq  is the (m × 1) is the acceleration vector; 

u(t) is the (m × 1) excitation force vector; and η is the (m × m) excitation influence matrix.  

As discussed in Section 4.3.1, KF-based approaches give a simple and efficient way to estimate the 

state and parameters in any system models. For structural dynamic systems, the states (e.g., displacement 

and velocity) and parameters (e.g., stiffness and damping) are often required to be identified 

simultaneously. Therefore, even though the structural model is linear, due to the nonlinear coupling feature 

between the structural states and parameters, EKF will be used. The state vector for structure model is thus 

formed as: 






























)(

)(
)(

)(' tq

tq
tx

tx 

                                                            (4.15) 

where x(t) is the state of structural dynamic system including displacement q(t) and velocity )(tq , and α is 

the parameter vector to be estimated. The continuous state equation becomes: 
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and the continuous measurement equation becomes: 

)),(),('()( ttutxhty  .                                                            (4.17) 

By discretizing and linearizing at time tk (k = 1,2,…) using first-order Taylor series expansion, the 

discrete-time space model is formulated as: 

kkkk wxFx  '' 1 ,                                                                (4.18) 

kkkk vxHy  '
,                                                                 (4.19) 
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When the measurement is the acceleration )(tq , the measurement matrix Hk has the form 
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The EKF recursion process follows the equations (4.5)-(4.11) as shown in Section 4.3.1. The selection 

of initial state, initial state covariance matrix, process noise and measurement covariance matrices will be 
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discussed in Section 4.4. 

4.4 EKF-based parameter identification method for MR damper equipped structures  

In order to use extended Kalman filter to estimate structural parameters for MR damper equipped 

structures, a synchronized state space model need to be formed to represent the whole system including 

both structure and MR damper. In order to form the model, parameters from both structure and damper are 

added in the new state vector. 

The state vector now becomes  
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which include the state vector contains displacement and velocity of structure and inertial mass of 

damper (q, 𝑞̇, x0, ẋ0), structural parameters (stiffness parameter kk, damping parameter cc) and parameters 

in hyperbolic tangent damper model (k1, k0, c0, c1, m0, f0, Vref).  

The continuous state equation is thus obtained as follows 
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The hyperbolic MR damper model (Eq. 1 and 2) and structural dynamic equation of motion (Eq. 14) 

are combined to form the new state-space model, as shown in Eq. 24 and 25.  
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The measurements are the accelerations of each floor and damper force (ẍ, f). The new state-space 

model contains all structural parameters and MR damper parameters, in this way, all these parameters can 

be updated using EKF at the same time in each step. 

4.5 Numerical validation 

The developed EKF based MR damper parameter identification method is tested using numerical 

simulations of dynamic structural systems excited by El Centro earthquake ground motion. The numerical 

testing is performed using Simulink in Matlab. The testing structure is a three story one bay steel frame 

building, with total weight of 596 kN. As shown in Figure 4.2, the structure is a linear, in-plane, three 

degree-of-freedom model with an MR damper installed at the first story. The MR damper is controlled by 

a constant 2A current. The time history data of acceleration for each floor, MR damper force and ground 

acceleration are obtained from simulation tests, and then are fed into EKF algorithms to estimate the states 
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and parameters of structure and MR damper. To achieve the goal of structural parameter identification, this 

method is expected to demonstrate the capacity to identify stiffness for each floor. 

 

Figure 4.2 Three story building structure with MR damper 

Consider a 3DOF linear shear frame structure subject to an earthquake excitation. The equation of 

motion for the 3DOF linear structure can be represented as, 

 gxMLGfKxxCxM   , (4.26) 

where x = [x1; x2; x3]T, ẋ = [ẋ1; ẋ2; ẋ3]T, ẍ = [ẍ1; ẍ2; ẍ3]T are the displacement, velocity and acceleration vector, 

respectively. f is the MR damper force, G = [-1; 0; 0]T is the influence vectors for MR damper force. L = 

[1; 1; 1]T is the ground excitation matrix, and ẍg is the acceleration of ground excitation. The mass matrix 

M, stiffness matrix K and damping matrix C, are as: 
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where mass m1 = m2 = m3 = 20.253×10-3 kN·s2/mm, stiffness kk1 = 9.933 kN/mm, kk2 = 5.662 kN/mm, kk3 = 

5.662 kN/mm, and damping cc1 = 7.243×10-3 kN·s/mm, cc2 = 2.069 ×10-3 kN·s/mm, cc3 = 2.069 ×10-3 

kN·s/mm. 

The N-S component of the El Centro earthquake recorded at the Imperial Valley Irrigation District 

substation in California of May 18, 1940 is used as excitation input, as shown in Figure 2. The peak ground 

acceleration (PGA) is set to 2g as ground motion in the testing. The sampling frequency is 50 Hz for all 

measured signals. The accelerations of each floor ẍi (i = 1, 2, 3) and the ground excitation ẍg are assumed 

as known measurements, and used as inputs in EKF estimation. The extended state vector is defined as,  

 TrefVfmcckkcccccckkkkkkxxxxxxx ;;;;;;;;;;;;;;;;;; ' 000101321321321321
 .                         (4.30) 

The initial values for parameters in EKF are defined as follows. The initial state vector is defined as 

[0; 0; 0; 0; 0; 0; 4; 5; 5; 0.002; 0.002; 0.002; 100; 0.2; 0.05; 0.02; 150; 10]T. The corresponding initial error 

covariance matrix of the extended state vector is a 21×21 diagonal matrix as P0 = 10-4×diag{1; 1; 1; 1; 1; 

1; 1; 1; 100; 100; 100; 100; 100; 100; 100; 100; 100; 100; 100; 100; 100}. The covariance matrix of the 

process noise wk is Q0 = 10-5I21, in which I21 is 21×21 identity matrix. The covariance matrix of the 

measurement noise vk is selected as R0 = 10-3I4. In this paper, the state covariance matrix and noise 

covariance matrices are selected based on the experience and extensive testing. 

Based on the EKF and the measurements of the response data, the estimations for all state variables 

can be obtained. As shown in Figure 4, the EKF estimations for acceleration, velocity and displacement 

response of first floor are presented as blue solid curves. For comparison, the simulated measurements for 

the above responses are plotted as red dashed curves. Both the blue solid curves and red dashed curves 

almost coincide, indicating that the EKF algorithm has a good tracking capability to update the states based 

on new measurements. 
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Figure 4.3 Simulation comparison: response of first floor 

In Figure 5, the EKF estimation results for the output force of MR damper is plotted in blue solid lines, 

while the actual measurement of the damper force in the simulation is plotted in red dashed curves. The 

testing result for MR damper force demonstrate that EKF method has a good tracking capability for MR 

damper output, even under large-peak external loadings during an earthquake event. 

  

Figure 4.4 Simulation comparison: damper force time history 
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The testing results for stiffness estimation for three floors are plotted in Figure 6. The EKF estimation 

for stiffness parameter of each floor are presented in blue solid curves, while the actual values of the same 

structural parameters used in the simulation are plotted in red dashed lines. For all three floors, both the 

blue solid curves and red dashed lines almost coincide, indicating that EKF algorithm has an excellent 

capability to provide high quality estimations for structural parameters for MR damper-equipped structures. 

  

Figure 4.5 Simulation comparison: stiffness of each floor 

Moreover, the recursion process of EKF on each time step only involves the new measurement and 

the calculation of state covariance matrix, therefore the developed method is computationally efficient.  

4.6 Summary 

In this paper, a novel structural parameter identification method based on extended Kalman filter is 

developed for linear structures equipped with MR damper devices. In order to incorporate the MR damper 

into the structural dynamic model, a new state-space model is established by combining hyperbolic tangent 

model and equation of motion of structural dynamic system. To estimate the structural variables and 

parameters, EKF is used to update the states based on new measurement in each time step. Based on 

measurements of accelerations of three stories and damper force, the EKF algorithm can produce real-time 
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estimation for the structural parameters and state variables. The EKF based method is tested using simulated 

data of a three stories linear building with MR damper under earthquake excitations, and numerical results 

demonstrate high estimation accuracy and light computation of this presented method. The developed EKF 

based method can be easily replicated to other types of structures equipped with MR dampers. And the 

developed EKF-based method has a good potential to be implemented in real-time SHM systems for in-

service MR damper equipped structures. 
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CHAPTER 5 REAL-TIME STRUCTURAL DAMAGE DETECTION FOR BUILDING 

STRUCTURES 

(Part of this chapter was published as Chenhao Jin, Shinae Jang and Xiaorong Sun “An integrated real-

time structural damage detection method based on extended Kalman filter and dynamic statistical process 

control”, Advances in Structural Engineering, Published online July 5, 2016, doi: 

10.1177/1369433216658484) 

 

5.1 Introduction 

Real-time structural parameter identification and damage detection are of great significance for 

structural health monitoring systems. The extended Kalman filter has been implemented in many structural 

damage detection methods due to its capability to estimate structural parameters based on online 

measurement data. Current research assumes constant structural parameters and uses static statistical 

process control for damage detection. However, structural parameters are typically slow-changing due to 

variations such as environmental and operational effects. Hence, false alarms may easily be triggered when 

the data points falling outside of the static statistical process control range due to the environmental and 

operational effects. In order to overcome this problem, this article presents a novel real-time structural 

damage detection method by integrating extended Kalman filter and dynamic statistical process control. 

Based on historical measurements of damage-sensitive parameters in the state-space model, extended 

Kalman filter is used to provide real-time estimations of these parameters as well as standard derivations in 

each time step, which are then used to update the control limits for dynamic statistical process control to 

detect any abnormality in the selected parameters. The numerical validation is performed on both linear 

and nonlinear structures, considering different damage scenarios. The simulation results demonstrate high 

detection accuracy rate and light computational costs of the developed extended Kalman filter–dynamic 

statistical process control damage detection method and the potential for implementation in structural health 

monitoring systems for in-service civil structures. 



46 

Maintaining civil engineering structures in good conditions through structural health monitoring (SHM) 

has become an increasingly viable option in recent decades. The goal of SHM is to determine the status of 

the structure, detect damage, and implement characterization strategies for engineering structures (Yan et 

al. 2007). Some extreme events, such as earthquake, typhoon, and blast, can cause structural damages and 

lead to structural failure rapidly. During these events, real-time reliable information regarding the condition 

and the integrity of the structure is invaluable for infrastructure owners and first responders (e.g., policemen, 

fire fighters, rescuers, etc.) to make rapid decisions (Dyke et al. 2010). Improving the capabilities of real-

time performance evaluation and damage detection for structural health monitoring systems are extremely 

valuable. 

Many structural parameter identification methods have been developed in order to estimate system 

parameters based on the measurements of structural response data directly, including extended Kalman 

filter (EKF) (Hoshiya et al. 1984; Mariani and Corigliano, 2005), unscented Kalman filter (UKF) (Mariani 

and Ghisi, 2007; Wu and Smyth, 2007) and Particle filter (Charzi and Smyth, 2009; Eftekhar Azam et al. 

