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I. Abstract 

Acute pancreatitis is a devastating inflammatory disease, which is initiated by the activation and 

retention of digestive zymogens inside pancreatic acinar cells. It is proposed that adenosine 

monophosphate-activated protein kinase (AMPK) regulates the early responses of acute 

pancreatitis in pancreatic acinar cells (acini). A recent in vitro study shows that induction of 

experimental pancreatitis in isolated rat pancreatic acini with supraphysiologic cerulein (an 

orthologue of the hormone cholecystokinin) causes an increase in intracellular zymogen 

activation, but a decrease in AMPK levels. Furthermore, in vitro pharmacologic stimulation of 

AMPK reduces zymogen activation, having a protective effect. In this study, the effectiveness of 

two AMPK activators was examined in two separate, clinically-relevant in vivo pancreatitis 

models. In the first model, Sprague-Dawley rats received a pre-treatment of the AMPK activator 

metformin via intraperitoneal (IP) injection. A second IP injection of cerulein was administered 

one hour later. One hour following the second injection, the rat pancreata were harvested and 

markers of pancreatitis were measured. Intracellular zymogen activation was assessed via trypsin 

activity, edema was assessed via percentage wet weight, and extent of cellular damage was 

assessed via histological staining. In the second model, C57/Bl6 mice received a pre-treatment of 

either metformin or salicylate (also an AMPK activator). For each of the six hours following, 

mice received an IP injection of cerulein. At the seventh hour, the pancreata were harvested. The 

same parameters were assessed. In both models, the AMPK activators displayed a marked 

decrease in intracellular zymogen activation. Edema data obtained through percentage wet 

weight measurements were found to be insignificant. Histological staining of pre-treated sections 

demonstrated a considerable decrease in edema and pyknotic nuclei in rats. These results 
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strongly suggest that metformin and salicylate could potentially be used as prophylactic or 

therapeutic treatments for patients early in the course of acute pancreatitis. 

II. Introduction 

Acute pancreatitis is described as a sudden inflammation of the pancreas. Pain and 

swelling in a patient’s upper left side of the abdomen is often a strong indicator of the disease. 

Other symptoms include nausea, vomiting, dehydration, and pain after food consumption. 

Clinical signs used to make a diagnosis include a swollen abdomen, fever, rapid pulse, and high 

amylase and lipase levels. Prognosis for acute pancreatitis ranges from mild to life-threatening, 

depending on cause as well as risk factors. Approximately 210, 000 patients are hospitalized with 

acute pancreatitis in the United States each year.[1] Treatment of this disease depends on both the 

cause and the severity. 

A pivotal step in the initiation of acute pancreatitis is the regulated conversion of 

digestive zymogens, such as trypsinogen and chymotrypsinogen, to their active forms, trypsin 

and chymotrypsin, and their retention within the pancreatic acinar cell. Subsequent studies have 

demonstrated that additional pathologic acinar cell responses, including reduced apical secretion, 

elaboration of inflammatory mediators, and development of a paracellular leak, are also observed 

in the early phases of the disease.[2] Later responses include reduced perfusion, inflammation, 

and cell death. 

The pancreatic acinar cell has the highest average rate of protein synthesis in the body.[3] 

This activity consumes high levels of ATP. Changes in acinar cell ATP levels have been reported 

in experimental acute pancreatitis models and the extent of ATP depletion in acute pancreatitis 

may correspond to disease severity. An important mechanism for energy sensing and 

conservation is AMP-activated protein kinase (AMPK).[3] AMPK is known to conserve cellular 
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energy by phosphorylating substrates to increase energy production or decrease activity of 

processes with high-energy consumption. One study has reported that acinar cell ATP levels 

change with pancreatitis stimuli, appearing to transiently increase, then fall.[4] Such fluctuations 

in ATP can potentially modulate AMPK activity during acute pancreatitis. 

AMPK is a heterotrimeric protein consisting of α, β, and γ subunits. The β and γ subunits 

both function as regulatory domains. The α subunit, however, is the catalytic domain and serves 

as the site of phosphorylation for AMPK. Specifically, phosphorylation occurs at the Thr172 

residue of the α subunit. 