2012). In these Kalman filter-based methods, the dynamic structures are modeled in the state space 

formulation including state equations and measurement equations.  These methods are attractive in view of 

the recursive feature of Kalman filter such that they can estimate structural parameters straightly, and 

provide detailed information and understanding about the existence, location, and severity of the structural 

damage. In the EKF, the state distribution is approximately by a Gaussian random variable, which is then 

propagated through the first-order linearization of a nonlinear system. The unscented Kalman filter (UKF) 

differs from the EKF in the manner of representing Gaussian random variables. The UKF uses an unscented 

transform to generate a minimal set of carefully chosen sample points to present the state distribution. These 

sample points capture the means and covariance of the Gaussian random variables, and when propagated 

through the nonlinear system, captures the posterior mean and covariance accurately to the 2nd order for 

any nonlinearity. The particle filters can deal with nonlinear systems with non-Gaussian posterior 

distribution of the state. The concept of the method is that the approximation of the posterior distribution 

of the state is done through the generation of a large number of samples (weighted particles), using Monte 
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Carlo Methods. The basic drawback is the fact that depending on the problem a large number of samples 

may be required thus making the particle filter analysis computationally expensive. The UKF and particle 

filter may estimate more accurately than the EKF for highly nonlinear systems, however, the EKF is widely 

used in state estimation and structural parameter estimation for civil engineering problems due to its 

straightforward implementation, high updating frequency, fast convergence speed, and low computational 

costs (Yang et al. 2006 2007; Zhou et al. 2008; Soyoz et al. 2008; Liu et al. 2009; Lei et al. 2012; Yin et 

al. 2013), and EKF is also adopted in this chapter. 

In the above studies, the structural parameters are assumed constant values throughout time. In this 

case, if the identified values of structural parameters deviate from their constant values, then the structural 

damage is identified. However, this assumption does not consider the influence of varying environmental 

and operational conditions, which can cause structural parameters to fluctuate and differ from their constant 

values even when no damage has occurred. The effects of environmental and operational conditions on the 

variance of structural parameters have been found and reported in many long-term structural monitoring 

projects (Peeters et al. 2001; Sohn 2007; Cross et al. 2013; Reynders et al. 2014; Spiridonakos et al. 2014). 

Thus the performance and reliability of current EKF-based methods for structural damage detection, 

especially for in-service large-scale civil structures, are in urgent needs to be improved. 

Statistical process control (SPC) has been widely used to monitor and control processes due to its 

advantages of early detection and prevention capability. The SPC attempts to differentiate additional 

sources of variation from natural sources in a process by using control limits. When the process data deviate 

from their normal range and trigger the control limits, the excessive variation of data indicates the presence 

of faults or damage in the system. SPC has been applied to many solve damage detection problems in the 

field of SHM, especially in long-term bridge monitoring research projects (Sohn et al. 2000; Fugate et al. 

2001; Kullaa et al. 2003; Deraemaeker et al. 2008; Zapico-Valle et al. 2011; Magalhaes et al. 2012). The 

above studies all used static SPC methods, in which the control limits are fixed constant values calculated 

from statistical indicators of historical data. However, the range of control limits might not be able to adjust 

to the changing trends of structural parameters due to environmental and operational variations, which may 
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trigger false alarms when data points are falling outside static control limits but the structure has not been 

damaged. 

To overcome all the above limitations, dynamic statistical process control (DSPC) method can be used 

to adjust control limits continuously and provide adaptive changing boundaries in real time. In order to 

establish the dynamic control limits for the target parameters, the values of the mean and standard deviation 

are required to be updated in each time step. The Kalman filter provides an ideal approach to establish 

dynamic control limits for its state variables for engineering damage detection problems (Sun et al. 2012). 

In each time step, the Kalman filter not only updates estimation values for state variables, but also generates 

a state covariance matrix, which stores variance of each state variable in the diagonal elements. Therefore, 

the combination of EKF and DSPC can achieve both online parameter estimation and dynamic control 

limits formulation, which has potential to be used for real-time structural damage detection.  

Recently, a novel structural damage detection method combining EKF and DSPC has been developed 

by authors (Jin et al. 2015a, 2015b). In this paper, the EKF-DSPC is further improved with more rigorous 

derivations and testing scenarios. Moreover, the entire paper has been extended with more discussion and 

insights on the initialization of the state and covariance matrix, noise covariance matrices, and the estimate 

processes on different structural models. This paper aims to develop a real-time EKF-DSPC based structural 

damage detection method considering variation effects that an in-service structure may encounter during 

operation. Numerical tests are performed to validate the effectiveness of the EKF-DSPC method for identify 

structural parameters and detect the occurrence of damage, including a three-story linear structure and a 

two-story nonlinear hysteric structure, with multiple common damage scenarios considered. The testing 

results show that proposed method has a good performance to identify structural parameters and detect 

damage with high accuracy and with low computational costs. In Section 5.2, the methodology about EKF-

based structural parameter identification is reviewed. Section 5.3 describes the theory of dynamic statistical 

process control, and summarizes how the two methods are combined for real-time damage detection in this 

paper. Subsequently in Section 5.4, application of the proposed EKF-DSPC method will be presented for a 

3-degree-of-freedom (3DOF) linear structure and a 2DOF nonlinear hysteretic dynamic system, considering 
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various damage scenarios. Finally, testing results discussion and the benefits of developed damage detection 

method will be highlighted. 

5.2 EKF-based structural parameter identification 

5.2.1 Kalman filter and extended Kalman filter 

The Kalman filter (KF) provides a recursive solution for linear dynamic systems that can be represented in 

state-space formulation. Each updated estimate of the state is computed from the previous estimate and new 

input data only, instead of all previous data points. Thus, the KF is less demanding in storage space and 

computationally more efficient. The state equation and measurement equation of KF are given by: 

kkkk wxFx 1 ,                                                                (5.1) 

kkkk vxHy  ,                                                                 (5.2) 

where xk is the state vector, and yk is the measurement vector. The process noise wk and observation noise 

vk are independent, zero-mean, Gaussian processes with covariance matrix Qk and Rk, respectively. The 

matrices F, H, Q and R are assumed known and possibly time-varying.  

The KF consists of two steps: time update and measurement update. In time update, the state and 

covariance propagations are implemented as follows: 

kkkkk xFx ˆˆ
1  ,                                                                         (5.3) 

kkkkkkk QFPFP  '1 ,                                                             (5.4) 

kkkkk xHy 11
ˆˆ

  ,                                                                     (5.5) 

where the prior state kkx̂ and state covariance matrix kkP  are propagated to kkx 1
ˆ
 and kkP 1 , respectively. 

The kkx 1
ˆ

 is then used to generate the estimated measurement kky 1
ˆ

 through Hk.  

In the measurement-update step, the filter gain Wk, the posterior state 11
ˆ

 kkx , and the state covariance 

11  kkP are produced as follows:  
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11111 '   kkkkkk RHPHS
,
                                                       (5.6) 

1
1111 '


  kkkkk SHPW
,
                                                             (5.7) 

)ˆ(ˆˆ
11111 kkkkkkkk yyWxx  

,
                                              (5.8)  

'111111   kkkkkkk WSWPP
,
                                                     (5.9) 

where Sk+1 is the innovation covariance matrix. Note that the roots of the diagonal elements of 11  kkP  are 

the standard deviation of each state variable in the state vector. 

The EKF approach applies the standard KF to nonlinear systems by continually updating a 

linearization around the previous state estimate through first-order Taylor series expansion. The linearized 

state matrix Fk is taken as the partial derivative of nonlinear function f(xk, uk, k) with respect to x at kkx̂ , i.e. 

a Jacobian matrix, while the linearized measurement matrix Hk is obtained as the partial derivative of 

nonlinear function h(xk, uk, k) with respect to x at kkx 1
ˆ

 , and are given by: 
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The recursions of time update and measurement update for EKF follow equations (5.3)-(5.9) used in 

the standard KF. 

Given the initial values of state vector x0, the initial state covariance matrix P0, the process noise 

covariance matrix Q0, and the measurement noise covariance matrix R0, the EKF procedure can be 

recursively implemented to estimate the structural parameters based on the measurement data of the 

dynamic system. Due to the nature of the recursion method, these structural parameters can be updated at 

each time step, which makes real-time structural damage detection possible. More details on KF and EKF 

can be found in Welch and Bishop (2002). 
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5.2.2 Extended Kalman filter for linear structures  

The equation of motion for an m-DOF linear structure can be represented as, 

)()()()( tutKqtqCtqM                                                               (5.12) 

where M, C and K represent (m × m) mass matrix, damping matrix and stiffness matrix, respectively; q(t) 

is the (m × 1) displacement vector; )(tq  is the velocity vector; )(tq  is the (m × 1) is the acceleration vector; 

u(t) is the (m × 1) excitation force vector; and η is the (m × m) excitation influence matrix.  

As discussed in Section 2.1, KF-based approaches give a simple and efficient way to estimate the state 

and parameters in any system models. For structural dynamic systems, the states (e.g., displacement and 

velocity) and parameters (e.g., stiffness and damping) are often required to be identified simultaneously. 

Therefore, even though the structural model is linear, due to the nonlinear coupling feature between the 

structural states and parameters, EKF will be used. The state vector for structure model is thus formed as: 
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where x(t) is the state of structural dynamic system including displacement q(t) and velocity )(tq , and α is 

the parameter vector to be estimated. The continuous state equation becomes: 
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and the continuous measurement equation becomes: 

)),(),('()( ttutxhty 
.                                                            (5.15) 

By discretizing and linearizing at time tk (k = 1,2,…) using first-order Taylor series expansion, the 

discrete-time space model is formulated as: 

kkkk wxFx  '' 1 ,                                                                (5.16) 
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kkkk vxHy  '
,                                                                 (5.17) 

where  
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When the measurement is the acceleration )(tq , the measurement matrix Hk has the form 
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The EKF recursion process follows the equations (5.3)-(5.9) as shown in Section 5.2.1. The selection 

of initial state, initial state covariance matrix, process noise and measurement covariance matrices will be 

discussed in Section 5.4. 

5.2.3 Extended Kalman filter for nonlinear hysteretic structure 

The equation of motion of a nonlinear hysteretic structure subject to ground excitation can be written 

as 

)()()()( tftrtqCtqM   ,                                                            (5.20) 

where M represents mass matrix, C represents damping matrix; q(t), )(tq  and )(tq  are the displacement, 

velocity and acceleration vector, respectively; r(t) is the restoring force matrix, and f(t) is the excitation 

force matrix. 

The excitation force matrix is expressed as: 

)()( tutf  ,                                                                  (5.21) 

where η is the excitation influence matrix, u(t) is excitation force. 
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The restoring force is expressed as: 

)()( tKZtr                                                                    (5.22) 

where K represent stiffness matrix, Z(t) is the non-observable hysteretic component vector, which can be 

defined by Bouc-Wen model (Bouc, 1967; Wen, 1976, 1989; Nayyerloo, 2011; Constantinou and 

Tadjbakhsh, 1986; Ismail et al., 2009). 

The hysteretic component vector is expressed as 

 Ti tztztZ )()()( 1  ,                                                      (5.23) 

ii

iiiiiiiii zqzzqqz


  
1

,                                               (5.24) 

where i represents ith DOF; )(tq and zi are the velocity and hysteretic component of ith DOF; αi, βi, γi are the 

hysteretic parameters of the Bouc-Wen model; βi and γi control the size and shape of the hysteretic loop; βi 

is fatness parameter; γi is loop pinching parameter; the power factor αi determines the sharpness of the curve 

from elastic to the post-elastic force-deflection behavior. 

When extended Kalman filter is applied to this model, the state vector now becomes  
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The continuous state equation is thus obtained as follows 
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Since the measurement is typically the acceleration, the continuous measurement equation becomes  

  )),(),('())()(()()( 1 ttutxhtKztqCtuMty    .                      (5.27) 

The discretization and linearization follow the same manner as for linear structures shown in Section 

5.2.2. With the formulation in the state-space model, the recursive estimation process follows the standard 

EKF. 

5.3 Dynamic statistical process control (DSPC) 

The structural parameters for in-service civil structures can be viewed as slow changing variables, 

driven by various environmental and operational effects (e.g., temperature, ground and traffic loadings, 

system noise, etc.). In previous parameter identification researches, structural parameters were usually 

treated as constant values, however, on-site long-term monitoring shows that these structural parameters 

have significant variances under the above effects (Sohn 2007), which may cause false alarm problems. 

Enabling online monitoring system to detect structural damage and maintain a low false alarm rate is a 

significantly important issue in SHM.  

SPC can be used to distinguish the abnormal variance from the normal variance of a process. If a 

structure is in good health without any structural damage, the structural parameters should jump and fall 

insignificantly within the SPC control limits. However, when the structural damage occurs, the key 

parameter is more likely to jump outside the range of the control limits, thus the potential damage can be 

detected. Traditional static SPC uses constant values as upper and lower boundaries of control limits, which 

can be represented as, 
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],[   nn ,                                                          (5.28) 

where μ is the mean, σ is the standard deviation of the estimated state, and n is a pre-defined integer number 

to set the confidence level for control limits.  

In equation (25), the values of μ and σ are obtained from historical measurements when the structure 

is operating in good condition. Nevertheless, this approach may not be effective due to the following reasons. 

If μ and σ are calculated too conservatively, e.g., large σ, a large range of SPC control limits may make it 

difficult to capture any occurrence of damage; If μ and σ are calculated too risky, e.g., a small σ, the narrow 

range of SPC control limits may not be able to update and adjust to varying environmental and operational 

conditions, thus lead to false alarms. 

To address the above issues, DSPC is adopted in this paper to replace the traditional static SPC. Instead 

of using the pre-defined fixed control limits based on the historical data, the real-time structural damage 

detection requirements call for an approach to enable the control boundaries to update and adjust to the 

changing trend of the state parameters. The recursive property of Kalman filter and the standard deviation 

obtained from covariance matrix provide a good solution to update the parameters of DSPC. At each time 

step, EKF not only estimates the state variables, but also generates state covariance matrix Pk, whose 

diagonal elements store the variance value of each state variable. The averaged estimated state variables 

over the past j points are used as the updated mean values, and the standard deviations are averaged using 

the same manner. In this approach, the control limits of DSPC can be updated in real time only based on 

new measurements.  

The EKF assumes a Gaussian random variable to estimate the state. Typically, “three-sigma Gaussian 

rule” is widely used in industry to cover the 99.7% probability of all values lying within three standard 

deviations of the mean in a normal process, which can be empirically treated as “near certainty” (Wheeler 

et al. 1992; Pukelsheim 1994; Wiborg et al. 2014). This means that by default, the EKF holds that at every 

step the confidence interval in the estimate equals to the mean 3times standard deviation. The “three-
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sigma Gaussian rule” will be followed in this paper to set n equal to 3, and the range of three-sigma control 

limits of DSPC is thus described as, 

]3,3[ ,,,, kkkk iiii   
,                                                       (5.29) 

where ki ,  and ki ,  are the averaged mean and averaged standard deviation of the state 
i  at time k, 

respectively. This novel integration of EKF and DSPC is very simple but efficient since the standard 

deviations are obtained as the byproducts of Kalman filter and the damage can be detected online once the 

estimates exceed the control limits.  

The flow chart for the proposed EKF-DSPC structural damage detection method in this paper is 

depicted in Figure 5.1. As the flow chart shows, starting from a set of initiation for state variables and 

covariance matrices, the EKF recursively estimates and updates the state variables based on new 

measurements. Then in each time step, the DSPC is integrated with EKF to identify the abnormal changes 

of state variables based on the presented control rules. In this approach, real-time structural damage 

detection can be achieved with high accuracy and short time. 
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Figure 5.1 Flow chart of EKF-DSPC damage detection method 
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5.4 Numerical Validation 

The developed EKF-DSPC structural damage detection method is tested using numerical simulations 

of buildings excited by El Centro earthquake ground motion. Both linear and nonlinear structures in 

different damage scenarios are considered. Simulated acceleration for each story of the structure and the 

ground excitation are fed into the EKF algorithm to estimate the structural parameters. At the same time, 

the DSPC is utilized for real-time damage detection purposes. The numerical testing demonstrates the 

capacity of the developed method can identify the structural parameter online and trigger alarm warnings 

with high accuracy within rapid time. 

5.4.1 Three-story linear structure 

 

Figure 5.2 Three story linear structure 

Consider a three-story linear building structure subject to an earthquake excitation. The equation of 

motion for the three-story linear structure can be represented as, 

gxMLKxxCxM                                                               (5.30) 

where x = [x1; x2; x3]T is the relative displacement of each story, ẋ = [ẋ1; ẋ2; ẋ3]T, ẍ = [ẍ1; ẍ2; ẍ3]T are the 

relative velocity and acceleration of each story, ẍg is the acceleration of ground excitation, and L is the 

ground excitation matrix. The mass matrix M, stiffness matrix K, and damping matrix C are defined as:  
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where mass m1 = m2 = m3 = 1 kg, stiffness k1 = k2 = k3 = 12 kN/m, and damping c1 = c2 = c3 = 0.6 kN s/m.  

The N-S component of the El Centro earthquake recorded at the Imperial Valley Irrigation District 

substation in California of May 18, 1940 is used in this paper, as shown in Figure 5.3. The peak ground 

acceleration (PGA) is set to 2g as ground motion in the testing. The sampling frequency is 50 Hz for all 

measured signals. The relative accelerations of each floor ẍi (i = 1, 2, 3) and the ground excitation ẍg are 

assumed as known measurements, and used as inputs in EKF estimation. The unknown parameters to be 

identified are stiffness and damping of all floors, i.e., ki and ci (i = 1, 2, 3), thus the extended state vector is 

defined as,  

 Tccckkkxxxxxxx 321321321321 ;;;;;;;;;;; '  .                                   (5.34) 
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Figure 5.3 Ground acceleration record of El Centro Earthquake 

The initial values for parameters in EKF are defined as follows. The initial values for stiffness ki and 

damping ci are ki0 = 15 kN/m and ci0 = 0.1 kN s/m (i = 1, 2, 3), and the initial values for displacement xi and 

velocity ẋi are zero, i.e., xi0 = 0 and ẋi0 = 0 (i = 1, 2, 3). Thus the initial state vector is defined as [0; 0; 0; 0; 

0; 0; 15; 15; 15; 0.1; 0.1; 0.1]T. The corresponding initial error covariance matrix of the extended state 

vector is a 12×12 diagonal matrix as P0 = diag{1; 1; 1; 1; 1; 1; 105; 105; 105; 105; 105; 105}. The covariance 

matrix of the process noise wk is Q0 = 10-6I9, in which I9 is 9×9 identify matrix. The covariance matrix of 

the measurement noise vk is selected as R0 = 10-6diag{1; 1; 1; 1; 1; 1; 102; 102; 102; 1; 1; 1}. In all testing 

cases of the three-story linear structure, the same above initial parameters will be used.  

Based on EKF and the measurements of the response data, the estimations for all state variables can 

be obtained. As shown in Figure 5.4, the EKF estimations of displacements for all three floors are presented 

as red dashed curves. For comparison, the simulated results of displacements for all three floors are plotted 

as blue solid curves. Moreover, as shown in Figure 5.5 and Figure 5.6, the EKF estimation results for 

stiffness and damping of each floor are plotted in red dashed curves, while the actual values of the same 
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structural parameters used in the simulation are plotted in blue solid lines. In Figures 5.4, 5.5 and 5.6, both 

the solid curves and dashed curves almost coincide, indicating that the EKF algorithm has an excellent 

tracking capability to provide high-quality estimations for structural parameters. 

 

 

Figure 5.4 Comparisons of displacement between EKF estimation and measurement 
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Figure 5.5 Performance of EKF estimation for stiffness parameters in linear structure 
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Figure 5.6 Performance of EKF estimation for damping parameters in linear structure 

In order to verify the capability and accuracy of the EKF-DSPC based damage detection method, 

different structural damage scenarios are considered in the numerical validation. Two damage cases are 

presented for the linear structure: (1) damage only on structural stiffness; (2) damage on both stiffness and 

damping at the same time.  

Case 1: k1 is reduced abruptly from 12 to 6 kN/m at t = 20 s. The parameter estimation and damage 

detection performance for all 6 parameters based on the developed EKF-DSPC method is depicted in Figure 

5.7 and 5.8. The testing results indicate that the EKF estimation of identified parameters (blue solid curves) 

and actual values (black dashed curves) almost coincide. When the damage occurs on k1 at t = 20 s, the 
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sudden drop from 12 to 6 kN/s is captured by EKF rapidly. The effectiveness of DSPC to detect damage 

on k1 is verified in Figure 5.9, which is the zoomed-in process during 19 to 25 s. The DSPC detects the 

damage successfully when the EKF estimation of k1 jumps outside of the control range of DSPC while the 

estimation for other identified parameters fall inside DSPC when no structural damage appears. The testing 

results for damage Case 1 demonstrate that EKF-DSPC method has an excellent tracking capability for the 

structural parameters during damage events, leading to the online detection of damage on stiffness 

parameter with high confidence. 

 

Figure 5.7 Performance of EKF-DSPC for stiffness parameters in Case 1 
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Figure 5.8 Performance of EKF-DSPC for damping parameters in Case 1 
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Figure 5.9 Performance of EKF-DSPC method for k1 in Case 1 

Case 2: Parameters k1 and c1 are reduced abruptly at t = 20 s, from 12 to 6 kN/m and 0.6 to 0.4 kN 

s/m, respectively. Parameter estimation for all stiffness and damping parameters identified by EKF-DSPC 

are presented in Figure 5.10 and 5.11. And the details of damage detection for k1 and c1 during 19 to 25 s 

are presented in Figure 5.12 and 5.13. The EKF estimation of both k1 and c1 jump outside of the DSPC 

ranges at t = 20 s, thus simultaneous damage on both stiffness and damping in linear structure are also 

detected by EKF-DSPC method successfully.  
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Figure 5.10 Performance of EKF-DSPC for stiffness parameters in Case 2 
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Figure 5.11 Performance of EKF-DSPC for damping parameters in Case 2 
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Figure 5.12 Performance of EKF-DSPC method for k1 in Case 2 

 

 

Figure 5.13 Performance of EKF-DSPC method for c1 in Case 2 
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5.4.2 Two-story nonlinear hysteretic structure 

Civil structures generally exhibit nonlinear hysteretic behavior under damage events. A numerical 

study is performed to validate the performance of the EKF-DSPC based damage detection method for a 

nonlinear hysteretic model. The goal is to estimate the structure’s parameters and identify the damage by 

considering the hysteretic behavior exhibited by the structure during an earthquake. 

 

 

Figure 5.14 Two story nonlinear hysteretic structure 

Consider a two-story nonlinear hysteretic building structure (as shown in Figure 5.14), which can be 

represented by the equations of motion as described in, 
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in which z1 and z2 are the hysteretic components defined by Bouc-Wen model (Bouc, 1967; Wen, 1976, 

1989) as, 


 iiiiiiii zxzxxz iz  

1
    (i = 1, 2),                                    (5.36) 
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where the mass coefficients m1 = m2 = 1 kg, the stiffness coefficients k1 = k2 = 15 kN/m, damping 

coefficients c1 = c2 =1 kN s/m. For the hysteretic parameters, the abruptness parameter α = 2, hysteric loop 

fatness parameter β1 = β2 = 2, and loop pinching parameters γ1 = γ2 = 1. 