A recent study performed by Shugrue et al. demonstrates the potential protective effect 

AMPK has in the pancreatic acinar cell.[5] This study explored the pharmacological modulation 

of AMPK and its effects on intracellular zymogen activation in cell culture. First, a group of 

isolated rat pancreatic acinar cells was treated with a hyperstimulatory concentration of cerulein 

(an orthologue of the hormone cholecystokinin), a substance commonly used to experimentally 

induce pancreatitis. A second group of acinar cells was first pre-treated with agents that enhance 

AMPK activity, namely AICAR and metformin. Then, the same hyperstimulatory dose of 

cerulein was introduced to these pre-treated acinar cells to induce pancreatitis. By using trypsin 

activity as a measure of intracellular zymogen activation, it was discovered that cells pre-treated 

with AMPK activating drugs displayed a striking reduction of cerulein-induced zymogen 

activation. This result was further supported through the pre-treatment of acinar cells with 

Compound C, an AMPK inhibitor. As anticipated, Compound C produced the opposite effect of 

AICAR and metformin; it increased cerulein-induced zymogen activation.[5] 

Given that this rat in vitro model exhibited a decrease in zymogen activation, a rat in vivo 

model was used to determine whether the effects of the AMPK activators would translate to 
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decreased severity of acute pancreatitis. Although the rat model is a well-characterized model 

that is useful for pancreatitis studies, the use of genetic knockout mice has been steadily 

increasing over recent years. For this reason, a mouse model was also developed as a part of this 

study. Attaining comparable results in mice could lay the foundation for transgenic studies. 

The two AMPK activators used in this study are metformin and salicylate. Although 

metformin and salicylate both activate AMPK, they do so using two completely different 

mechanisms of action. Metformin works indirectly on AMPK by mildly reducing the activity of 

the mitochondrial respiratory chain complex I.[6] The resulting decrease in ATP production puts 

the cell into a hepatic energy state. In this state, the amount of AMP and ADP in the cell are 

increased. The elevated AMP-to-ATP ratio causes the activation of AMPK. Salicylate, on the 

other hand, has a direct effect on AMPK. After AMPK is phosphorylated at Thr172, salicylate 

binds to the β subunit and acts as an allosteric activator.[7] The binding of salicylate also inhibits 

certain phosphatases from dephosphorylating AMPK. 

The results of this study provide evidence that pharmacological activation of AMPK in 

both rats and mice causes a decrease in cerulein-induced zymogen activation, edema, and 

cellular damage. 

 

III. Methods 

All experiments and procedures using animals were approved by the Veterans Affairs Healthcare 

System’s Institutional Animal Care and Use Committee (IACUC) in West Haven, CT. 

1a. In Vivo Rat Model. A 2-hour in vivo time-course was developed (Figure 1) whereby each 

Sprague-Dawley rat was given one initial IP injection and an additional IP injection one hour 

later. In the initial injection, each rat received either phosphate buffered saline (PBS control) or a 
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pre-treatment of metformin (MET) (120mg/kg). In the second injection, each rat received either 

PBS (control) or cerulein (40µg/kg). An hour following the second injection, the animals were 

euthanized; their pancreata were harvested and used to assess the following parameters of 

pancreatitis: intracellular zymogen activation, edema, and histological damage. This time-course 

resulted in four separate treatment groups requiring a total of 16 rats (4 per treatment group):     

1. PBS/PBS, 2. PBS/CER, 3. MET/PBS, 4. MET/CER. For simplicity, PBS/PBS will be 

referred to as PBS, MET/PBS as MET, and PBS/CER as CER. MET/CER will still be referred 

to as such. 

 

 

1b. Zymogen Activation Assay. Following harvest of pancreatic tissue, samples were 

homogenized in homogenization buffer [1.5 M Tris (pH 6.4), 0.3 M sucrose] and centrifuged at 

600g (4°C) for 10 minutes. The post-nuclear supernatant (PNS) (containing zymogen granules) 

of each sample was stored for assaying. For each sample, 10 µL of the PNS and 440 µL of 

zymogen assay buffer [50 mM Tris (pH 8.1), 150 mM NaCl, 1 mM CaCl2, 0.01% BSA] were 

both added to a well of a 24-well plate (Greiner Bio-one Cellstar TC-Plate). The assay was 

initiated by the addition of 50 µL of 400 mM trypsin substrate (fluorometric trypsin substrate; 
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Peptides International, Louisville, KY) diluted in zymogen assay buffer (40 mM final). The plate 

was read using a fluorometric microtiter plate reader (model HTS 7000; Perkin-Elmer Analytical 

Instruments, Shelton, CT.  380-nm excitation; 440-nm emission; 20 reads /10 min.). 