The El Centro Earthquake with peak ground acceleration (PGA) equals to 5g is used as the ground 

excitation in the numerical testing. The sampling time is 40 seconds, and the sampling frequency is 100 Hz 

for all measured signals. The fourth order Runge-Kutta method (Jameson et al. 1981) is used to implement 

the analytical solution to obtain the dynamic responses of the nonlinear hysteretic structure. The 

measurements of absolute acceleration of each floor ẍ1, ẍ2 and the ground excitation ẍ0 will be used in the 

EKF-DSPC method to perform system identification and damage detection. The unknown parameters to be 

identified are stiffness ki, damping ci, restoring force zi and hysteretic parameters βi and γi (i = 1, 2). These 

unknown parameters are appended to the state vector to form the new state vector as, 

 Tcckkzzxxxxx 21212121212121 ;;;;;;;;;;;;;  .                                   (5.37) 

The initial values for parameters in EKF are defined as follows. The initial values for stiffness ki and 

damping ci are ki0 = 20 kN/m and ci0 = 0.5 kN s/m (i = 1, 2), the initial values for hysteretic parameters βi 

and γi are βi0 = 1.5 and γi0 = 0.5 (i = 1, 2). And the initial values for displacement xi, velocity ẋi and restoring 

force zi are zero, i.e., xi0 = 0, ẋi0 = 0 and Zi0 = 0 (i = 1, 2). Thus the initial state vector is defined as [0; 0; 0; 

0; 0; 0; 20; 20; 0.5; 0.5; 1.5; 1.5; 0.5; 0.5]T. The initial error covariance matrix of the extended state vector 

is a 14×14 diagonal matrix P0 = diag{1; 1; 1; 1; 1; 1; 105; 105; 105; 105; 105; 105; 105; 105}. The covariance 

matrix of the process noise wk is selected as Q0 = 10-6diag{1; 1; 1; 1; 1; 1; 102; 102; 1; 1; 1; 1; 1; 1}. The 

covariance matrix of the measurement noise vk is selected as R0 = 10-6I2. In all testing cases of the two-story 

nonlinear hysteretic structure, the same above initial parameters will be used. 

Before any structural damage is introduced, the EFK estimation for all state variables for the nonlinear 

structure are obtained, and verified by comparing with analytical solutions. The comparison of hysteresis 

loops (relative displacement versus restoring force) between EKF estimation and analytical solution for two 

floors are presented in Figure 5.15 and 5.16. The comparison of time history of hysteretic component z 
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between EKF estimation and analytical solution for each floor are presented in Figure 5.17 and 5.18. 

Moreover, the EKF estimations for four structural parameters for each floor are presented in Figure 5.19 

and 5.20. In the two figures, the curves of EKF estimation all coincide with the curves of exact values, 

which indicate the accuracy of EKF to be used for parameter estimation for nonlinear structures.  

 

 

Figure 5.15 Comparison of hysteresis loops between EKF estimation and analytical solution for the 

first floor 
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Figure 5.16 Comparison of hysteresis loops between EKF estimation and analytical solution for the 

second floor 
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Figure 5.17 Comparison of hysteretic component z1 time history between EKF estimation and 

analytical solution for the first floor 
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Figure 5.18 Comparison of hysteretic component z2 time history between EKF estimation and 

analytical solution for the second floor 
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Figure 5.19 Performance of EKF estimation for nonlinear hysteretic parameters in first floor 
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Figure 5.20 Performance of EKF estimation for nonlinear hysteretic parameters in second floor 

Two structural damage scenarios are considered in the numerical validation for the nonlinear hysteretic 

structure: (1) damage only on structural stiffness; (2) damage on both stiffness and damping at the same 

time, as presented in following Case 3 and 4, respectively. 

Case 3: k1 is reduced abruptly from 15 to 10 kN/m at t = 20 s. The parameter estimation and damage 

detection performance based on EKF-DSPC method is depicted in Figure 5.21 and 5.22. And the details of 

damage detection for k1 during 18 to 23 s are presented in Figure 5.23. The EKF estimation of k1 jump 

outside of the DSPC ranges at t = 20 s, thus the damage on stiffness in nonlinear structure is also detected 

by EKF-DSPC method successfully. 
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Figure 5.21 Performance of EKF-DSPC for first floor in Case 3 
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Figure 5.22 Performance of EKF-DSPC for second floor in Case 3 
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Figure 5.23 Performance of EKF-DSPC method for k1 in Case 3 

 

Case 4: Parameters k1 and c1 are reduced abruptly from 15 to 10 kN/m and 1 to 0.5 kN s/m at t = 20 s, 

respectively. Parameter estimation and the details of the damage detection by EKF-DSPC are presented in 

Figure 5.24 to 5.27. As can be observed, when the damage occurs on k1 and c1 concurrently at t = 20 s, the 

sudden drop of both parameters can be captured by EKF within rapid time. The effectiveness of DSPC is 

verified by the fact that at t = 20 s, only parameters k1 and c1 run out of the DSPC ranges while other 

parameters are still within the DSPC range. 
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Figure 5.24 Performance of EKF-DSPC for first floor in Case 4 
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Figure 5.25 Performance of EKF-DSPC for second floor in Case 4 

 



83 

 

Figure 5.26 Performance of EKF-DSPC method for k1 in Case 4 

 

Figure 5.27 Performance of EKF-DSPC method for c1 in Case 4 
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5.5 Summary 

In this chapter, a real-time structural damage detection method for civil structures is developed based 

on the combination of EKF and DSPC. Based on measurements of damage-sensitive parameters involved 

in the state-space model of structural dynamic systems, the EKF algorithm produces real-time estimation 

means and standard deviations for the identified structural parameters to form the dynamic control limits to 

detect any abnormality in the selected parameters. The developed EKF-DSPC damage detection method is 

validated using simulation response data of a three-story linear structure and a two-story nonlinear 

hysteretic structure under earthquake excitation considering different damage scenarios, and the testing 

results demonstrate fast convergence rate, high damage detection accuracy and light computational costs. 

The EKF-DSPC method can be easily replicated in other structural damage detection problems for both 

linear and nonlinear structures. Moreover, since the EFK is a well-developed methodology that does not 

require large computation, and DPSC is capable to handle system variations caused by operational and 

environmental effects, the EKF-DSPC method has a good potential to be implemented in real-time SHM 

systems for in-service civil structures. 
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CHAPTER 6 REAL-TIME STRUCTURAL DAMAGE DETECTION FOR A 

HIGHWAY BRDIGE 

(Part of this chapter has been published as Chenhao Jin, Shinae Jang, Xiaorong Sun, Jingcheng Li and 

Richard Christenson (2016) “Damage detection of a highway bridge under severe temperature changes 

using extended Kalman filter trained neural network”, Journal of Civil Structural Health Monitoring, 6 (3), 

545-560.) 

 

6.1 Introduction 

Detecting structural damage in civil engineering structures has become an increasingly viable option 

for efficient maintenance and management of infrastructures. Vibration-based damage detection methods 

have been widely used for structural health monitoring (SHM). However, those methods may not be 

effective when modal properties have significant variance under environmental effects, especially severe 

temperature changes. In this paper, an extended Kalman filter-based artificial neural network (EKFNN) 

method is developed to eliminate the temperature effects and detect damage for structures equipped with 

long-term monitoring systems. Based on the vibration acceleration and temperature data obtained from an 

in-service highway bridge located in Connecticut, United States, the correlations between natural 

frequencies and temperature are analyzed to select proper input variables for the neural network model. 

Weights of the neural network are estimated by extended Kalman filter, which is also used to derive the 

confidence intervals of the natural frequencies to detect the damage. A year-long monitoring data are fed 

into the developed neural network for the training purpose. In order to assess the changes of natural 

frequencies in real structural damages, structural damage scenarios are simulated in the finite element model. 

Numerical testing results show that the temperature-induced changes in natural frequencies have been 

considered prior to the establishment of the threshold in the damage warning system, and the simulated 

damages have been successfully captured. The advantages of EKFNN method are presented through 
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comparing with benchmark multiple linear regressions method, showing the potential of this method for 

structural health monitoring of highway bridge structures. 

Detecting structural damage in civil engineering structures has become an increasingly viable option 

for efficient maintenance and management of infrastructures. Vibration-based damage detection methods 

have been widely used for structural health monitoring (SHM). However, those methods may not be 

effective when modal properties have significant variance under environmental effects, especially severe 

temperature changes. In this chapter, an extended Kalman filter-based artificial neural network (EKFNN) 

method is developed to eliminate the temperature effects and detect damage for structures equipped with 

long-term monitoring systems. Based on the vibration acceleration and temperature data obtained from an 

in-service highway bridge located in Connecticut, United States, the correlations between natural 

frequencies and temperature are analyzed to select proper input variables for the neural network model. 

Weights of the neural network are estimated by extended Kalman filter, which is also used to derive the 

confidence intervals of the natural frequencies to detect the damage. A year-long monitoring data are fed 

into the developed neural network for the training purpose. In order to assess the changes of natural 

frequencies in real structural damages, structural damage scenarios are simulated in the finite element model. 

Numerical testing results show that the temperature-induced changes in natural frequencies have been 

considered prior to the establishment of the threshold in the damage warning system, and the simulated 

damages have been successfully captured. The advantages of EKFNN method are presented through 

comparing with benchmark multiple linear regressions method, showing the potential of this method for 

structural health monitoring of highway bridge structures. 

In reality, the modal parameters of civil structures are affected by many operational and environmental 

factors including temperature, traffic loading, wind speed, etc. Among these factors, temperature is the 

dominant factor affecting the modal parameters of the bridge under normal condition. From long-term 

monitoring data, the temperature effect on modal properties of structures has been intensively investigated 

(Xia et al., 2012; Liu and Dewolf, 2007; Sohn, 2007; Soyoz and Feng, 2009; Cao et al., 2011). For example, 

the natural frequencies of Alamosa Canyon Bridge were discovered to vary 5% during a 24-hour period 
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(Cornwell et al., 1999), and the natural frequencies of Z-24 Bridge were found to fluctuate 14%-18% in 

one-year period (Peeters and Roeck, 2001). The freezing effect is also found on the relationship between 

natural frequencies and temperature when the temperature is below freezing point (0ºC or 32ºF) (Gonzales 

et al., 2013; Li, 2014). If the temperature effect is not considered and eliminated in structural damage 

detection, false alarm problems may arise and thus limit the application of structural health monitoring in 

in-service structures. It is critical to study the influence of temperature effect on modal parameters for in-

service bridges through long-term monitoring, and develop effective structural damage detection method 

which can eliminate the temperature effect and detect structural damage for in-service structures under 

normal operations. 

To reach this goal, several methods have been developed, including statistical regression models and 

artificial neural networks. Linear regression model assumes a linear function to describe relationships 

between modal parameter and affecting factors. The coefficients of the function are estimated based on 

historical data, and the adequacy of the model is then verified by analyzing model residuals. Peeters 

presented a dynamic linear regression analysis method based on an Autoregressive and Exogenous model 

to filter out temperature effects on natural frequencies for the Z-24 Bridge (Peeters et al., 2001). Ding and 

Li presented a polynomial regression model to fit frequency-temperature relations for Runyang Suspension 

Bridge (Ding and Li, 2001). However, the disadvantage of regression analysis is that many real-world 

phenomena are not simply represented as a single equation with sure estimators, especially when the 

regression functions do not contain all potential independent variables. 

Artificial neural networks (NNs) have been widely used in structural damage detection because of 

their strong capability to approximate the nonlinear functions between inputs and outputs through learning 

from historical data. Sohn et al. developed an auto-associative neural network (AANN)-based method 

considering environmental and operational conditions for structural damage detection, which selected linear 

regression model parameters as input and output (Sohn et al., 2002). Zhou et al. developed a back 

propagation neural network (BPNN)-based approach which picked normalized modal frequency as input, 

and generated novelty index as output to detect damage (Zhou et al., 2010 2011). Xu et al. used BPNN-
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based approach to predict damage magnitude based on modal energy-based damage index for Crowchild 

Bridge (Xu and Humar, 2006). Mata developed a neural network model which picked environmental factors 

as input and displacement as output to analyze behavior for a concrete dam (Mata, 2011). These papers 

focused on the estimation of the relationship between environmental factors and modal properties, and 

shared insights on input parameters selection for neural network models. However, based on the authors’ 

best knowledge, none of them used the historical data to predict the natural frequency. Moreover, using 

AANN or BPNN might suffer from slow convergence in view of the nature of first order learning algorithm. 

In addition, the confidence intervals of the predictions were not given, which means the quality of damage 

detection was hard to evaluate.  

To overcome the above difficulties, a neural network model trained by extended Kalman filter 

(EKFNN) for structural damage detection is developed in this chapter. The uniqueness of EKFNN include: 

(1) chooses time-lagged natural frequencies and temperature values are key inputs to predict the natural 

frequency in the next time step; (2) uses extended Kalman filter to train the neural network which converges 

faster and provides better solutions as compared with traditional widely used back prorogation algorithm; 

(3) provides high confidence levels for the predictions through extend Kalman filter training process. The 

main structure of this paper is presented as follows. In Section 6.2, in order to select independent input 

variables in the damage detection model, the correlation analysis for natural frequency and temperature are 

performed based on one-year measurement data. In Section 6.3, the methodology utilizing extended 

Kalman filter to train the weights of artificial neural network model is presented. To obtain the simulated 

natural frequencies data for damaged structure, the natural frequency reduction ratios under two common 

structural damage scenarios are simulated in finite element analysis in Section 6.4. In the numerical testing 

in Section 6.5, the monitoring data are used for training and validation, and the simulation damage data are 

applied for testing to validate whether the damage can be captured. In Section 6.6, the advantages of 

EKFNN method are presented by comparing with the benchmark approach based on multiple linear 

regressions.  
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6.2 Temperature effects on natural frequencies 

The vibration and temperature data measured from Meriden Bridge during March 2013 to May 2014 

were used for this research. In total, 4177 sets of five-minute hourly data files were measured. Though the 

measurement was interrupted occasionally due to power outage on bridge sites, the recorded measurement 

covered all 4 seasons with a full range of temperatures, which are sufficient for statistical analysis of the 

temperature effects on natural frequencies, training and testing the artificial neural network model for 

damage detection purposes. To select proper input variables for the neural network model, long-term 

monitoring data have been analyzed to set up a statistical model of natural frequencies under temperature 

changes in section 6.2.1. Based on the correlation analysis results of target variables, input variables for 

neural network model are selected in 6.2.2. 

6.2.1 Freezing effects on natural frequencies 

The long-term temperature trend depicted in Figure 6.1 illustrates the significant temperature change 

in New England region, recording the highest of 94.57 °F (34.76 °C) in August 2013 and the lowest of 

3.52 °F (-15.82 °C) in February 2014. The natural frequencies of the first seven modes for Meriden Bridge 

were calculated and plotted in Figure 6.2, which shows that all seven natural frequencies have the same 

tendency to decrease in the summer from June to August 2013, and increase in the winter from December 

2013 to February 2014. The measured temperature data have large fluctuations during December 2013 to 

March 2014 because of severe weather conditions, which also provides abundant data sets to study the 

correlation between natural frequencies and temperatures. 
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Figure 6.1 Measured temperatures from the bridge sensors during the collection period 

 

 

Figure 6.2 First seven natural frequencies during the collection period 

In order to study the temperature effects on natural frequencies, the relationships between frequencies 

and temperatures for the first seven modes are plotted in Figure 6.3. Negative correlations between 
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temperature and the natural frequencies are clearly observed, i.e., the natural frequencies decrease when 

temperature increases, and vice versa. In addition, the freezing effect can be observed that the changes in 

the natural frequencies are more sensitive to temperatures below freezing point (32ºF, 0ºC) than above. This 

phenomenon is mainly resulted from three reasons: first, the stiffness of concrete and steel increases when 

temperature decreases; Secondly, the freezing of accumulated dust and moisture adds fixity at the girder 

support; thirdly, the asphalt surface layer of the deck becomes very stiffness below freezing point (Sohn, 

2007). Considering the differences in temperature-natural frequency correlations below and above freezing 

point, both bi-linear and quadratic regression models were used to approximate the temperature-natural 

frequency relationship (Li, 2014). Thus, the freezing effect on natural frequencies is a significant factor, 

which must be considered in the damage detection for bridge structures under severe temperature changes. 

Therefore, a season index indicating the temperature status above or below the freezing point is included 

as an input factor of the NN model. 
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Figure 6.3 Seven identified natural frequencies versus temperature (Li, 2014) 

6.2.2 Input parameter selection using auto and cross-correlations  

Typically, more temperature and natural frequencies data could achieve a more accurate damage 

detection result. However, more input variables could result in adding computational complexity. Therefore, 

the optimal number of input parameters to be fed into NNs should be carefully determined. To reach this 

goal, the auto-correlation of the natural frequency and the cross-correlation between the natural frequency 

and temperature are investigated. Since all seven natural frequencies have similar features with the 

temperature changes, for simplicity, only the first natural frequency is used to develop the NN model for 

damage detection in this paper.  
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The auto-correlation function (ACF) of the natural frequency can evaluate the linear predictability or 

linear relationship of a time series by its own time lags as: 
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where fi is the natural frequency at time i, N is the number of samples, k is the time lag, and ρf(k) is the ACF 

coefficient of {fi} at lag k. The plot of ACF coefficients for the first natural frequency with time lag from 0 

to 10 hours is shown in Figure 6.4. When the time lag is equal to zero, ACF equals to 1 because it is the 

correlation with its own. The ACFs for other time lags are lower than 1 and decreasing as the time lag 

increases. Although the ACF coefficient decreases slightly as the time-lag value increases, the ACF 

coefficients between t-th natural frequency (ft) and the lagged natural frequency by k-th hours (ft-k) are very 

high (> 0.8). In time series analysis, the most correlated lagged points are used to predict the value in the 

next time step. Three time-lagged natural frequency and temperature data are chosen as inputs for neural 

network because these values all have high correlations with the prediction point, i.e. using ft-1, ft-2 and ft-3 

to estimate ft. Another advantage of using limited input data is to reduce the complexity of neural network 

and simplify the calculation process.  

 

Figure 6.4 Auto-correlation coefficient of the first natural frequency against time lag 
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Similar to ACF, the cross-correlation function (CCF) measures the similarity between two time-series 

as a function of the time lag of one series relative to the other series. The CCF coefficients between natural 

frequency and temperature are calculated by Equation 6.2: 
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where fi is the natural frequency at time i, Ti is the temperature at time i, N is the number of samples, k is 

the time lag, and ρf,T(k) is the CCF coefficient of {fi} and {Ti} at lag k. As can be seen from Figure 6.5, the 

negative correlation coefficients between the natural frequency and temperature at time lags have consistent 

negative values. To keep simplicity and be consistent with ACF, the identical number of the time-lag value, 

3, has been selected for the temperature factor in the model, i.e., using Tt-1, Tt-2, Tt-3 to predict ft. 

 

Figure 6.5 Cross-correlation coefficients between the first natural frequency and temperature against 

time lag 
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6.3 Extended Kalman filter-based artificial neural network (EKFNN) 

6.3.1 Neural network model  

Neural networks (NNs), as statistical learning models imitating biological neural networks, have been 

widely used in real practice because of their strong capability to approximate the nonlinear functions 

between input and output through learning a large number of samples. The basis of a neuron model (two-

layer network) is shown in Figure 6.6. An artificial neuron is a unit which can achieve its unique learning 

process by performing simple mathematical operations on its inputs. Equations 6.3 and 6.4 are the main 

steps for calculation of a neuron model: 
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Figure 6.6 Neuron model 

In this project, the NN structure is represented by a feed-forward three-layer perceptron as shown in 

Figure 6.7. The inputs are fed into the input layer, got multiplied by interconnection weights, and then 

passed from the input layer to the hidden layer. Within the hidden layer, the data obtained from previous 

step are summed and then processed by a nonlinear activation function (usually the hyperbolic tangent). 
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Finally, the data are multiplied by interconnection weights, and processed within the output layer to produce 

the neural network output.  

 

Figure 6.7 Structure of ANN with one hidden layer 

Based on the temperature effects on natural frequencies discussed in the previous section, the input-

output schematic of the artificial neural network model is depicted as shown in Figure 6.8. The time-lagged 

natural frequencies (ft-1, ft-2, ft-3), time-lagged temperature (Tt-1, Tt-2, Tt-3), and season index are selected as 

the inputs of NNs to predict the natural frequency at the next time step. The season index is introduced as 

one binary input in the damage detection model to consider freezing effects, i.e., it equals to 1 when Tt-1 is 

above the freezing point and 0 otherwise.  

 

Figure 6.8 Input-output schematic of the artificial neural network 
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6.3.2 Extended Kalman filter for network model learning 

The NN is trained by adjusting its weights (bias included) of the network using a set of input–output 

observations (u, y), where u is an input vector, and y is the corresponding output vector. After the NN is 

well trained, it predicts the output given any new inputs. The common training algorithm for NN is back 

propagation (BP), which looks for the minimum of the error function in weight space using the first-order 

steepest decent method. However, the traditional BP suffers from slow convergence, and may not be 

effective for predicting non-stationary processes like natural frequency. Extended Kalman filter, as a 

second-order algorithm, is a widely-developed method for recursive state estimation in nonlinear dynamic 

systems. Since NN learning procedure can be considered as a nonlinear estimation problem where the 

weights are to be estimated, EKF can then be used to train the NN by treating weights of the network as the 

state w(t) of a nonlinear dynamic system. Moreover, EKF provides the estimation of state covariance matrix 

and innovation covariance matrix, which can be used to derive the confidence intervals of the predictions. 

Thus, the weights of the NN are estimated by EKF as described by state equation in Equation 6.5 and 

measurement equation in Equation 6.6: 

)()()1( ttwtw  ,                                                           (6.5) 

)())(),(()( tvtutwhty  ,                                                    (6.6) 

where (k) and v(k) are the process noises and observation noises, respectively. The key steps of EKF in 

the NN weight training are summarized in Equation 6.7 to 6.12. 

The time-update equations are defined as: 

)()(ˆ kwkw  ,                                                                       (6.7) 

 )(),(ˆ)(ˆ kukwhky  .                                                          (6.8) 

 

The measurement-update equations are defined as: 

)1()1()()1()1(  kRkHtPkHkS T
,                              (6.9) 
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where K(k) is the Kalman gain, H(k) is the partial derivative of  )(),(ˆ tutxh  with respect to w(t) at the 

estimated weights, i.e., a Jacobian matrix, and P(t) is the weight covariance matrix. The variance of output 

(predicted natural frequency) can be obtained from the diagonal elements of the innovation covariance 

matrix S(t+1), and the confidence intervals can then be derived by adding a certain number of standard 

deviations from the prediction. In this paper, two-sigma ranges are used with the normal assumption of the 

prediction errors to guarantee the 95% prediction intervals. The schematic chart of using EKF as neural 

network learning algorithm is shown in Figure 6.9. The flow chart of EKF trained artificial neural network 

is shown in Figure 6.10. 

 

Figure 6.9 Schematic chart of EKF trained artificial neural network 
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Figure 6.10 Flow chart of EKF trained artificial neural network 
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6.3.3 Two-sigma confidence interval for NN learning 

If a bridge is in good condition without damage, the nature frequency should fluctuate slightly within 

a normal range. However, when damage occurs, the nature frequency may jump outside the normal ranges 

and the changes can be captured by the confidence intervals derived from EKFNN. The means and standard 

deviations of natural frequency predictions are calculated iteratively in each time step from EKF algorithm 

to form two-sigma confidence interval for the damage detection.  

As depicted in Figure 6.8, the natural frequency prediction is the output of the developed EKFNN 

model. The standard deviation of the natural frequency prediction can be derived from the diagonal element 

of the innovation covariance matrix in EKF algorithm as in Equation 6.13. 