 

1c. Edema. Following the harvest of pancreatic tissue, each sample was blotted and its 

corresponding wet weight determined. The samples were then incubated at 60°C for 72 hours 

and reweighed. Edema was expressed as percent wet weight using the following equation: 

(Wet weight − Dry weight)/Wet weight  ×  100%. [8] 

 

1d. Histological Assessment. A 1-millimeter piece of pancreatic tissue was removed from each 

animal and was immersion fixed in 4% formalin. Then, the tissue was dehydrated, embedded in 

paraffin, sectioned (5 µm), and stained with hematoxylin and eosin. Slides were viewed using an 

Axiophot microscope (Carl Zeiss, Thornwood, NY) at 40x and 60x magnification and images 

were collected with a Spot Digital camera (Diagnostic Instruments, Sterling Heights, MI). 

Samples were assessed using a histological scoring system and representative images of each 

treatment group were selected. 

 

2a. In Vivo Mouse Model. A 7-hour in vivo time-course was developed (Figure 2) whereby each 

C57/Bl6 (Wild type or Wt) mouse was given a single IP injection every hour for 7 hours. In the 

initial injection, each mouse received either PBS control, a pre-treatment of MET (200mg/kg), or 

a pre-treatment of salicylate (SAL) (120mg/kg). For each of the six hours following, each mouse 

received either PBS (control) or CER (40µg/kg). At the seventh hour, the mice were euthanized; 

their pancreata were harvested and used to assess the following parameters of pancreatitis: 
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intracellular zymogen activation, edema, and histological damage. This time-course resulted in 

six separate treatment groups: 1. PBS/PBS, 2. MET/PBS, 3. SAL/PBS, 4. PBS/CER 5. 

MET/CER 6. SAL/CER. For simplicity, PBS/PBS will be referred to as PBS, MET/PBS as 

MET, SAL/PBS as SAL, and PBS/CER as CER. MET/CER and SAL/CER will still be referred 

to as such. 

 

 

 

 

 

2b. Zymogen Activation Assay. See Section 3.1b for procedure. 

2c. Edema. See Section 3.2c for procedure. 

2d. Histological Assessment. See Section 3.2d for procedure. 
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IV. Results 

1a. Zymogen activation (Rat). Metformin pre-treatment of the rats was found to significantly 

decrease cerulein-induced intracellular zymogen activation, as measured by trypsin activity 

(Figure 3). Although the MET rats presented a slight decrease in trypsin activity in comparison 

to PBS rats, this decrease was statistically insignificant. 
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1b. Edema (Rat). CER rats exhibited significant amounts of edema in comparison to PBS 

(control) rats (Figure 4). Specifically, CER rats had a percent wet weight of 80% whereas the 

PBS rats had approximately 65%. MET/CER rats experienced a 5% reduction in edema at 75% 

when compared to CER rats. The difference in edema between CER and MET/CER rats is 

statistically insignificant. Since this measure of edema is limited to the wet weight of the 

pancreas, histology was carefully examined to determine whether this result was conclusive. 
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1c. Histology (Rat). Histological assessment of sections gathered from pancreatic tissue from 

each of the four treatment groups is not consistent with the edema studies described above. It is 

evident that unlike the CER sections, the MET/CER sections show a substantial decrease in 

edema, pyknotic nuclei, and plasma membrane blebbing (Figure 5). PBS and MET are nearly 

identical and exhibit no cellular damage, as expected. The visual evidence of cellular damage 

(including edema) was found to be more reliable than the edema measurement carried out in 

Section 4.1b. 
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2a. Zymogen Activation (Mouse). Both metformin and salicylate pre-treatment of the rats were 

found to decrease cerulein-induced intracellular zymogen activation, as measured by trypsin 

activity (Figure 6). The two-fold decrease in trypsin activity between CER mice and SAL/CER 

mice was determined to be statistically significant. However, the decrease in trypsin activity 

between CER mice and MET/CER mice was found to only be approaching significance (p = 

0.0553). Increasing the number of animals in the MET/CER treatment group might have 

produced a statistically significant decrease. 
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2b. Edema (Mouse). CER rats exhibited significant amounts of edema in comparison to PBS 