))(()( kSdiagk                                                          (6.13) 

The estimation error of EKF is assumed as a normal distribution, thus two-sigma ranges can be used 

to guarantee a 95% confidence level. The damage detection rule adapted in this paper is that bridge damage 

is detected if consecutive measurements of any structural parameter fall outside of the two-sigma range.  

6.4 Structural damage simulation in finite element model 

The Meriden Bridge is currently operating in good conditions. To validate the damage detection 

capacity of the developed method, numerical simulation techniques can be performed to simulate the real 

damage scenarios on the bridge structure (Bagchi et al., 2010). In this section, real damage conditions are 

simulated in finite element analyses to observe their influences on the changes of natural frequencies. The 

change of natural frequencies will then be applied in the testing phase to validate the developed damage 

detection method.  

6.4.1 Finite element model 

The finite element model for the structure of Meriden Bridge is developed using SAP 2000 software 

as depicted in Figure 6.11. The FE model contains 1464 frame elements and 4758 shell elements, with total 

5313 nodes. 2D shell elements were used for the concrete deck and steel girders. The cross bracing is 
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modelled using 1D frame elements. The composite actions between deck and girder elements are also 

modelled by 1D frame elements. For the boundary conditions of the one-span bridge structure, fixed 

supports are assigned at the north end, and roller supports are assigned at the south end. The material for 

concrete deck, steel girder and steel bracing are assumed 4,000 psi concrete, A36 steel and A992 steel 

respectively. The FE model for Meriden Bridge is updated with the natural frequencies obtained from the 

field test, and is used as the baseline model for undamaged condition (Li, 2014). 

 

Figure 6.11 FE model for Meriden Bridge 

A composite steel girder bridge may encounter many types of structural damages during operation, 

and the occurrence of these damages will threat the service and life span of highway bridges. In this paper, 

two common damage scenarios are considered: the impact damage due to vehicles passing under the bridge, 

and the static loading test using full-loaded truck. 

6.4.2 Damage scenario 1: Removal of composite action 

Bridge damage resulted from underneath cross traffic collision is one of the major threads to bridge 

structures. The composite action between steel girder and concrete deck may be lost or diminished after the 

bridge undertakes the impact on the exterior lateral side. Plude studied the effects of potential damage 
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scenarios on a composite steel girder bridge using finite element model (Plude, 2011). Three damage types 

were considered, including fatigue cracking due to truck traffic, loss of composite action on exterior girder 

and deterioration of the bridge deck. The FE analysis results showed that the change of natural frequencies 

caused by loss of composite action in exterior girder is much more significant than the other two damage 

scenarios.  

To simulate the damage scenario that the exterior girder becomes non-composite, the composite action 

of exterior girder is removed in the finite element model by releasing the moments at both ends of the frame 

elements connecting steel girder and concrete deck. The location of damaged exterior girder is shown in 

Figure 6.12. Then the natural frequencies of bridge with non-composite exterior girder are obtained using 

modal analysis in SAP 2000. The seven natural frequencies of bridge in damaged scenario 1 are listed and 

compared with undamaged case in Table 6.1, from which conclusion can be made that all the seven natural 

frequencies have reduced because of the damage of removal of composite action in the exterior girder. In 

particular, the reduction ratio for the first natural frequency is 5.23%. 

 

Figure 6.12 Removal of composite actions on exterior girder in FE model 
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Table 6.1 Comparison of the natural frequencies before and after losing composite action on exterior 

girder 

Mode Undamaged (Hz) Damage 1 (Hz) Damage 1 Diff (%) 

1 4.44 4.21 -5.23 

2 5.57 4.74 -14.87 

3 6.78 6.25 -7.79 

4 9.77 9.27 -5.07 

5 14.17 14.02 -1.05 

6 14.89 14.43 -3.10 

7 16.72 16.52 -1.20 

 

6.4.3 Damage scenario 2: Static loading test 

Static loading tests are frequently performed to verify the actual structural behavior of bridge compared 

with designs. The results of static load tests also produce an initial baseline for future condition assessment. 

Static loading tests using finite element model simulation (Samali et al., 2007) and real truck experiment 

(Karoumi et al., 2006) reported that the static loading tests can cause decreased natural frequencies for 

bridge structures.  

To simulate the Meriden Bridge under static loading test, the load of a fully loaded five-axle truck, i.e., 

68,600 lbs, is added on the right lane at the mid-span of the bridge in the FE model. The detailed information 

of the test truck was obtained in the previous calibration test for the bridge monitoring system, as shown in 

Table 6.2. The loadings due to the weight of truck are modelled as five static loading on each axle applied 

on the deck of bridge in the FE model, as shown in Figure 6.13 and 6.14. The identified natural frequencies 

of bridge under static loading test are listed and compared with undamaged case in Table 6.3, which also 

shows a reduction of natural frequencies caused by the static loading test. In particular, the first natural 

frequency reduced 5.9%.  
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Table 6.2 Length and weight characteristics of the five-axle test truck (Christenson et al., 2011). 

‒ SI US 

Gross Vehicle Weight 305.15 kN 68,600 lbs 

Wheelbase length (Axle 1-5) 13.58 m 44.55 feet 

Number of axles 5 5 

Axle Space (1-2) 3.59 m 11.78 feet 

Axle Space (2-3) 1.34 m 4.40 feet 

Axle Space (3-4) 7.42 m 24.34 feet 

Axle Space (4-5) 1.23 m 4.04 feet 

Axle Weight (1) 45.19 kN 10,160 lbs 

Axle Weight (2) 58.98 kN 13,260 lbs 

Axle Weight (3) 57.83 kN 13,000 lbs 

Axle Weight (4) 73.04 kN 16,420 lbs 

Axle Weight (5) 70.10 kN 15,760 lbs 

 

 

 

Figure 6.13 Global view of FE model under static loading 
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Figure 6.14 Side view of static loadings on FE model 

 Table 6.3 Comparison of the identified natural frequencies before and after static loading test 

Mode Undamaged (Hz) Damage 2 (Hz) Damage 2 Diff (%) 

1 4.44 4.18 -5.90 

2 5.57 5.33 -4.32 

3 6.78 6.65 -1.92 

4 9.77 9.08 -6.97 

5 14.17 12.42 -12.39 

6 14.89 13.94 -6.42 

7 16.72 15.54 -7.05 

 

6.5 Numerical testing 

The results of FE model analysis showed that the two damage scenarios cause a decrease on natural 

frequencies for Meriden Bridge, and with 5.23% and 5.9% reduction on the first natural frequencies, 

respectively. When the above two damage scenarios occur, the real-time structural health monitoring 

system is expected to detect the damage considering temperature effects, and send out alarm immediately. 

To validate whether this requirement is satisfied in the developed method, the second half of the first mode 

natural frequency samples during the testing phase were reduced 5% to simulate the damages. The 

synthesized data are then fed into NN to test whether the EKF algorithm can eliminate the temperature 

effects and catch the abnormal changes automatically. 

The NN used to predict the natural frequency is represented by a three-layer perceptron, with the 

number of input neurons and output neuron defined as 7 and 1 respectively. Selecting the number of neurons 

in the hidden layer is an important part to establish the overall neural network architecture. Using too few 
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hidden neurons can result in under-fitting, while using too many neurons can result in over-fitting and 

significantly increase computational efforts. In this paper, the number of hidden neuron is determined 

through extensive training and validation processes (Gutierrez-Osuna, 2015) to achieve good generalization 

performance for NN.  

Hourly data of the first mode natural frequency and temperature obtained on Meriden Bridge from 

March 2013 to May 2014 are used to examine the developed EKFNN method for structural damage 

detection. Among them, the first eleven-month data (03/2013-01/2014) are used for training, the following 

one-month data (02/2014) are used for validation, and the last one-month data (03/2014) are used for the 

testing. The number of hidden neurons is determined through the training and validation process. The 

damage detection capability is evaluated in the testing phase.  

The following three testing cases are performed. Case 1 demonstrates the selection of number of 

hidden neurons. Case 2 compares the prediction results of EKFNN with and without considering the 

temperature effects. Case 3 validates the damage detection capability using simulated damage data. The 

natural frequency prediction performance is evaluated by using the standard mean absolute percentage error 

(MAPE), which is a measure of accuracy for a forecasting method. A smaller MAPE indicates a better 

forecasting performance. MAPE is defined by Equation 6.14. 
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where )(ˆ tf and fA(t) are the predicted and actual first mode natural frequency, respectively.  

6.6.1 Case 1: Selection of the number of hidden neurons 

This case demonstrates the selection of the number of hidden neurons Nh through training and 

validation process. There are several rules to set Nh, for instance, using the half of the sum of input and 

output neurons. To effectively determine this parameter, intensive training-validation experiments are 

conducted. The NN is trained with the initialized Nh (starting from 2) through training set data, and the 

prediction performance is then evaluated on the validation set by calculating the validation MAPE. The 
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value of Nh is increased until the minimum validation MAPE is achieved. For each Nh, the algorithm runs 

10 times, and the averaged MAPEs are then calculated to select the best Nh. The MAPEs of the EKFNN 

using first natural frequency in validation phase with Nh ranging from 2 to 7 are depicted in Figure 6.15. 

The number of hidden neurons is thus selected as 6 to achieve the minimum validation error and superior 

prediction capability. 

 

Figure 6.15 Validation MAPEs with the number of hidden neurons 

6.5.2 Case 2: Comparison of NNs with and without temperature inputs 

This case compares results of the developed EKFNN model with and without considering temperature 

as input factors. When temperature factor is not considered as inputs for NN model, the number of input 

variables decreases to 4. By following the same training and validation processes as discussed in Case 1, 

the number of hidden neurons is selected as 3. As summarized in Table 6.4, the NN model without 

considering temperature factor produces a higher MAPE 1.15 and a lower two-sigma coverage rate 90% as 

compared with the MAPE 1.06 and two-sigma coverage rate 100% when temperature inputs are involved. 

The results are reasonable because NN model without temperature inputs could result in lower accuracy 
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performance and false alarm problems. The actual measurements, predictions as well as two-sigma ranges 

with and without considering temperature factor are depicted in Figures 6.16 and 6.17, respectively. 

 

Table 6.4 Comparison of EFKNN method with/without using temperature inputs 

Inputs 
Number of 

Hidden Neuron 

MAPE during 

testing period 

Two-sigma 

coverage rate 

With Temp 6 1.06 100% 

Without Temp 3 1.15 90% 

 

 

Figure 6.16 Performance of EKFNN without using temperature inputs 
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Figure 6.17 Performance of EKFNN with using temperature inputs 

 

6.5.3 Case 3: Validation of EKFNN damage detection capability 

This case validates the efficiency and capability of damage detection of the developed EKFNN method 

using simulated damage data. When structural damage occurs, the online monitoring system is expected to 

detect the damage and send out alarms in a very short time. In this testing case, the first half samples 

represent undamaged structure, and last half samples are synthesized damaged data by decreasing original 

data by 5%. As shown in Figure 6.18, when structural damage occurs at 61th point, the real measurements 

of natural frequencies jump outside of the two-sigma control limits for consecutive points. Thus the EKFNN 

method detects the structural damage successfully. 
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Figure 6.18 Performance of EKFNN when natural frequency reduced 5% 

6.6 Comparison with multiple linear regressions (MLR) 

To compare the performance of the developed EKFNN method, some regression analysis can be used, 

such as autoregressive integrated moving average (ARIMA), multiple linear regressions (MLR), vector 

auto-regression (VAR) (Shumway and Stoffer, 2013). Among them, multiple linear regression (MLR) 

model is one of the widely used statistical techniques to predict the relationship between a dependent 

variable and multiple independent variables by fitting a linear equation to observed data (Antoniadis et al., 

2006). In this paper, MLR is used as the benchmark to compare and evaluate the performance of EKFNN. 

To conduct an apple-to-apple comparison, a MLR model is created using the same input variable (ft-1, ft-2, 

ft-3, Tt-1, Tt-2, Tt-3 and Season Index) and output variable (ft) as used in the EKFNN. The equation for the 

MLR model is described as: 

   xSeasonIndeTTTffff ttttttt 73625143322110       (6.15) 

where 0, 1, 2,…7 are coefficients for each input variable and α is the Gaussian error variable with zero 

mean. 
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For comparison, the same data used for training, validation and testing of EKFNN method are also 

used in MLR method. In the training phase, the unknown regression coefficients are estimated by 

minimizing the least squares errors. In the testing phase, the MLR model predicts the natural frequency in 

the next hour when the new input variables are given, and the 95% confidence interval of the prediction is 

used to detect the potential damage of the bridge. If the predicted natural frequency falls outside the 95% 

confidence interval generated by MLR, the damage is to be detected.  

Two cases are presented in this section. Case 1 compares the performance of EKFNN and MLR under 

normal conditions, and Case 2 shows the prediction and damage detection performance of EFKNN and 

MLR under structural damage. 

6.6.1 Case 1: Performance comparison of MLR and EKFNN without structural damage 

The mean absolute error (MAE), standard deviation of MAE, MAPEs, standard deviation of MAPE 

(Std. MAPEs) of the MLR and the EKFNN under normal condition are compared in Table 6.5. It can be 

seen that both the mean and stand deviation of prediction errors from the EKFNN are lower than that of the 

MLR, which demonstrates that EKFNN has more accurate performance than MLR. Actual measurements, 

predictions, as well as 95% confidence interval are plotted in Figure 6.19. As can be seen, the 95% 

confidence interval of MLR is very conservative, which might not suitable for damage detection for bridge 

structures.  

Table 6.5 Performance comparison between MLR and EKFNN under normal condition 

Method MLR EKFNN 

MAE (Hz) 0.06 0.0536 

Std. MAE 0.0484 0.043 

MAPE (%) 1.240 1.113 

Std. MAPE 1.0442 0.827 
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Figure 6.19 Performance of MLR under normal condition 

 

6.6.2 Case 2: Performance comparison of MLR and EKFNN with structural damage 

This case compares the performance of damage detection between MLR and developed EKF-ANN 

using the same damage simulation data as Case 3 in Section 6. The mean absolute error (MAE), standard 

deviation of MAE, MAPEs, standard deviation of MAPE (Std. MAPEs) of damage detection testing using 

both MLR and the EKFNN methods are compared in Table 6.6. The performance of EKFNN is more 

preferable than that of MLR. As the damage detection performance of MLR shown in Figure 6.20, the huge 

confidence interval is too conservative to capture the deviation points and to detect the damage when 

structural damage occurred at 61th point. Therefore, conclusions can be made that the developed EKFNN 

method is more effective and accurate for structural damage detection than MLR method. 
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Table 6.6 Performance comparison between MLR and EKFNN with structural damage 

Method MLR EKFNN 

MAE (Hz) 0.688 0.0572 

Std. MAE 0.0598 0.0485 

MAPE (%) 1.31 1.12 

Std. MAPE 1.17 1.06 

 

 

Figure 6.20 Performance of MLR with structural damage 

6.7 Summary 

A new damage detection method using artificial neural network aided with the extended Kalman filter 

is developed for a composite steel girder bridge under severe temperature change environment. Based on 

data analysis of long term bridge monitoring data, a systematic procedure to select input variables for NN 

is developed. Lagged hourly temperature, lagged hourly natural frequency, and comprehensive season 

index are selected as input variables for neural network. Based on the above input variables, the natural 

frequency in the next time step is predicted as output. Especially, a newly developed season index is added 

as input to represent the freezing effects for structures under severe temperature changes. Damage scenarios 
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are simulated using finite element analysis software SAP 2000 to obtain the change ratios of natural 

frequency, which are applied on two-month measurement data to simulate natural frequency of bridge in 

damaged situations. One-year hourly natural frequency and temperature data are used to train the developed 

EKFNN model. In testing phase, the damage simulation data of natural frequency time series are presented 

to the trained model, and the occurrence of damage can be successfully detected by the control limits 

provided by the damage detection model. The testing results indicate that the EFKNN has better capabilities 

than benchmark multiple linear regression approach. The EFKNN method shows a strong potential for real 

time damage detection for civil structures that are instrumented with long-term health monitoring system. 

This approach provides an objective manner to reduce the uncertainty in structural damage detection, and 

increases the ability for structural health monitoring system to aid bridge management and maintenance.  
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CHAPTER 7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary and conclusions 

The research presented in this dissertation provided a comprehensive framework for real-time damage 

detection for civil structures using big data collected from long-term structural health monitoring systems.  

First, in order to efficiently evaluate the condition of Meriden Bridge, long-term strain data were 

analyzed using reliability-based methods in Chapter 3. Two efficient approach to assess the reliability for 

bridge component based on strain monitoring data are presented using yield strength limit state and fatigue 

limit state. The yield strength limit state function considers the yield strength, and the sensor error is also 

included in the reliability index equation. The fitting tests of six probability distributions are compared 

using peak living loading from monitoring data. A parallel-series combined system is presented in order to 

assess the bridge reliability based on multi-sensor monitoring systems. The fatigue limit state function 

considers fatigue theory and miner’s rule to estimate the remaining life for structures. Both methods can 

reflect the overview of condition for the whole bridge, and it can also assess the reliability of bridge in real 

time through on-line monitoring. 

Secondly, a novel structural parameter identification method based on extended Kalman filter is 

developed for linear structures equipped with MR damper devices in Chapter 4. In order to incorporate the 

MR damper into the structural dynamic model, a new state-space model is established by combining 

hyperbolic tangent model and equation of motion of structural dynamic system. To estimate the structural 

variables and parameters, EKF is used to update the states based on new measurement in each time step. 

Based on measurements of accelerations of three stories and damper force, the EKF algorithm can produce 

real-time estimation for the structural parameters and state variables. The EKF based method is tested using 

simulated data of a three stories linear building with MR damper under earthquake excitations, and 

numerical results demonstrate high estimation accuracy and light computation of this presented method. 

The developed EKF based method can be easily replicated to other types of structures equipped with MR 
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dampers. And the developed EKF-based method has a good potential to be implemented in real-time SHM 

systems for in-service MR damper equipped structures. 

Fourthly, a real-time structural damage detection method for civil structures is developed based on the 

combination of EKF and DSPC in Chapter 5. Based on measurements of damage-sensitive parameters 

involved in the state-space model of structural dynamic systems, the EKF algorithm produces real-time 

estimation means and standard deviations for the identified structural parameters to form the dynamic 

control limits to detect any abnormality in the selected parameters. The developed EKF-DSPC damage 

detection method is validated using simulation response data of a three-story linear structure and a two-

story nonlinear hysteretic structure under earthquake excitation considering different damage scenarios, 

and the testing results demonstrate fast convergence rate, high damage detection accuracy and light 

computational costs. The EKF-DSPC method can be easily replicated in other structural damage detection 

problems for both linear and nonlinear structures. Moreover, since the EFK is a well-developed 

methodology that does not require large computation, and DPSC is capable to handle system variations 

caused by operational and environmental effects, the EKF-DSPC method has a good potential to be 

implemented in real-time SHM systems for in-service civil structures. 

Finally, a new damage detection method using artificial neural network aided with the extended 

Kalman filter is developed for a composite steel girder bridge under severe temperature change environment 

in Chapter 6. Based on data analysis of long term bridge monitoring data, a systematic procedure to select 

input variables for NN is developed. In testing phase, the damage simulation data of natural frequency time 

series are presented to the trained model, and the occurrence of damage can be successfully detected by the 

control limits provided by the damage detection model. The testing results indicate that the EFKNN has 

better capabilities than benchmark multiple linear regression approach. The EFKNN method shows a strong 

potential for real time damage detection for civil structures that are instrumented with long-term health 

monitoring system. This approach provides an objective manner to reduce the uncertainty in structural 

damage detection, and increases the ability for structural health monitoring system to aid bridge 

management and maintenance.  
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In conclusion, this research provided a comprehensive contribution to long-term structural health 

monitoring and damage detection for civil structures using big data, including weight-in-motion systems, 

structural control devices-equipped structures, linear and nonlinear building structures, and full-scale 

highway bridge under severe temperature effects. 

7.2 Recommendations on future work 

While a comprehensive contribution has been made by the research in this study, subsequent future 

studies are suggested to extend the developed framework to be applicable for various types of full scale 

civil structures in a long-term manner using big data. 

One of the biggest influence factors for reliability-based method for bridge monitoring is the traffic 

volume of vehicles passing through the bridge. The distribution of traffic volume is significantly influenced 

by weekday or weekends, hours in a day, seasons in a year, and extremely weathers. Adding these 

parameters into the model may improve the accuracy of reliability based models. This thesis only used data 

from one day (non-holiday and non-weekend) to represent the traffic pattern for the whole year. Larger size 

of strain monitoring data (multiple month, multiple year) are suggested to be tested using developed 

reliability method to calculate the structural probability of failure and bridge remaining life more accurately. 

A well-designed sampling method need to be designed to pick specific days within a year based on traffic 

pattern instead of processing all data in a whole year. 

The EKF-based structural parameter estimation method can estimate structural parameters for MR 

damper equipped structure successfully. In the research perspective from structural control, it is also 

important to estimate the parameters inside the MR damper device to monitor the health condition and 

detect whether the MR damper is working properly. It was not tested in this research, however, the 

unscented Kalman filter (UKF) and particle filter could have a better estimation capability than the EKF in 

specific applications for highly nonlinear system identification problems. Considering the highly nonlinear 

characteristics and behaviors of MR damper, UKF and particle filter method may be tested for MR damper 

parameter estimation problems in future. 
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The developed EKF-DSPC based damage detection method has been verified to be effective on both 

linear and nonlinear structures. One key important factor for improving the high-accuracy and decreasing 

the false alarm rate is to select good initial values of parameters in EKF, including the initial error 

covariance matrix of the extended state vector, the covariance matrix of the measurement noise, and the 

covariance matrix of the process noise. In this research, the initial parameters of EKF are obtained through 

extensive testing. Some EKF parameter initialization methods have been proposed and show good results 

on specific testing cases, but these methods usually require rich empirical experience or complex 

mathematical derivations and calculation. Systematic method to initialize EKF parameters could be 

developed from other driplines for general use of EKF-based methods in various engineering problems. In 

order to apply the developed EKF-DSPC method in damage detection problems for civil structures, a simple, 

reliable and systematic approach to initialize these EKF parameters need to be investigated in future. 

The EKF-trained neural network method has been verified to successfully detect a simulated damage 

of 5% decrease on natural frequency for an in-service highway bridge in real time. The decrease of natural 

frequency damage is obtained by simulating two common damage cases in finite element model. Further 

testing is suggested to verify whether this method can be sensitive to smaller damages, and optimize this 

model to detect minor damages to improve the sensitivity of the whole damage detection system. Some 

challenges still exist to detect structural damage for bridge structures experimentally. It is difficult to detect 

small damages only based on changes in natural frequency. Also for some damage scenarios, one single 

change in the finite element model cannot represent damaged status accurately, thus we need to incorporate 

multiple changes in the finite element to model the structural damage more accurately. 
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APPENDIX A EXPERIMENTAL DATA ANALYSIS FOR TRUCK TEST ON MERIDEN 

BRIDGE 

 

A-1 Experimental data measurement 

To explore the influence of structural damage on the natural frequency of bridge, a heavy truck is used 

for static loading test on Meriden Bridge. The truck test on Meriden Bridge was implemented from 9:39am 

to 11:34am on June 16, 2014. Totally 7 sets of valid 10-mins data were collected. The first four data sets 

were recorded before the truck test started. The fifth data set (10_42_29) measured the process that truck 

was moving to the center of bridge and started the test. The first 6 mins in the fifth data set has no truck and 

the last 4 mins has truck loading applied at the center of the bridge. And the last two data sets measured the 

data when truck was parking on bridge. The time for truck parking on bridge could be identified from the 

time history in the fifth data set, based on strain measurement of the sensor under the slow lane at the center 

of the bridge, see Figure A-1. The peaks are introduced by passing of vehicle wheels, and the rapid increase 

of strain level indicates the start time for truck test. 