(control) rats (Figure 7). Specifically, CER rats had a percent wet weight of 83% whereas the 

PBS rats had approximately 65%. MET/CER rats experienced an 8% reduction in edema at 75% 

when compared to CER rats. SAL/CER rats experienced a 10% reduction in edema at 83% when 

compared to CER rats. Neither MET/CER nor SAL/CER rats displayed a significant difference 

in percent wet weight from that of CER rats. 
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2c. Histology (Mouse). Histological assessment of sections gathered from pancreatic tissue 

demonstrates clear histological damage in all sections of animals treated with CER (including 

MET/CER and SAL/CER) (Figure 8). This damage included severe edema, plasma membrane 

blebbing, and pyknotic nuclei. PBS, MET, and SAL showed no cellular damage. Damage in the 

pre-treated sections is thought to be the result of stress on the animals, as they received six 

injections in a matter of six hours. This amount of stress alone might have cause the damage in 

the pre-treated sections. 
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V. Discussion 

This study demonstrates that pre-treatment with the AMPK activators metformin and 

salicylate can lessen the severity of the early stages of acute pancreatitis in in vivo models. 

Although metformin and salicylate are able to lessen the pancreatitis responses by activating 

AMPK, cerulein causes an increase in pathological responses despite being able to activate 

AMPK. It has been shown that when cerulein activates AMPK, AMPK is translocated to an 

unidentified Triton X-100 insoluble compartment in the acinar cell, preventing AMPK from 

exerting its protective effects.[5] Now, a new set of questions arises: Do metformin and salicylate 

prevent this translocation and, if so, how? 

Three potential answers to this question are being considered. First, it is possible that 

metformin and salicylate are directly preventing the translocation of AMPK. By altering the 

conformation of one of the AMPK subunits, metformin and salicylate might prevent the 

translocation of AMPK. A chaperonin might also play a role in this potential mechanism. 

Second, cerulein might be stimulating additional pathways that move AMPK. Metformin and 

salicylate might be preventing these pathways from translocating active AMPK. Third, 

metformin and salicylate might be activating different AMPK proteins than cerulein, which 

could explain why AMPK activated by cerulein translocates away while AMPK activated by 

these drugs does not. 

An important point to note is the difference between prophylactic and therapeutic 

treatment. In this study, salicylate and metformin were considered to be prophylactic treatments, 

or pre-treatments. Prophylactic treatments such as this one could be useful in patients with 

hereditary pancreatitis.[9] Patients with hereditary pancreatitis often experience recurrent 

problems and undergoing prophylactic treatments of salicylate and metformin in low doses could 
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potentially be useful as a preventive measure. In addition, patients who undergo invasive 

procedures such as Endoscopic Retrograde Cholangeopancreatography (ERCP) could benefit 

from prophylactic treatment.[10] ERCP is used when a patient’s pancreatic or bile ducts are 

narrowed or fully blocked. The procedure makes use of an endoscope and X-rays for treatment. 

A major complication that frequently arises from this procedure is pancreatitis.[11] By 

administering prophylactic treatments to patients prior to undergoing ERCP, post-ERCP 

pancreatitis may be avoided. Future studies should also consider the therapeutic effect of 

salicylate, metformin, and additional AMPK activating drugs. 

It has also been discovered that different isoforms for each of the three AMPK subunits 

exist in the acinar cell. For instance, the α subunit can exist as α1 or α2, the β subunit can exist as 

β1 or β2, and the γ subunit can exist as γ1, γ2, or γ3 
[12]. Theoretically, there are twelve possible 

isoform combinations for the protein AMPK (ex. α1β1γ1, α1β2γ2, etc.). Drugs that target a 

specific subunit of AMPK could be of greater therapeutic value if the abundance of each subunit 

is better determined. The use of AMPK-α1 and AMPK-α2 knockout mice should also be 

considered in future studies, as genetically reducing levels of AMPK in mice should confirm that 

salicylate and metformin are acting through AMPK. 

Since metformin and salicylate employ different mechanisms of action in activating 

AMPK, it may of great importance to consider the combination of MET and SAL as a potential 

prophylactic and therapeutic agent, as this combination may further reduce the severity of early 

acute pancreatitis responses. 
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