Table A-1. Data sets description 

File Name (hour_min_sec) Is truck on bridge? 

9_39_41 No 

9_50_1 No 

10_0_22 No 

10_13_25 No 

10_42_29 first 6 mins No, last 4 mins Yes 

11_13_46 Yes 

11_24_22 Yes 
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Figure A-1. Time history of strain sensor under lane 1 during truck test 

A-2 Power spectral density graphs 

A-2.1 PSD comparison between undamaged and damaged scenario in 5th data set 

Special attention is paid to 5th data set because it has both data with and without truck parking test. 

The first three and last three-minute data are used for undamaged and damaged scenario, respectively. The 

PSD graphs for all 8 sensors in 5th data are plotted in figure 2. The blue curves represent before truck test, 

and the red curves represent after truck test. And the final PSD graph is plotted using Singular Value 

Decomposition (SVD) method. As shown in figure 3, the peaks representing natural frequencies on PSD 

graph show a tendency of increase after the truck parking test. In particular, the first natural frequency has 

a 2.8% increase after damage. 
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Figure A-2. Power spectral density graphs for 8 sensors in 5th data 
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Figure A-3. Power spectral density graphs for 5th data 

 

A-2.2 PSD comparison for all data sets 

Similar to previous analysis, the PSD graphs for all data sets are plotted as shown in figure 4. The 

undamaged data sets include data set 1-4 and the first three minutes of 5th data. And the damaged data 

include the last three minutes of 5th data and data 6-7. To have a better understanding of the trends of change 

on natural frequency, the average PSD for undamaged and damaged data sets are plotted in figure 5. The 

same trend of increasing natural frequency after truck test is observed, and the first natural frequency has 

an increase around 3%. 
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Figure A-4. Power spectral density graphs for all data sets 

 

Figure A-5. Average power spectral density graph comparison for all data sets 
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A-3 Finite element analysis 

Many researches have reported that adding mass will change the natural frequency of the bridges using 

simulation tests on finite element model. To simulate the previous truck test, a fully loaded five-axle truck 

is used to add static loading on the FE bridge model. The total gross weight, weight of each axle, and length 

between each axle of the truck for experiment were measured and listed in Table A-2. In this damage 

scenario, the full loaded truck is parking on the right lane at the center of the bridge. The loadings due to 

the weight of truck are modelled as five static loading on each axle applied on the deck of bridge, see Figure 

A-6 and A-7. The identified natural frequencies of bridge under truck loading are listed in Table A-3, which 

also shows a reduction of natural frequencies compared with undamaged scenario due to the weight of truck. 

In particular, the first natural frequency reduced 5.9%. 

 

Table A-2. Length and weight characteristics of the five-axle test truck 

‒ SI US 

Gross Vehicle 

Weight 
305.15 kN 68,600 lbs 

Wheelbase length 13.58 m 44.55 feet 

(Axle 1 to 5)   

Number of axles 5 5 

Axle Space (1-2) 3.59 m 11.78 feet 

Axle Space (2-3) 1.34 m 4.40 feet 

Axle Space (3-4) 7.42 m 24.34 feet 

Axle Space (4-5) 1.23 m 4.04 feet 

Axle Weight (1) 45.19 kN 10,160 lbs 

Axle Weight (2) 58.98 kN 13,260 lbs 

Axle Weight (3) 57.83 kN 13,000 lbs 

Axle Weight (4) 73.04 kN 16,420 lbs 

Axle Weight (5) 70.10 kN 15,760 lbs 
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Figure A-6. SAP 2000 model for full loaded five-axle truck parking 

 

Figure A-7. Side view of SAP 2000 model for bridge under truck test 

 

 

Table A-3. Comparison of the identified natural frequencies before and after truck test in SAP 2000 

Mode Number 
Undamaged Truck test 

Nf (Hz) Nf (Hz) Diff (%) 

1 4.44 4.18 -5.90 

2 5.57 5.33 -4.32 

3 6.78 6.78 -0.12 

4 9.77 9.08 -6.97 

5 14.17 12.42 -12.39 

6 14.89 13.94 -6.42 

7 16.72 15.54 -7.05 
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A-4 Discussions 

The experimental data analysis result for truck test on Meriden Bridge is contrary to the finite element 

analysis and the common sense that increasing mass will decrease the natural frequency, based on equation 

𝑓 = √
𝑘

𝑚
. Two reasons could explain the testing results for increasing natural frequency: boundary condition 

and stiffness. 

A-4.1 Boundary condition 

According to the design graph in Figure A-8 and A-9, the boundary conditions for Meriden Bridge are 

fixed bearing on south abutment, and expansion bearing on the north abutment. As shown in the notes on 

figure 9, the expansion bearing has “slotted holes in flange and sole plate, and anchor bolts are set at center 

of the slot at 50ºF”, which allows horizontal expansion of bridge under thermal and operational effects. 

However, in the finite element model in SAP 2000, the boundary condition is simple supported with one 

end roller and another end pin fixed, which does not consider the expanding movement in real case.  

 

Figure A-8. Design graph for fixed bearing at south abutment (Li, 2014) 
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Figure A-9. Design graph for expansion bearing at north abutment (Li, 2014) 

A-4.2 Stiffness 

The loading acting on the center of bridge structure cause a bending moment, which results expanding 

force in steel girder and compression force in concrete. Cracks are commonly existed inside the concrete 

components of civil structures. As shown in Figure A-10, these cracks will shrink and close under such 

compression forces, which make the stiffness of concreate increased under the loads and possibly result an 

increase in natural frequency. 

 

Figure A-10. Crake closing due to bending 
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APPENDIX B SENSITIVITY ANALYSIS FOR STRUCTURAL DAMAGES ON BRIDGE 

GIRDERS USING FINITE ELEMENT TOOLS 

 

Girders are vulnerable part for bridge structures. Damage events such as collision, fire, corrosion and 

fatigue often occur on girder structures. In this research, various damage scenarios are considered in SAP 

2000 finite element modeling for Meriden Bridge. After damage are modelled in the model, modal analysis 

is implemented to compare the natural frequency results with undamaged baseline. This study will be 

helpful to researchers to understand how much natural frequency will change under different damage 

scenarios.  

B-1 Damage on the center of all 8 girders 

In this part, structural damages are simulated by cutting the web and bottom flange at the center of all 

8 girders. The drawings of the three damage cases can be seen in Figure B-1. 

Scenario All-1: lower half of the center element on web is cut, the height is 17.32 in (0.44 m), and the 

width is 17.81 in (0.45 m). 

Scenario All-2: Both lower half of web and bottom flange are cut. 

Scenario All-3: The whole web and bottom flange are cut. 
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Figure B-1. Damage on center for all 8 girders 
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Table B-1. Change of natural frequency due to damage on center of all 8 girders 

Undamaged All-1 All-2 All-3 

Num Freq(Hz) Freq(Hz) Change Freq(Hz) Change Freq(Hz) Change 

1 4.44 4.44 -0.10% 3.5625 -19.82% 3.01 -32.15% 

2 5.57 5.57 -0.05% 5.031 -9.69% 4.71 -15.47% 

3 6.78 6.78 -0.10% 6.2533 -7.81% 5.87 -13.49% 

4 9.77 9.75 -0.13% 9.2578 -5.20% 8.62 -11.74% 

5 14.17 14.13 -0.27% 14.138 -0.24% 13.78 -2.74% 

6 14.89 14.88 -0.11% 14.833 -0.41% 13.99 -6.06% 

7 16.72 16.68 -0.22% 16.666 -0.29% 16.52 -1.14% 

  
Average 

change 
  -0.14%   -6.21%   -11.83% 

 

 

B-2 Damage throughout Girder 3 

In Meriden Bridge, No. 3 girder is under slow land and undertakes largest loadings among all girders. 

Thus No.3 girder is selected in this study to simulate various damage scenarios. Two damage scenarios are 

simulated consider damage throughout all length of Girder 3. Five damage scenarios are simulated consider 

single small damage on different locations on girder 3. 

Scenario G3-1: lower half of the web is cut throughout girder No. 3, its height is 17.32 in (0.44 m). 

Scenario G3-2: Both lower half of web and bottom flange are cut throughout girder No. 3. 
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Figure B-2. Damage throughout Girder 3 

Table B-2. Change of natural frequency due to damage throughout Girder 3 

Undamaged G3-1 G3-2 

Num Freq(Hz) Freq(Hz) Change Freq(Hz) Change 

1 4.44 4.2105 -5.24% 4.28 -3.62% 

2 5.57 5.4133 -2.83% 5.46 -1.97% 

3 6.78 6.614 -2.49% 6.67 -1.70% 

4 9.77 9.3014 -4.75% 9.26 -5.17% 

5 14.17 12.454 12.12% 12.67 10.62% 

6 14.89 14.7 -1.30% 14.79 -0.71% 

7 16.72 18.254 9.21% 15.79 -5.54% 

Average     -2.79%   -4.19% 
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B-3 Single damage on different locations on Girder 3 

Damage G3-3: The height of the cut is 17.32 in (0.44 meter), and the width is 17.81 in (0.45 meter).  

Damage G3-4: The 14th element is cut for both lower web and bottom flange. Its distance to left edge 

is 222.75 in (5.66 meter). 

Damage G3-5: The damage element is 28th from the left. Its distance to left end is 480.72 in (12.21 

meter). 

Damage G3-6: The damage element is 42th from the left. Its distance to left end is 776.03 in (19.71 

meter), to the right is 215.18 in (5.47 meter). 

Damage G3-7: The width is 17.81 in (0.45 meter), and height is 17.32 in (0.44 meter). 

 

 

Figure B-3. Single damage on different locations on Girder 3 
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Table B-3. Change of natural frequency due to damage through Girder 3 

Undamaged G3-3 G3-4 G3-5 G3-6 G3-7 

Number Freq(Hz) Freq(Hz) Change Freq(Hz) Change Freq(Hz) Change Freq(Hz) Change Freq(Hz) Change 

1 4.44 4.44 -0.18% 4.41 -0.74% 4.36 -1.82% 4.41 -0.66% 4.41 -0.77% 

2 5.57 5.54 -0.53% 5.57 -0.10% 5.53 -0.77% 5.55 -0.44% 5.54 -0.50% 

3 6.78 6.73 -0.79% 6.78 -0.02% 6.76 -0.29% 6.77 -0.17% 6.78 -0.07% 

4 9.77 9.58 -1.85% 9.75 -0.13% 9.65 -1.14% 9.68 -0.92% 9.72 -0.43% 

5 14.17 14.09 -0.56% 13.76 -2.88% 14.16 -0.08% 13.82 -2.47% 14.11 -0.45% 

6 14.89 14.88 -0.10% 14.92 0.17% 14.91 0.11% 14.85 -0.27% 14.86 -0.23% 

7 16.72 16.54 -1.04% 16.53 -1.12% 16.7 -0.07% 16.38 -2.00% 16.63 -0.52% 

Average   -0.72%  -0.69%  -0.58%  -0.99%  -0.43% 
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